generated from dongliangcao/pytorch-framework
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathgeometry_util.py
912 lines (728 loc) · 30.7 KB
/
geometry_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
# code adapted from original DiffusionNet implementation https://github.com/nmwsharp/diffusion-net
import os
import os.path as osp
import random
import hashlib
import numpy as np
import scipy
import scipy.spatial
import scipy.sparse.linalg as sla
import sklearn.neighbors as neighbors
import robust_laplacian
import potpourri3d as pp3d
import torch
# Hash a list of numpy arrays
def hash_arrays(arrs):
running_hash = hashlib.sha1()
for arr in arrs:
if arr is not None:
binarr = arr.view(np.uint8)
running_hash.update(binarr)
return running_hash.hexdigest()
def torch2np(tensor):
assert isinstance(tensor, torch.Tensor)
return tensor.detach().cpu().numpy()
def sparse_np_to_torch(A):
Acoo = A.tocoo()
values = Acoo.data
indices = np.vstack((Acoo.row, Acoo.col))
shape = Acoo.shape
return torch.sparse_coo_tensor(torch.LongTensor(indices), torch.FloatTensor(values), torch.Size(shape)).coalesce()
def sparse_torch_to_np(A):
assert len(A.shape) == 2
indices = torch2np(A.indices())
values = torch2np(A.values())
mat = scipy.sparse.coo_matrix((values, indices), shape=A.shape).tocsc()
return mat
def to_basis(feat, basis, massvec):
"""
Transform feature into coefficients of orthonormal basis.
Args:
feat (torch.Tensor): feature vector [B, V, C]
basis (torch.Tensor): functional basis [B, V, K]
massvec (torch.Tensor): mass vector [B, V]
Returns:
coef (torch.Tensor): coefficient of basis [B, K, C]
"""
basis_t = basis.transpose(-2, -1)
coef = torch.matmul(basis_t, feat * massvec.unsqueeze(-1))
return coef
def from_basis(coef, basis):
"""
Transform coefficients of orthonormal basis into feature.
Args:
coef (torch.Tensor): coefficients [B, K, C]
basis (torch.Tensor): functional basis [B, V, K]
Returns:
feat (torch.Tensor): feature vector [B, V, C]
"""
feat = torch.matmul(basis, coef)
return feat
def dot(a, b, keepdim=False):
"""
Compute the dot product between vector a and vector b in last dimension
Args:
a (torch.Tensor): vector a [N, C].
b (torch.Tensor): vector b [N, C].
keepdim (bool, optional): keep dimension.
Return:
(torch.Tensor): dot product between a and b [N] or [N, 1].
"""
assert a.shape == b.shape
return torch.sum(a * b, dim=-1, keepdim=keepdim)
def cross(a, b):
"""
Compute the cross product between vector a and vector b in last dimension
Args:
a (torch.Tensor): vector a [N, 3].
b (torch.Tensor): vector b [N, 3].
Return:
(torch.Tensor): cross product between a and b [N, 3].
"""
assert a.shape == b.shape and a.shape[-1] == 3
return torch.cross(a, b, dim=-1)
def norm(x, keepdim=False):
"""
Compute norm of an array of vectors.
Given (N, C), return (N) or (N, 1) after norm along last dimension.
"""
return torch.norm(x, dim=-1, keepdim=keepdim)
def square_norm(x, keepdim=False):
"""
Compute square norm of an array of vectors.
Given (N, C), return (N) after norm along last dimension.
"""
return dot(x, x, keepdim=keepdim)
def normalize(x, eps=1e-12):
"""
Normalize an array of vectors along last dimension.
Given (N, C), return (N, C) after normalization.
"""
assert x.dim() != 1
return x / (norm(x, keepdim=True) + eps)
def face_coords(verts, faces):
"""
Return face coordinates.
Args:
verts (torch.Tensor): vertices [V, 3]
faces (torch.LongTensor): faces [F, 3]
Return:
coords (torch.Tensor): face coordinates [F, 3, 3]
"""
coords = verts[faces]
return coords
def project_to_tangent(vecs, normals):
"""
Compute the tangent vectors of normals by vecs - proj(vecs, normals).
