-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimdsampling-wrep.cpp
618 lines (598 loc) · 23.7 KB
/
simdsampling-wrep.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
#ifdef _OPENMP
#include "omp.h"
#endif
#include "x86intrin.h"
#include "ctz.h"
#include "simdsampling.h"
#include "aesctr/wy.h"
#include "sleef.h"
#include <limits>
#include <queue>
#if __AVX512F__ || __AVX2__
#include "simdpcg32.h"
#endif
#ifdef __AVX512F__
#define SIMD_SAMPLING_ALIGNMENT (sizeof(__m512) / sizeof(char))
#elif __AVX2__
#define SIMD_SAMPLING_ALIGNMENT (sizeof(__m256) / sizeof(char))
#elif __AVX__
#define SIMD_SAMPLING_ALIGNMENT (sizeof(__m128) / sizeof(char))
#else
#define SIMD_SAMPLING_ALIGNMENT 1
#endif
// Do we really need to `max(0, weights)`?
// It should keep us robust to slightly off results due to precision
// but it does waste a couple instructions
#ifndef LSS_MAX_0
#define LSS_MAX_0 0
#endif
INLINE __m128 broadcast_max(__m128 x) {
__m128 max1 = _mm_shuffle_ps(x, x, _MM_SHUFFLE(0,0,3,2));
__m128 max2 = _mm_max_ps(x, max1);
__m128 max3 = _mm_shuffle_ps(max2, max2, _MM_SHUFFLE(0,0,0,1));
return _mm_max_ps(max2, max3);
}
enum LoadFormat {
ALIGNED,
UNALIGNED
};
#ifdef __AVX512F__
INLINE __m512 load(const float *ptr, std::false_type) {
#if LSS_MAX_0
return _mm512_max_ps(_mm512_loadu_ps(ptr), _mm512_setzero_ps());
#else
return _mm512_loadu_ps(ptr);
#endif
}
INLINE __m512d load(const double *ptr, std::false_type) {
#if LSS_MAX_0
return _mm512_max_pd(_mm512_loadu_pd(ptr), _mm512_setzero_pd());
#else
return _mm512_loadu_pd(ptr);
#endif
}
INLINE __m512 load(const float *ptr, std::true_type) {
#if LSS_MAX_0
return _mm512_max_ps(_mm512_load_ps(ptr), _mm512_setzero_ps());
#else
return _mm512_load_ps(ptr);
#endif
}
INLINE __m512d load(const double *ptr, std::true_type) {
#if LSS_MAX_0
return _mm512_max_pd(_mm512_load_pd(ptr), _mm512_setzero_pd());
#else
return _mm512_load_pd(ptr);
#endif
}
template<LoadFormat aln>
__m512d load(const double *ptr) {
return load(ptr, std::integral_constant<bool, aln == ALIGNED>());
}
template<LoadFormat aln>
__m512 load(const float *ptr) {
return load(ptr, std::integral_constant<bool, aln == ALIGNED>());
}
#elif defined(__AVX2__)
INLINE __m256 load(const float *ptr, std::false_type) {
#if LSS_MAX_0
return _mm256_max_ps(_mm256_loadu_ps(ptr), _mm256_setzero_ps());
#else
return _mm256_loadu_ps(ptr);
#endif
}
INLINE __m256d load(const double *ptr, std::false_type) {
#if LSS_MAX_0
return _mm256_max_pd(_mm256_loadu_pd(ptr), _mm256_setzero_pd());
#else
return _mm256_loadu_pd(ptr);
#endif
}
INLINE __m256 load(const float *ptr, std::true_type) {
#if LSS_MAX_0
return _mm256_max_ps(_mm256_load_ps(ptr), _mm256_setzero_ps());
#else
return _mm256_load_ps(ptr);
#endif
}
INLINE __m256d load(const double *ptr, std::true_type) {
#if LSS_MAX_0
return _mm256_max_pd(_mm256_load_pd(ptr), _mm256_setzero_pd());
#else
return _mm256_load_pd(ptr);
