-
Notifications
You must be signed in to change notification settings - Fork 279
/
Copy pathddpm_conditional.py
138 lines (118 loc) · 5.46 KB
/
ddpm_conditional.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
import copy
import numpy as np
import torch
import torch.nn as nn
from tqdm import tqdm
from torch import optim
from utils import *
from modules import UNet_conditional, EMA
import logging
from torch.utils.tensorboard import SummaryWriter
logging.basicConfig(format="%(asctime)s - %(levelname)s: %(message)s", level=logging.INFO, datefmt="%I:%M:%S")
class Diffusion:
def __init__(self, noise_steps=1000, beta_start=1e-4, beta_end=0.02, img_size=256, device="cuda"):
self.noise_steps = noise_steps
self.beta_start = beta_start
self.beta_end = beta_end
self.beta = self.prepare_noise_schedule().to(device)
self.alpha = 1. - self.beta
self.alpha_hat = torch.cumprod(self.alpha, dim=0)
self.img_size = img_size
self.device = device
def prepare_noise_schedule(self):
return torch.linspace(self.beta_start, self.beta_end, self.noise_steps)
def noise_images(self, x, t):
sqrt_alpha_hat = torch.sqrt(self.alpha_hat[t])[:, None, None, None]
sqrt_one_minus_alpha_hat = torch.sqrt(1 - self.alpha_hat[t])[:, None, None, None]
Ɛ = torch.randn_like(x)
return sqrt_alpha_hat * x + sqrt_one_minus_alpha_hat * Ɛ, Ɛ
def sample_timesteps(self, n):
return torch.randint(low=1, high=self.noise_steps, size=(n,))
def sample(self, model, n, labels, cfg_scale=3):
logging.info(f"Sampling {n} new images....")
model.eval()
with torch.no_grad():
x = torch.randn((n, 3, self.img_size, self.img_size)).to(self.device)
for i in tqdm(reversed(range(1, self.noise_steps)), position=0):
t = (torch.ones(n) * i).long().to(self.device)
predicted_noise = model(x, t, labels)
if cfg_scale > 0:
uncond_predicted_noise = model(x, t, None)
predicted_noise = torch.lerp(uncond_predicted_noise, predicted_noise, cfg_scale)
alpha = self.alpha[t][:, None, None, None]
alpha_hat = self.alpha_hat[t][:, None, None, None]
beta = self.beta[t][:, None, None, None]
if i > 1:
noise = torch.randn_like(x)
else:
noise = torch.zeros_like(x)
x = 1 / torch.sqrt(alpha) * (x - ((1 - alpha) / (torch.sqrt(1 - alpha_hat))) * predicted_noise) + torch.sqrt(beta) * noise
model.train()
x = (x.clamp(-1, 1) + 1) / 2
x = (x * 255).type(torch.uint8)
return x
def train(args):
setup_logging(args.run_name)
device = args.device
dataloader = get_data(args)
model = UNet_conditional(num_classes=args.num_classes).to(device)
optimizer = optim.AdamW(model.parameters(), lr=args.lr)
mse = nn.MSELoss()
diffusion = Diffusion(img_size=args.image_size, device=device)
logger = SummaryWriter(os.path.join("runs", args.run_name))
l = len(dataloader)
ema = EMA(0.995)
ema_model = copy.deepcopy(model).eval().requires_grad_(False)
for epoch in range(args.epochs):
logging.info(f"Starting epoch {epoch}:")
pbar = tqdm(dataloader)
for i, (images, labels) in enumerate(pbar):
images = images.to(device)
labels = labels.to(device)
t = diffusion.sample_timesteps(images.shape[0]).to(device)
x_t, noise = diffusion.noise_images(images, t)
if np.random.random() < 0.1:
labels = None
predicted_noise = model(x_t, t, labels)
loss = mse(noise, predicted_noise)
optimizer.zero_grad()
loss.backward()
optimizer.step()
ema.step_ema(ema_model, model)
pbar.set_postfix(MSE=loss.item())
logger.add_scalar("MSE", loss.item(), global_step=epoch * l + i)
if epoch % 10 == 0:
labels = torch.arange(10).long().to(device)
sampled_images = diffusion.sample(model, n=len(labels), labels=labels)
ema_sampled_images = diffusion.sample(ema_model, n=len(labels), labels=labels)
plot_images(sampled_images)
save_images(sampled_images, os.path.join("results", args.run_name, f"{epoch}.jpg"))
save_images(ema_sampled_images, os.path.join("results", args.run_name, f"{epoch}_ema.jpg"))
torch.save(model.state_dict(), os.path.join("models", args.run_name, f"ckpt.pt"))
torch.save(ema_model.state_dict(), os.path.join("models", args.run_name, f"ema_ckpt.pt"))
torch.save(optimizer.state_dict(), os.path.join("models", args.run_name, f"optim.pt"))
def launch():
import argparse
parser = argparse.ArgumentParser()
args = parser.parse_args()
args.run_name = "DDPM_conditional"
args.epochs = 300
args.batch_size = 14
args.image_size = 64
args.num_classes = 10
args.dataset_path = r"C:\Users\dome\datasets\cifar10\cifar10-64\train"
args.device = "cuda"
args.lr = 3e-4
train(args)
if __name__ == '__main__':
launch()
# device = "cuda"
# model = UNet_conditional(num_classes=10).to(device)
# ckpt = torch.load("./models/DDPM_conditional/ckpt.pt")
# model.load_state_dict(ckpt)
# diffusion = Diffusion(img_size=64, device=device)
# n = 8
# y = torch.Tensor([6] * n).long().to(device)
# x = diffusion.sample(model, n, y, cfg_scale=0)
# plot_images(x)