Args:
vecs (torch.Tensor): vecs [V, 3].
normals (torch.Tensor): normal vectors assume to be unit [V, 3].
"""
return vecs - dot(vecs, normals, keepdim=True) * normals
def face_area(verts, faces):
"""
Compute face areas
Args:
verts (torch.Tensor): verts [V, 3]
faces (torch.Tensor): faces [F, 3]
"""
coords = face_coords(verts, faces)
vec_A = coords[:, 1, :] - coords[:, 0, :]
vec_B = coords[:, 2, :] - coords[:, 0, :]
# compute area by cross product
normal = cross(vec_A, vec_B)
return 0.5 * norm(normal)
def face_normal(verts, faces, is_normalize=True):
"""
Compute face normal
Args:
verts (torch.Tensor): verts [V, 3]
faces (torch.Tensor): faces [F, 3]
is_normalize (bool, optional): whether normalize face normal. Default True.
"""
coords = face_coords(verts, faces)
vec_A = coords[:, 1, :] - coords[:, 0, :]
vec_B = coords[:, 2, :] - coords[:, 0, :]
normal = cross(vec_A, vec_B)
if is_normalize:
normal = normalize(normal)
return normal
def neighborhood_normal(pts):
"""
Compute point cloud normal by performing PCA in neighborhood points.
Args:
pts (np.ndarray): points [V, N, 3], N: number of neighbors.
"""
_, _, vh = np.linalg.svd(pts, full_matrices=False)
normal = vh[:, 2, :]
return normal / (np.linalg.norm(normal, axis=-1, keepdims=True) + 1e-12)
def mesh_vertex_normal(verts, faces):
"""
Compute mesh vertex normal by adding neighboring faces' normals.
Args:
verts (np.ndarray): vertices [V, 3]
faces (np.ndarray): faces [F, 3]
Return:
vertex_normals (np.ndarray): vertex normals [V, 3]
"""
face_n = torch2np(face_normal(torch.tensor(verts), torch.tensor(faces)))
vertex_normals = np.zeros_like(verts)
for i in range(3):
np.add.at(vertex_normals, faces[:, i], face_n)
vertex_normals = vertex_normals / (np.linalg.norm(vertex_normals, axis=-1, keepdims=True) + 1e-12)
return vertex_normals
def vertex_normal(verts, faces, n_neighbors=30):
"""
Compute vertex normal supported by both point cloud and mesh
Args:
verts (torch.Tensor): vertices [V, 3].
faces (torch.Tensor): faces [F, 3].
n_neighbors (int, optional): number of neighbors to compute normal for point cloud. Default 30.
"""
verts_np = torch2np(verts)
if faces is None: # point cloud
_, neigh_inds = find_knn(verts, verts, n_neighbors, omit_diagonal=True, method='cpu_kd')
neigh_points = verts_np[torch2np(neigh_inds), :]
neigh_points = neigh_points - verts_np[:, None, :]
normals = neighborhood_normal(neigh_points)
else:
faces_np = torch2np(faces)
normals = mesh_vertex_normal(verts_np, faces_np)
# if any NaN, wiggle slightly and recompute
bad_mask = np.isnan(normals).any(axis=1, keepdims=True)
if bad_mask.any():
bbox = np.amax(verts_np, axis=0) - np.amin(verts_np, axis=0)
scale = np.linalg.norm(bbox) * 1e-4
wiggle = (np.random.RandomState(seed=777).rand(*verts.shape) - 0.5) * scale
wiggle_verts = verts_np + bad_mask * wiggle
normals = mesh_vertex_normal(wiggle_verts, faces_np)
# if still NaN assign random normals (probably unreferenced verts in mesh)
bad_mask = np.isnan(normals).any(axis=1)
if bad_mask.any():
normals[bad_mask, :] = (np.random.RandomState(seed=777).rand(*verts.shape)-0.5)[bad_mask, :]
normals = normals / (np.linalg.norm(normals, axis=-1, keepdims=True) + 1e-12)
normals = torch.from_numpy(normals).to(device=verts.device, dtype=verts.dtype)
if torch.any(torch.isnan(normals)):
raise ValueError('NaN normals')
return normals
def find_knn(src_pts, target_pts, k, largest=False, omit_diagonal=False, method='brute'):
"""
Finds the k nearest neighbors of source on target
Args:
src_pts (torch.Tensor): source points [Vs, 3]
target_pts (torch.Tensor): target points [Vt, 3]
k (int): number of neighbors
largest (bool, optional): whether k largest neighbors. Default False.