#endif
}
template<LoadFormat aln>
__m256 load(const float *ptr) {
return load(ptr, std::integral_constant<bool, aln == ALIGNED>());
}
template<LoadFormat aln>
__m256d load(const double *ptr) {
return load(ptr, std::integral_constant<bool, aln == ALIGNED>());
}
#elif defined(__SSE2__)
INLINE __m128 load(const float *ptr, std::false_type) {
return _mm_loadu_ps(ptr);
}
INLINE __m128d load(const double *ptr, std::false_type) {
return _mm_loadu_pd(ptr);
}
INLINE __m128 load(const float *ptr, std::true_type) {
return _mm_load_ps(ptr);
}
INLINE __m128d load(const double *ptr, std::true_type) {
return _mm_load_pd(ptr);
}
template<LoadFormat aln>
__m128d load(const double *ptr) {
__m128d ret = load(ptr, std::integral_constant<bool, aln == ALIGNED>());
#if LSS_MAX_0
ret = _mm_max_pd(ret, _mm_setzero_pd());
#endif
return ret;
}
template<LoadFormat aln>
__m128 load(const float *ptr) {
return load(ptr, std::integral_constant<bool, aln == ALIGNED>());
__m128 ret = load(ptr, std::integral_constant<bool, aln == ALIGNED>());
#if LSS_MAX_0
ret = _mm_max_ps(ret, _mm_setzero_ps());
#endif
return ret;
}
#endif
#if __AVX512F__ && (!defined(__AVX512DQ__) || !__AVX512DQ__)
INLINE __m512i pack_result(__m128i a, __m128i b, __m128i c, __m128i d) {
__m512i ret = _mm512_setzero_si512();
ret = _mm512_inserti32x4(ret, a, 0);
ret = _mm512_inserti32x4(ret, b, 1);
ret = _mm512_inserti32x4(ret, c, 2);
ret = _mm512_inserti32x4(ret, d, 3);
return ret;
}
#endif
template<LoadFormat aln>
std::vector<uint64_t> double_simd_sampling_wrep_fmt(const double * weights, size_t n, size_t nsample, uint64_t seed);
std::vector<uint64_t> double_simd_sampling_wrep(const double * weights, size_t n, size_t nsample, uint64_t seed) {
return reinterpret_cast<uint64_t>(weights) % SIMD_SAMPLING_ALIGNMENT ?
double_simd_sampling_wrep_fmt<UNALIGNED>(weights, n, nsample, seed):
double_simd_sampling_wrep_fmt<ALIGNED>(weights, n, nsample, seed);
}
template<LoadFormat aln>
std::vector<uint64_t> float_simd_sampling_wrep_fmt(const float * weights, size_t n, size_t nsample, uint64_t seed);
std::vector<uint64_t> float_simd_sampling_wrep(const float * weights, size_t n, size_t nsample, uint64_t seed) {
return reinterpret_cast<uint64_t>(weights) % SIMD_SAMPLING_ALIGNMENT ?
float_simd_sampling_wrep_fmt<UNALIGNED>(weights, n, nsample, seed):
float_simd_sampling_wrep_fmt<ALIGNED>(weights, n, nsample, seed);
}
template<LoadFormat aln>
std::vector<uint64_t> float_simd_sampling_wrep_fmt(const float * weights, size_t n, size_t nsample, uint64_t seed)
{
std::vector<uint64_t> bestinds(nsample);
std::vector<float> maxv(nsample, -std::numeric_limits<float>::max());
wy::WyRand<uint64_t> baserng(seed * seed + 13);
OMP_ONLY(std::unique_ptr<std::mutex[]> mutexes(new std::mutex[nsample]);)
#ifdef _OPENMP
int nt;
#pragma omp parallel
{
nt = omp_get_num_threads();
}
std::vector<wy::WyRand<uint64_t>> rngs(nt);