omit_diagonal (bool, optional): whether omit the point itself. Default False.
method (str, optional): method, support 'brute', 'cpu_kd'. Default 'brute'
Returns:
dist (torch.Tensor): distances [Vs, k]
indices (torch.Tensor): indices [Vs, k]
"""
assert method in ['brute', 'cpu_kd'], f'Invalid method: {method}, only supports "brute" or "cpu_kd"'
if omit_diagonal and src_pts.shape[0] != target_pts.shape[0]:
raise ValueError('omit_diagonal can only be used when source and target are the same shape')
# use 'cpu_kd' for large points
if src_pts.shape[0] * target_pts.shape[0] > 1e8:
method = 'cpu_kd'
if method == 'brute':
# Expand so both are VsxVtx3 tensor
src_pts_expand = src_pts.unsqueeze(1).expand(-1, target_pts.shape[0], -1)
target_pts_expand = target_pts.unsqueeze(0).expand(src_pts.shape[0], -1, -1)
# Compute distance between target points and source points
dist_mat = norm(src_pts_expand - target_pts_expand)
if omit_diagonal:
torch.diagonal(dist_mat)[:] = float('inf')
dist, indices = torch.topk(dist_mat, k=k, largest=largest, sorted=True)
return dist, indices
else: # 'cpu_kd'
assert largest == False, 'cannot do largest with cpu_kd'
src_pts_np = torch2np(src_pts)
target_pts_np = torch2np(target_pts)
# Build the kd-tree
kd_tree = neighbors.KDTree(target_pts_np)
k_search = k + 1 if omit_diagonal else k
_, indices = kd_tree.query(src_pts_np, k=k_search)
if omit_diagonal:
# Mask out self element
mask = indices != np.arange(indices.shape[0])[:, None]
# make sure we mask out exactly one element in each row, in rare case of many duplicate points
mask[np.sum(mask, axis=1) == mask.shape[1], -1] = False
indices = indices[mask].reshape((indices.shape[0], indices.shape[1]-1))
indices = torch.tensor(indices, device=src_pts.device, dtype=torch.int64)
dist = norm(src_pts.unsqueeze(1).expand(-1, k, -1) - target_pts[indices])
return dist, indices
def build_targent_frames(verts, faces, vert_normals=None):
"""
Build targent frames for each vertices with three orthogonal basis.
Args:
verts (torch.Tensor): vertices [V, 3].
faces (torch.Tensor): faces [F, 3]
vert_normals (torch.Tensor, optional): vertex normals [V, 3]. Default None
Return:
frames (torch.Tensor): frames [V, 3, 3]
"""
V = verts.shape[0]
device = verts.device
dtype = verts.dtype
# compute vertex normals when necessary
if not vert_normals:
vert_normals = vertex_normal(verts, faces)
# find an orthogonal basis
basis_cand1 = torch.tensor([1, 0, 0], device=device, dtype=dtype).expand(V, -1)
basis_cand2 = torch.tensor([0, 1, 0], device=device, dtype=dtype).expand(V, -1)
basisX = torch.where((torch.abs(dot(vert_normals, basis_cand1, keepdim=True)) < 0.9), basis_cand1, basis_cand2)
basisX = project_to_tangent(basisX, vert_normals)
basisX = normalize(basisX)
basisY = cross(vert_normals, basisX)
frames = torch.stack((basisX, basisY, vert_normals), dim=-2)
if torch.any(torch.isnan(frames)):
raise ValueError("NaN coordinate frame! Must be very degenerate")
return frames
def build_grad_point_cloud(verts, frames, n_neighbors=30):
"""
Build gradient matrix for point cloud
Args:
verts (torch.Tensor): vertices [V, 3].
frames (torch.Tensor): frames [V, 3, 3].
n_neighbors (int, optional): number of neighbors. Default 30.
Returns:
"""
verts_np = torch2np(verts)
# find neighboring points
_, neigh_inds = find_knn(verts, verts, n_neighbors, omit_diagonal=True, method='cpu_kd')
# build edges
edge_inds_from = np.repeat(np.arange(verts.shape[0]), n_neighbors)
edges = np.stack((edge_inds_from, torch2np(neigh_inds).flatten()))
edge_tangent_vecs = edge_tangent_vectors(verts, frames, edges)
return build_grad(verts_np, edges, torch2np(edge_tangent_vecs))
def edge_tangent_vectors(verts, frames, edges):
"""
Compute edge tangent vectors
Args:
verts (torch.Tensor): vertices [V, 3].
frames (torch.Tensor): frames [V, 3, 3].
edges (torch.Tensor): edges [2, E], where E = V * k, k: number of nearest neighbor.
Returns:
egde_tangent (torch.Tensor): edge tangent vectors [E, 2].
"""
edge_vecs = verts[edges[1, :], :] - verts[edges[0, :], :]
basisX = frames[edges[0, :], 0, :]
basisY = frames[edges[0, :], 1, :]
compX = dot(edge_vecs, basisX)
compY = dot(edge_vecs, basisY)
edge_tangent = torch.stack((compX, compY), dim=-1)
return edge_tangent
def build_grad(verts, edges, edge_tangent_vectors):
"""
Build a (V, V) complex sparse matrix grad operator.
Given real inputs at vertices,
produces a complex (vector value) at vertices giving the gradient.
Args:
verts (np.ndarray): vertices [V, 3]
edges (np.ndarray): edges [2, E]
edge_tangent_vectors (np.ndarray): edge tangent vectors [E, 2]
"""
# Build outgoining neighbor lists
V = verts.shape[0]
vert_edge_outgoing = [[] for _ in range(V)]
for e in range(edges.shape[1]):
tail_ind = edges[0, e]
tip_ind = edges[1, e]
if tip_ind != tail_ind:
vert_edge_outgoing[tail_ind].append(e)
# Build local inversion matrix for each vertex
row_inds = []
col_inds = []
data_vals = []
eps_reg = 1e-5
for iv in range(V):
n_neigh = len(vert_edge_outgoing[iv])
lhs_mat = np.zeros((n_neigh, 2))
rhs_mat = np.zeros((n_neigh, n_neigh + 1))
ind_lookup = [iv]
for i_neigh in range(n_neigh):
ie = vert_edge_outgoing[iv][i_neigh]
jv = edges[1, ie]
ind_lookup.append(jv)
edge_vec = edge_tangent_vectors[ie][:]
w_e = 1.
lhs_mat[i_neigh][:] = w_e * edge_vec
rhs_mat[i_neigh][0] = w_e * (-1)
rhs_mat[i_neigh][i_neigh + 1] = w_e * 1
lhs_T = lhs_mat.T
lhs_inv = np.linalg.inv(lhs_T @ lhs_mat + eps_reg * np.identity(2)) @ lhs_T
sol_mat = lhs_inv @ rhs_mat
sol_coefs = (sol_mat[0, :] + 1j * sol_mat[1, :]).T
for i_neigh in range(n_neigh + 1):
i_glob = ind_lookup[i_neigh]
row_inds.append(iv)
col_inds.append(i_glob)
data_vals.append(sol_coefs[i_neigh])
# build the sparse matrix
row_inds = np.array(row_inds)
col_inds = np.array(col_inds)
data_vals = np.array(data_vals)
mat = scipy.sparse.coo_matrix(
(data_vals, (row_inds, col_inds)),
shape=(V, V)
).tocsc()
return mat
def laplacian_decomposition(verts, faces, k=150):
"""
Laplacian decomposition
Args:
verts (np.ndarray): vertices [V, 3].
faces (np.ndarray): faces [F, 3]
k (int, optional): number of eigenvalues/vectors to compute. Default 120.
Returns:
- evals: (k) list of eigenvalues of the Laplacian matrix.