for(auto &i: rngs) i.seed(baserng());
#endif
#if defined(__AVX512F__) || defined(__AVX2__)
constexpr float psmul = 1. / (1ull<<29);
#endif
#ifdef __AVX512F__
#if __AVX512DQ__
using simdpcg_t = avx512_pcg32_random_t;
auto init = [&](simdpcg_t &x) {
x.multiplier = _mm512_set1_epi64(0x5851f42d4c957f2d);
x.state = _mm512_set_epi64(baserng(), baserng(), baserng(), baserng(), baserng(), baserng(), baserng(), baserng());
x.inc = _mm512_set_epi64(baserng() | 1ull, baserng() | 1ull, baserng() | 1ull, baserng() | 1ull, baserng() | 1ull, baserng() | 1ull, baserng() | 1ull, baserng() | 1ull);
};
#else
using simdpcg_t = avx2_pcg32_random_t;
auto init = [&](simdpcg_t &x) {
x.state[0] = _mm256_set_epi64x(baserng(), baserng(), baserng(), baserng());
x.state[1] = _mm256_set_epi64x(baserng(), baserng(), baserng(), baserng());
x.inc[0] = _mm256_set_epi64x(baserng() | 1u, baserng() | 1u, baserng() | 1u, baserng() | 1u);
x.inc[1] = _mm256_set_epi64x(baserng() | 1u, baserng() | 1u, baserng() | 1u, baserng() | 1u);
x.pcg32_mult_l = _mm256_set1_epi64x(UINT64_C(0x5851f42d4c957f2d) & 0xffffffff);
x.pcg32_mult_h = _mm256_set1_epi64x(UINT64_C(0x5851f42d4c957f2d) >> 32);
};
#endif
simdpcg_t baserngstate;
#ifdef _OPENMP
simdpcg_t *rngstates = &baserngstate;
if(nt > 1) {
if(posix_memalign((void **)&rngstates, sizeof(__m512) / sizeof(char), sizeof(*rngstates) * nt))
throw std::bad_alloc();
for(int i = 0; i < nt; ++i) init(rngstates[i]);
} else
#endif
{
init(baserngstate);
}
constexpr size_t nperel = sizeof(__m512) / sizeof(float);
const size_t e = n / nperel;
OMP_PFOR
for(size_t o = 0; o < e; ++o) {
OMP_ONLY(const int tid = omp_get_thread_num();)
auto &rng = OMP_ELSE(rngstates[tid],
baserngstate);
const __m512 lv = load<aln>((const float *)&weights[o * nperel]);
SK_UNROLL_8
for(size_t mi = 0; mi < nsample; ++mi ) {
auto &maxv = maxv[mi];
auto &bestind = bestinds[mi];
__m512 vmaxv = _mm512_set1_ps(maxv);
__m512i v = _mm512_srli_epi32(_mm512_inserti32x8(_mm512_castsi256_si512(avx512_pcg32_random_r(&rng)), avx512_pcg32_random_r(&rng), 1), 3);
auto v4 = _mm512_mul_ps(_mm512_cvtepi32_ps(v), _mm512_set1_ps(psmul));
auto v5 = Sleef_logf16_u35(v4);
auto divv = _mm512_div_ps(v5, lv);
auto cmpmask = _mm512_cmp_ps_mask(divv, vmaxv, _CMP_GT_OQ);
if(cmpmask) {
const newmaxv = _mm512_set1_ps(_mm512_reduce_max_ps(divv));
if((cmpmask = _mm512_cmp_ps_mask(divv, newmaxv, _CMP_EQ_OQ))) {
OMP_ONLY(std::lock_guard<std::mutex[]> lock(mutexes[mi]);)
if(_mm512_cmp_ps_mask(divv, vmaxv, _CMP_GT_OQ)) {
maxv = newmaxv[0];
bestind = ctz(cmpmask) + o * nperel;
}
}
}
}
}
float maxv = _mm512_cvtss_f32(vmaxv);
OMP_PFOR
for(size_t mi = 0; mi < nsamples; ++mi) {
std::uniform_real_distribution<float> urd;
for(size_t p = e * nperel; p != n; ++p) {
auto &maxv = maxv[mi];
auto &bestind = bestinds[mi];
auto v = std::log(urd(baserng)) / weights[p];
if(v > maxv)
bestind = p, maxv = v;
}
}
#elif __AVX2__