- evecs: (V, k) list of eigenvectors of the Laplacian.
- evecs_trans: (k, V) list of pseudo inverse of eigenvectors of the Laplacian.
"""
assert k >= 0, f'Number of eigenvalues/vectors should be non-negative, bug get {k}'
is_cloud = (faces is None)
eps = 1e-8
# Build Laplacian matrix
if is_cloud:
L, M = robust_laplacian.point_cloud_laplacian(verts)
massvec = M.diagonal()
else:
L = pp3d.cotan_laplacian(verts, faces, denom_eps=1e-10)
massvec = pp3d.vertex_areas(verts, faces)
massvec += eps * np.mean(massvec)
if np.isnan(L.data).any():
raise RuntimeError("NaN Laplace matrix")
if np.isnan(massvec).any():
raise RuntimeError("NaN mass matrix")
# Compute the eigenbasis
# Prepare matrices
L_eigsh = (L + eps * scipy.sparse.identity(L.shape[0])).tocsc()
massvec_eigsh = massvec
Mmat = scipy.sparse.diags(massvec_eigsh)
eigs_sigma = eps
fail_cnt = 0
while True:
try:
evals, evecs = sla.eigsh(L_eigsh, k=k, M=Mmat, sigma=eigs_sigma)
# Clip off any eigenvalues that end up slightly negative due to numerical error
evals = np.clip(evals, a_min=0., a_max=float('inf'))
evals = evals.reshape(-1, 1)
break
except:
if fail_cnt > 3:
raise ValueError('Failed to compute eigen-decomposition')
fail_cnt += 1
print('Decomposition failed; adding eps')
L_eigsh = L_eigsh + (eps * 10 ** fail_cnt) * scipy.sparse.identity(L.shape[0])
evecs = np.array(evecs, ndmin=2)
evecs_trans = evecs.T @ Mmat
sqrt_area = np.sqrt(Mmat.diagonal().sum())
return evals, evecs, evecs_trans, sqrt_area
def compute_operators(verts, faces, k=120, normals=None):
"""
Build spectral operators for a mesh/point cloud.
Constructs mass matrix, eigenvalues/vectors for Laplacian,
and gradient matrix.
Args:
verts (torch.Tensor): vertices [V, 3].
faces (torch.Tensor): faces [F, 3]
k (int, optional): number of eigenvalues/vectors to compute. Default 120.
normals (torch.Tensor, optional): vertex normals [V, 3]. Default None
Returns:
spectral_operators (dict):
- frames: (V, 3, 3) X/Y/Z coordinate frame at each vertex.
- massvec: (V) real diagonal of lumped mass matrix.
- L: (V, V) Laplacian matrix.
- evals: (k) list of eigenvalues of the Laplacian matrix.
- evecs: (V, k) list of eigenvectors of the Laplacian.
- gradX: (V, V) sparse matrix which gives X-component of gradient in the local basis.
- gradY: (V, V) same as gradX but for Y-component of gradient.
Note: PyTorch doesn't seem to like complex sparse matrices,
so we store the "real" and "imaginary" (aka X and Y) gradient matrices separately,
rather than as one complex sparse matrix.