constexpr size_t nperel = sizeof(__m256) / sizeof(float);
const size_t e = (n / nperel);
using simdpcg_t = avx2_pcg32_random_t;
auto init = [&](simdpcg_t &x) {
x.state[0] = _mm256_set_epi64x(baserng(), baserng(), baserng(), baserng());
x.state[1] = _mm256_set_epi64x(baserng(), baserng(), baserng(), baserng());
x.inc[0] = _mm256_set_epi64x(baserng() | 1u, baserng() | 1u, baserng() | 1u, baserng() | 1u);
x.inc[1] = _mm256_set_epi64x(baserng() | 1u, baserng() | 1u, baserng() | 1u, baserng() | 1u);
x.pcg32_mult_l = _mm256_set1_epi64x(UINT64_C(0x5851f42d4c957f2d) & 0xffffffff);
x.pcg32_mult_h = _mm256_set1_epi64x(UINT64_C(0x5851f42d4c957f2d) >> 32);
};
simdpcg_t baserngstate;
#ifdef _OPENMP
simdpcg_t *rngstates = &baserngstate;
if(nt > 1) {
if(posix_memalign((void **)&rngstates, sizeof(__m256) / sizeof(char), sizeof(*rngstates) * nt))
throw std::bad_alloc();
for(int i = 0; i < nt; ++i) init(rngstates[i]);
} else
#endif
{
init(baserngstate);
}
OMP_PFOR
for(size_t o = 0; o < e; ++o) {
auto &rng = OMP_ELSE(rngstates[omp_get_thread_num()],
baserngstate);
const __m256 ov6 = load<aln>((const float *) &weights[o * nperel]);
SK_UNROLL_8
for(size_t mi = 0; mi < nsample; ++mi) {
auto &bestind = bestinds[mi];
auto &bestv = maxv[mi];
__m256 vmaxv = _mm256_set1_ps(bestv);
__m256i v = _mm256_srli_epi32(avx2_pcg32_random_r(&rng), 3);
auto v2 = _mm256_mul_ps(_mm256_cvtepi32_ps(v), _mm256_set1_ps(psmul));
auto v3 = Sleef_logf8_u35(v2);
auto divv = _mm256_div_ps(v3, ov6);
auto cmp = _mm256_cmp_ps(divv, vmaxv, _CMP_GT_OQ);
auto cmpmask = _mm256_movemask_ps(cmp);
if(cmpmask) {
const __m256 permHalves = _mm256_permute2f128_ps(divv, divv, 1);
const __m256 m0 = _mm256_max_ps(permHalves, divv);
const __m256 perm0 = _mm256_permute_ps(m0, 0b01001110);
const __m256 m1 = _mm256_max_ps(m0, perm0);
const __m256 perm1 = _mm256_permute_ps(m1, 0b10110001);
const __m256 m2 = _mm256_max_ps(perm1, m1);
cmpmask = _mm256_movemask_ps(_mm256_cmp_ps(m2, divv, _CMP_EQ_OQ));
OMP_ONLY(std::lock_guard<std::mutex[]> lock(mutexes[mi]);)
if(_mm256_movemask_ps(_mm256_cmp_ps(m2, vmaxv, _CMP_GT_OQ))) {
bestv = m2[0];
bestind = ctz(cmpmask) + o * nperel;
}
}
}
}
OMP_PFOR
for(size_t mi = 0; mi < nsample; ++mi) {
auto &bestind = bestinds[mi];
auto &bestv = maxv[mi];
for(size_t p = e * nperel; p != n; ++p) {
std::uniform_real_distribution<float> urd;
auto v = std::log(urd(baserng)) / weights[p];
if(v > bestv)
bestind = p, bestv = v;
}
}
#elif __AVX__
constexpr size_t nperel = sizeof(__m128d) / sizeof(float);
const size_t e = n / nperel;
float maxv = -std::numeric_limits<float>::max();
OMP_PFOR
for(size_t o = 0; o < e; ++o) {
auto &rng = OMP_ELSE(rngs[omp_get_thread_num()],
baserng);
const __m128 ov6 = load<aln>((const float *) &weights[o * nperel]);
for(size_t mi = 0; mi < nsample; ++mi) {
auto &maxv = maxv[mi];
auto &bestind = bestinds[mi];
__m128i v = _mm_set_epi64x(rng(), rng());
const __m128 vmaxv = _mm_set1_ps(maxv);
auto v3 = _mm_mul_ps(_mm_cvtepi32_ps(v), _mm_set1_ps(psmul));
auto v5 = Sleef_logf4_u35(v3);
auto divv = _mm_div_ps(v5, ov6);
auto cmp = _mm_cmp_ps(divv, vmaxv, _CMP_GT_OQ);
auto cmpmask = _mm_movemask_ps(cmp);
if(cmpmask) {
OMP_ONLY(std::lock_guard<std::mutex[]> lock(mutexes[mi]);)
if((cmpmask = _mm_movemask_ps(_mm_cmp_ps(divv, vmaxv, _CMP_GT_OQ)))) {
maxv = broadcast_max(divv)[0];
bestind = ctz(_mm_movemask_ps(_mm_cmp_ps(vmaxv, divv, _CMP_EQ_OQ))) + o * nperel;
}
}
}
}
OMP_PFOR
for(size_t mi = 0; mi < nsample; ++mi) {
auto &bestind = bestinds[mi];
auto &bestv = maxv[mi];
for(size_t p = e * nperel; p != n; ++p) {
std::uniform_real_distribution<float> urd;
auto v = std::log(urd(baserng)) / weights[p];
if(v > maxv)
bestind = p, maxv = v;
}
}
#else
for(size_t mi = 0; mi < nsample; ++mi)
maxv[mi] = std::log(std::uniform_real_distribution<double>()(baserng)) / weights[mi];
OMP_PFOR
for(size_t i = 1; i < n; ++i) {
auto &rng = OMP_ELSE(rngs[omp_get_thread_num()],
baserng);
for(size_t mi = 0; mi < nsample; ++mi) {
auto &bestv = maxv[mi];
auto &beestind = bestinds[mi];
auto v = std::log(std::uniform_real_distribution<double>()(rng)) / weights[i];
if(v > bestv) {
#ifdef _OPENMP
OMP_ONLY(std::lock_guard<std::mutex[]> lock(mutexes[mi]);)
#endif
bestv = v, bestind = i;
#ifdef _OPENMP
}
#endif
}
}
#endif
#if defined(__AVX512F__) || defined(__AVX2__)
OMP_ONLY(if(rngstates != &baserngstate) std::free(rngstates);)
#endif
return bestinds;
}
template<LoadFormat aln>
std::vector<uint64_t> double_simd_sampling_wrep_fmt(const double * weights, size_t n, size_t nsample, uint64_t seed)
{
std::vector<uint64_t> bestinds(nsample);
std::vector<double> maxv(nsample, -std::numeric_limits<double>::max());
wy::WyRand<uint64_t> baserng(seed * seed + 13);
OMP_ONLY(std::unique_ptr<std::mutex[]> mutexes(new std::mutex[nsample]);)
#ifdef _OPENMP
int nt;
#pragma omp parallel
{
nt = omp_get_num_threads();
}
std::vector<wy::WyRand<uint64_t>> rngs(nt);
for(auto &i: rngs) i.seed(baserng());
#endif
#if defined(__AVX512F__) || defined(__AVX2__)
constexpr double pdmul = 1. / (1ull<<52);
#endif
#ifdef __AVX512F__
#if __AVX512DQ__
using simdpcg_t = avx512_pcg32_random_t;
auto init = [&](simdpcg_t &x) {
x.multiplier = _mm512_set1_epi64(0x5851f42d4c957f2d);
x.state = _mm512_set_epi64(baserng(), baserng(), baserng(), baserng(), baserng(), baserng(), baserng(), baserng());
x.inc = _mm512_set_epi64(baserng() | 1ull, baserng() | 1ull, baserng() | 1ull, baserng() | 1ull, baserng() | 1ull, baserng() | 1ull, baserng() | 1ull, baserng() | 1ull);
};
#else
using simdpcg_t = avx2_pcg32_random_t;
auto init = [&](simdpcg_t &x) {
x.state[0] = _mm256_set_epi64x(baserng(), baserng(), baserng(), baserng());
x.state[1] = _mm256_set_epi64x(baserng(), baserng(), baserng(), baserng());
x.inc[0] = _mm256_set_epi64x(baserng() | 1u, baserng() | 1u, baserng() | 1u, baserng() | 1u);