"""
assert k >= 0, f'Number of eigenvalues/vectors should be non-negative, bug get {k}'
device = verts.device
dtype = verts.dtype
is_cloud = (faces is None)
eps = 1e-8
verts_np = torch2np(verts).astype(np.float64)
faces_np = torch2np(faces) if faces is not None else None
frames = build_targent_frames(verts, faces, vert_normals=normals)
# Build Laplacian matrix
if is_cloud:
L, M = robust_laplacian.point_cloud_laplacian(verts_np)
massvec_np = M.diagonal()
else:
L = pp3d.cotan_laplacian(verts_np, faces_np, denom_eps=1e-10)
massvec_np = pp3d.vertex_areas(verts_np, faces_np)
massvec_np += eps * np.mean(massvec_np)
if np.isnan(L.data).any():
raise RuntimeError("NaN Laplace matrix")
if np.isnan(massvec_np).any():
raise RuntimeError("NaN mass matrix")
# Read off neighbors & rotations from the Laplacian
L_coo = L.tocoo()
inds_row = L_coo.row
inds_col = L_coo.col
# Compute the eigenbasis
if k > 0:
# Prepare matrices
L_eigsh = (L + eps * scipy.sparse.identity(L.shape[0])).tocsc()
massvec_eigsh = massvec_np
Mmat = scipy.sparse.diags(massvec_eigsh)
eigs_sigma = eps
fail_cnt = 0
while True:
try:
evals_np, evecs_np = sla.eigsh(L_eigsh, k=k, M=Mmat, sigma=eigs_sigma)
# Clip off any eigenvalues that end up slightly negative due to numerical error
evals_np = np.clip(evals_np, a_min=0., a_max=float('inf'))
break
except:
if fail_cnt > 3:
raise ValueError('Failed to compute eigen-decomposition')
fail_cnt += 1
print('Decomposition failed; adding eps')
L_eigsh = L_eigsh + (eps * 10 ** fail_cnt) * scipy.sparse.identity(L.shape[0])
else: # k == 0
evals_np = np.zeros((0))
evecs_np = np.zeros((verts.shape[0], 0))
# Build gradient matrices
if is_cloud:
grad_mat_np = build_grad_point_cloud(verts, frames)
else:
edges = torch.tensor(np.stack((inds_row, inds_col), axis=0), device=device, dtype=faces.dtype)
edge_vecs = edge_tangent_vectors(verts, frames, edges)
grad_mat_np = build_grad(verts_np, torch2np(edges), torch2np(edge_vecs))
# split complex gradient into two real sparse matrices (PyTorch doesn't like complex sparse matrix)
gradX_np = np.real(grad_mat_np)
gradY_np = np.imag(grad_mat_np)
# convert to torch
massvec = torch.from_numpy(massvec_np).to(device=device, dtype=dtype)
L = sparse_np_to_torch(L).to(device=device, dtype=dtype)
evals = torch.from_numpy(evals_np).to(device=device, dtype=dtype)
evecs = torch.from_numpy(evecs_np).to(device=device, dtype=dtype)
gradX = sparse_np_to_torch(gradX_np).to(device=device, dtype=dtype)
gradY = sparse_np_to_torch(gradY_np).to(device=device, dtype=dtype)
return frames, massvec, L, evals, evecs, gradX, gradY
def get_operators(verts, faces, k=120, normals=None,
cache_dir=None, overwrite_cache=False):
"""
See documentation for compute_operators().
This essentailly just wraps a call to compute_operators, using a cache if possible.
All arrays are always computed using double precision for stability,
then truncated to single precision floats to store on disk,
and finally returned as a tensor with dtype/device matching the `verts` input.
"""
assert verts.dim() == 2, 'Please call get_all_operators() for a batch of vertices'
device = verts.device
dtype = verts.dtype
verts_np = torch2np(verts)
faces_np = torch2np(faces) if faces is not None else None
if np.isnan(verts_np).any():
raise ValueError('detect NaN vertices.')
found = False
if cache_dir:
assert osp.isdir(cache_dir)
hash_key_str = str(hash_arrays((verts_np, faces_np)))
# Search through buckets with matching hashes.
# When the loop exits,
# this is the bucket index of the file we should write to.
i_cache = 0
while True:
# From the name of the file to check
search_path = osp.join(cache_dir, hash_key_str+'_'+str(i_cache)+'.npz')
try:
npzfile = np.load(search_path, allow_pickle=True)
cache_verts = npzfile['verts']
cache_faces = npzfile['faces']
cache_k = npzfile['k_eig'].item()
# If the cache doesn't match, keep searching
if (not np.array_equal(verts, cache_verts)) or (not np.array_equal(faces, cache_faces)):
i_cache += 1
print('collision detected')
continue
# Delete previous file and overwrite it
if overwrite_cache or cache_k < k:
os.remove(search_path)
break
def read_sp_mat(prefix):
data = npzfile[prefix + '_data']
indices = npzfile[prefix + '_indices']
indptr = npzfile[prefix + '_indptr']
shape = npzfile[prefix + '_shape']
mat = scipy.sparse.csc_matrix((data, indices, indptr), shape=shape)