x.inc[1] = _mm256_set_epi64x(baserng() | 1u, baserng() | 1u, baserng() | 1u, baserng() | 1u);
x.pcg32_mult_l = _mm256_set1_epi64x(UINT64_C(0x5851f42d4c957f2d) & 0xffffffff);
x.pcg32_mult_h = _mm256_set1_epi64x(UINT64_C(0x5851f42d4c957f2d) >> 32);
};
#endif
simdpcg_t baserngstate;
#ifdef _OPENMP
simdpcg_t *rngstates = &baserngstate;
if(nt > 1) {
if(posix_memalign((void **)&rngstates, sizeof(__m512) / sizeof(char), sizeof(*rngstates) * nt))
throw std::bad_alloc();
for(int i = 0; i < nt; ++i) init(rngstates[i]);
} else
#endif
{
init(baserngstate);
}
constexpr size_t nperel = sizeof(__m512) / sizeof(double);
const size_t e = n / nperel;
OMP_PFOR
for(size_t o = 0; o < e; ++o) {
OMP_ONLY(const int tid = omp_get_thread_num();)
auto &rng = OMP_ELSE(rngstates[tid],
baserngstate);
const __m512 lv = load<aln>((const double *)&weights[o * nperel]);
SK_UNROLL_8
for(size_t mi = 0; mi < nsample; ++mi ) {
auto &maxv = maxv[mi];
auto &bestind = bestinds[mi];
__m512 vmaxv = _mm512_set1_pd(maxv);
__m512i v =
#if __AVX512DQ__
avx512bis_pcg32_random_r(&rng);
#else
pack_result(avx256_pcg32_random_r(&rng), avx256_pcg32_random_r(&rng),avx256_pcg32_random_r(&rng),avx256_pcg32_random_r(&rng));
#endif
const __m512d v2 =
#ifdef __AVX512DQ__
_mm512_mul_pd(_mm512_cvtepi64_pd(_mm512_srli_epi64(v, 12)), _mm512_set1_pd(pdmul));
#else
_mm512_mul_pd(_mm512_sub_pd(_mm512_castsi512_pd(_mm512_or_si512(_mm512_srli_epi64(v, 12), _mm512_castpd_si512(_mm512_set1_pd(0x0010000000000000)))), _mm512_set1_pd(0x0010000000000000)), _mm512_set1_pd(pdmul));
#endif
const __m512d v3 = Sleef_logd8_u35(v2);
auto divv = _mm512_div_pd(v3, lv);
auto cmpmask = _mm512_cmp_pd_mask(divv, vmaxv, _CMP_GT_OQ);
if(cmpmask) {
const newmaxv = _mm512_set1_pd(_mm512_reduce_max_pd(divv));
if((cmpmask = _mm512_cmp_pd_mask(divv, newmaxv, _CMP_EQ_OQ))) {
OMP_ONLY(std::lock_guard<std::mutex[]> lock(mutexes[mi]);)
if(_mm512_cmp_pd_mask(divv, vmaxv, _CMP_GT_OQ)) {
maxv = newmaxv[0];
bestind = ctz(cmpmask) + o * nperel;
}
}
}
}
}
OMP_PFOR
for(size_t mi = 0; mi < nsamples; ++mi) {
std::uniform_real_distribution<double> urd;
auto &maxv = maxv[mi];
auto &bestind = bestinds[mi];
for(size_t p = e * nperel; p != n; ++p) {
auto v = std::log(urd(baserng)) / weights[p];
if(v > maxv)
bestind = p, maxv = v;
}
}
#elif __AVX2__
constexpr size_t nperel = sizeof(__m256) / sizeof(double);
const size_t e = (n / nperel);
using simdpcg_t = avx2_pcg32_random_t;
auto init = [&](simdpcg_t &x) {
x.state[0] = _mm256_set_epi64x(baserng(), baserng(), baserng(), baserng());
x.state[1] = _mm256_set_epi64x(baserng(), baserng(), baserng(), baserng());
x.inc[0] = _mm256_set_epi64x(baserng() | 1u, baserng() | 1u, baserng() | 1u, baserng() | 1u);
x.inc[1] = _mm256_set_epi64x(baserng() | 1u, baserng() | 1u, baserng() | 1u, baserng() | 1u);
x.pcg32_mult_l = _mm256_set1_epi64x(UINT64_C(0x5851f42d4c957f2d) & 0xffffffff);