return mat
# this entry matches. return it.
frames = npzfile['frames']
mass = npzfile['mass']
L = read_sp_mat('L')
evals = npzfile['evals'][:k]
evecs = npzfile['evecs'][:, :k]
gradX = read_sp_mat('gradX')
gradY = read_sp_mat('gradY')
frames = torch.from_numpy(frames).to(device=device, dtype=dtype)
mass = torch.from_numpy(mass).to(device=device, dtype=dtype)
L = sparse_np_to_torch(L).to(device=device, dtype=dtype)
evals = torch.from_numpy(evals).to(device=device, dtype=dtype)
evecs = torch.from_numpy(evecs).to(device=device, dtype=dtype)
gradX = sparse_np_to_torch(gradX).to(device=device, dtype=dtype)
gradY = sparse_np_to_torch(gradY).to(device=device, dtype=dtype)
found = True
break
except FileNotFoundError:
# not found, create a new file
break
if not found:
# recompute
frames, mass, L, evals, evecs, gradX, gradY = compute_operators(verts, faces, k, normals)
dtype_np = np.float32
# save
if cache_dir:
frames_np = torch2np(frames).astype(dtype_np)
mass_np = torch2np(mass).astype(dtype_np)
evals_np = torch2np(evals).astype(dtype_np)
evecs_np = torch2np(evecs).astype(dtype_np)
L_np = sparse_torch_to_np(L).astype(dtype_np)
gradX_np = sparse_torch_to_np(gradX).astype(dtype_np)
gradY_np = sparse_torch_to_np(gradY).astype(dtype_np)
np.savez(
search_path,
verts=verts_np,
faces=faces_np,
k_eig=k,
frames=frames_np,
mass=mass_np,
evals=evals_np,
evecs=evecs_np,
L_data=L_np.data,
L_indices=L_np.indices,
L_indptr=L_np.indptr,
L_shape=L_np.shape,
gradX_data=gradX_np.data,
gradX_indices=gradX_np.indices,
gradX_indptr=gradX_np.indptr,
gradX_shape=gradX_np.shape,
gradY_data=gradY_np.data,
gradY_indices=gradY_np.indices,
gradY_indptr=gradY_np.indptr,
gradY_shape=gradY_np.shape,
)
return frames, mass, L, evals, evecs, gradX, gradY
def get_all_operators(verts, faces, k=120,
normals=None,
cache_dir=None):
"""
Get all operators from batch
"""
assert verts.dim() == 3, 'please call get_operators() for a single vertices'
B = verts.shape[0]
frames = []
mass = []
L = []
evals = []
evecs = []
gradX = []
gradY = []
for i in range(B):
if faces is not None:
if normals is not None:
output = get_operators(verts[i], faces[i], k, normals[i], cache_dir)
else:
output = get_operators(verts[i], faces[i], k, None, cache_dir)
else:
if normals is not None:
output = get_operators(verts[i], None, k, normals[i], cache_dir)
else:
output = get_operators(verts[i], None, k, None, cache_dir)
frames += [output[0]]
mass += [output[1]]
L += [output[2]]
evals += [output[3]]
evecs += [output[4]]
gradX += [output[5]]
gradY += [output[6]]
frames = torch.stack(frames)
mass = torch.stack(mass)
L = torch.stack(L)
evals = torch.stack(evals)
evecs = torch.stack(evecs)
gradX = torch.stack(gradX)
gradY = torch.stack(gradY)
return frames, mass, L, evals, evecs, gradX, gradY
def compute_hks_autoscale(evals, evecs, count=16):
"""
Compute heat kernel signature with auto-scale
Args:
evals (torch.Tensor): eigenvalues of Laplacian matrix [B, K]
evecs (torch.Tensor): eigenvecetors of Laplacian matrix [B, V, K]
count (int, optional): number of hks. Default 16.