x.pcg32_mult_h = _mm256_set1_epi64x(UINT64_C(0x5851f42d4c957f2d) >> 32);
};
simdpcg_t baserngstate;
#ifdef _OPENMP
simdpcg_t *rngstates = &baserngstate;
if(nt > 1) {
if(posix_memalign((void **)&rngstates, sizeof(__m256) / sizeof(char), sizeof(*rngstates) * nt))
throw std::bad_alloc();
for(int i = 0; i < nt; ++i) init(rngstates[i]);
} else
#endif
{
init(baserngstate);
}
OMP_PFOR
for(size_t o = 0; o < e; ++o) {
auto &rng = OMP_ELSE(rngstates[omp_get_thread_num()],
baserngstate);
const __m256d ov6 = load<aln>((const double *) &weights[o * nperel]);
SK_UNROLL_8
for(size_t mi = 0; mi < nsample; ++mi) {
auto &bestind = bestinds[mi];
auto &bestv = maxv[mi];
__m256d vmaxv = _mm256_set1_pd(bestv);
__m256i v = _mm256_srli_epi32(avx2_pcg32_random_r(&rng), 12);
auto v2 = _mm256_or_si256(v, _mm256_castpd_si256(_mm256_set1_pd(0x0010000000000000)));
auto v3 = _mm256_sub_pd(_mm256_castsi256_pd(v2), _mm256_set1_pd(0x0010000000000000));
auto v4 = _mm256_mul_pd(v3, _mm256_set1_pd(pdmul));
auto v5 = Sleef_logd4_u35(v4);
auto divv = _mm256_div_pd(v5, ov6);
auto cmp = _mm256_cmp_pd(divv, vmaxv, _CMP_GT_OQ);
auto cmpmask = _mm256_movemask_pd(cmp);
if(cmpmask) {
__m256d y = _mm256_permute2f128_pd(divv, divv, 1);
__m256d m1 = _mm256_max_pd(divv, y);
__m256d m2 = _mm256_permute_pd(m1, 5);
__m256d newmax = _mm256_max_pd(m2, m1);
OMP_ONLY(std::lock_guard<std::mutex[]> lock(mutexes[mi]);)
if(_mm256_movemask_pd(_mm256_cmp_pd(newmax, vmaxv, _CMP_GT_OQ))) {
bestv = newmax[0];
bestind = ctz(_mm256_movemask_pd(_mm256_cmp_pd(newmax, divv, _CMP_EQ_OQ))) + o * nperel;
}
}
}
}
OMP_PFOR
for(size_t mi = 0; mi < nsample; ++mi) {
auto &bestind = bestinds[mi];
auto &bestv = maxv[mi];
for(size_t p = e * nperel; p != n; ++p) {
std::uniform_real_distribution<double> urd;
auto v = std::log(urd(baserng)) / weights[p];
if(v > bestv)
bestind = p, bestv = v;
}
}
#else
for(size_t mi = 0; mi < nsample; ++mi)
maxv[mi] = std::log(std::uniform_real_distribution<double>()(baserng)) / weights[mi];
OMP_PFOR
for(size_t i = 1; i < n; ++i) {
auto &rng = OMP_ELSE(rngs[omp_get_thread_num()],
baserng);
for(size_t mi = 0; mi < nsample; ++mi) {
auto &bestv = maxv[mi];
auto &beestind = bestinds[mi];
auto v = std::log(std::uniform_real_distribution<double>()(rng)) / weights[i];
if(v > bestv) {
#ifdef _OPENMP
OMP_ONLY(std::lock_guard<std::mutex[]> lock(mutexes[mi]);)
#endif
bestv = v, bestind = i;
#ifdef _OPENMP
}
#endif
}
}
#endif
#if defined(__AVX512F__) || defined(__AVX2__)
OMP_ONLY(if(rngstates != &baserngstate) std::free(rngstates);)
#endif
return bestinds;
}
#ifdef WREP_MAIN
int main() {
std::vector<float> data(1000, 5.);
std::vector<double> ddata(1000, 5.);
for(const auto v: float_simd_sampling_wrep(data.data(), data.size(), 5, 0)) {
std::fprintf(stderr, "value: %zu\n", size_t(v));
}
for(const auto v: double_simd_sampling_wrep(ddata.data(), ddata.size(), 5, 0)) {
std::fprintf(stderr, "value: %zu\n", size_t(v));
}
}
#endif