Returns:
out (torch.Tensor): heat kernel signature [B, V, count]
"""
scales = torch.logspace(-2.0, 0.0, steps=count, device=evals.device, dtype=evals.dtype)
power_coefs = torch.exp(-evals.unsqueeze(1) * scales.unsqueeze(-1)).unsqueeze(1) # [B, 1, S, K]
terms = power_coefs * (evecs * evecs).unsqueeze(2) # [B, V, S, K]
out = torch.sum(terms, dim=-1) # [B, V, S]
return out
def wks(evals, evecs, energy_list, sigma, scaled=False):
assert sigma > 0, f"Sigma should be positive ! Given value : {sigma}"
indices = (evals > 1e-5)
evals = evals[indices]
evecs = evecs[:, indices]
coefs = torch.exp(-torch.square(energy_list[:, None] - torch.log(torch.abs(evals))[None, :]) / (2 * sigma ** 2))
weighted_evecs = evecs[None, :, :] * coefs[:, None, :]
wks = torch.einsum('tnk,nk->nt', weighted_evecs, evecs)
if scaled:
inv_scaling = coefs.sum(1)
return (1 / inv_scaling)[None, :] * wks
else:
return wks
def auto_wks(evals, evecs, n_descr, scaled=True):
abs_ev = torch.sort(evals.abs())[0]
e_min, e_max = torch.log(abs_ev[1]), torch.log(abs_ev[-1])
sigma = 7 * (e_max - e_min) / n_descr
e_min += 2 * sigma
e_max -= 2 * sigma
energy_list = torch.linspace(float(e_min), float(e_max), n_descr, device=evals.device, dtype=evals.dtype)
return wks(abs_ev, evecs, energy_list, sigma, scaled=scaled)
def compute_wks_autoscale(evals, evecs, mass, n_descr=128, subsample_step=1, n_eig=128):
feats = []
for b in range(evals.shape[0]):
feat = auto_wks(evals[b, :n_eig], evecs[b, :, :n_eig], n_descr, scaled=True)
feat = feat[:, torch.arange(0, feat.shape[1], subsample_step)]
feat_norm = torch.einsum('np,np->p', feat, mass[b].unsqueeze(1) * feat)
feat /= torch.sqrt(feat_norm)
feats += [feat]
feats = torch.stack(feats, dim=0)
return feats
def euler_angles_to_rotation_matrix(theta):
R_x = torch.tensor([[1, 0, 0], [0, torch.cos(theta[0]), -torch.sin(theta[0])], [0, torch.sin(theta[0]), torch.cos(theta[0])]])
R_y = torch.tensor([[torch.cos(theta[1]), 0, torch.sin(theta[1])], [0, 1, 0], [-torch.sin(theta[1]), 0, torch.cos(theta[1])]])
R_z = torch.tensor([[torch.cos(theta[2]), -torch.sin(theta[2]), 0], [torch.sin(theta[2]), torch.cos(theta[2]), 0], [0, 0, 1]])
matrices = [R_x, R_y, R_z]
R = torch.mm(matrices[2], torch.mm(matrices[1], matrices[0]))
return R
def get_random_rotation(x, y, z):
thetas = torch.zeros(3, dtype=torch.float)
degree_angles = [x, y, z]
for axis_ind, deg_angle in enumerate(degree_angles):
rand_deg_angle = random.random() * 2 * deg_angle - deg_angle
rand_radian_angle = float(rand_deg_angle * np.pi) / 180.0
thetas[axis_ind] = rand_radian_angle
return euler_angles_to_rotation_matrix(thetas)
def data_augmentation(verts, rot_x=0, rot_y=90.0, rot_z=0, std=0.01, noise_clip=0.05, scale_min=0.9, scale_max=1.1):
# random rotation
rotation_matrix = get_random_rotation(rot_x, rot_y, rot_z).repeat(verts.shape[0], 1, 1).to(verts.device)
verts = torch.bmm(verts, rotation_matrix.transpose(1, 2))
# random noise
noise = std * torch.randn(verts.shape).to(verts.device)
noise = noise.clamp(-noise_clip, noise_clip)
verts += noise
# random scaling
scales = [scale_min, scale_max]
scale = scales[0] + torch.rand((3,)) * (scales[1] - scales[0])
verts = verts * scale.to(verts.device)
return verts