generated from dongliangcao/pytorch-framework
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathlogger.py
212 lines (174 loc) · 6.63 KB
/
logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# logging utils for training and validation
import datetime
import logging
import time
from .dist_util import get_dist_info, master_only
# initialized logger
initialized_logger = {}
class AvgTimer:
"""
Timer to record the average elapsed time.
Usage:
timer = AvgTimer()
for _ in range(100):
timer.start()
... # do something
timer.record()
print(timer.get_current_time()) # print current elapsed time
print(timer.get_avg_time()) # print average elapsed time
"""
def __init__(self, window=200):
"""
Args:
window (int, optional): Sliding window to compute average time. Default 200.
"""
self.window = window
self.current_time = 0.
self.total_time = 0.
self.avg_time = 0.
self.count = 0
self.start()
def start(self):
self.start_time = time.time()
def record(self):
self.count += 1
# calculate current time
self.current_time = time.time() - self.start_time
# calculate total time
self.total_time += self.current_time
# calculate average time
self.avg_time = self.total_time / self.count
# reset timer
if self.count > self.window:
self.count = 0
self.total_time = 0
def get_current_time(self):
return self.current_time
def get_avg_time(self):
return self.avg_time
class MessageLogger:
"""
Message Logger
Args:
opt (dict): Config dict. It contains the following keys:
name (str): experiment name.
logger (dict): Contains 'print_freq' as logging interval.
train (dict): Contains 'total_iter' as total iterations.
start_iter (int, optional): Start iteration number. Default 1.
tb_logger (SummaryWriter, optional): Tensorboard logger. Default None.
"""
def __init__(self, opt, start_iter=1, tb_logger=None):
self.exp_name = opt['name']
self.start_iter = start_iter
self.max_iters = opt['train']['total_iter']
self.tb_logger = tb_logger
self.start_time = time.time()
self.logger = get_root_logger()
def reset_start_time(self):
"""
Reset start time.
"""
self.start_time = time.time()
@master_only
def __call__(self, log_dict):
"""
Logging message
Args:
log_dict (dict): logging dictionary with the following keys:
epoch (int): Current epoch.
iter (int): Current iteration.
lrs (list): List of learning rates.
time (float): Elapsed time for one iteration.
data_time (float): Elapsed time of data fetch for one iteration.
"""
# epoch, iter, learning rates
epoch = log_dict.pop('epoch')
current_iter = log_dict.pop('iter')
lrs = log_dict.pop('lrs')
# format message
message = (f'[{self.exp_name[:5]}..][epoch:{epoch:3d}, iter:{current_iter:8,d}, lr:(')
for v in lrs:
message += f'{v:.3e},'
message += ')]'
# time and estimated time
if 'time' in log_dict.keys():
iter_time = log_dict.pop('time')
data_time = log_dict.pop('data_time')
# compute the total time
total_time = time.time() - self.start_time
# estimate the average time for one iteration
time_sec_avg = total_time / (current_iter - self.start_iter + 1)
# estimate the rest time for the whole training
eta_sec = time_sec_avg * (self.max_iters - current_iter - 1)
# add the estimated time to message
eta_str = str(datetime.timedelta(seconds=int(eta_sec)))
message += f'[eta: {eta_str}, '
message += f'time (data): {iter_time:.3f} ({data_time:.3f})]'
# other items, for example losses
for k, v in log_dict.items():
message += f'{k}: {v:.4e} '
# add to tensorboard logger
if self.tb_logger:
# loss starts with "l_"
if k.startswith('l_'):
self.tb_logger.add_scalar(f'losses/{k}', v, current_iter)
else:
self.tb_logger.add_scalar(k, v, current_iter)
# print message
self.logger.info(message)
@master_only
def init_tb_logger(log_dir):
from torch.utils.tensorboard import SummaryWriter
tb_logger = SummaryWriter(log_dir=log_dir)
return tb_logger
def get_root_logger(logger_name='root_logger', log_file=None, log_level=logging.INFO):
"""Get the root logger.
The logger will be initialized if it has not been initialized. By default a
StreamHandler will be added. If `log_file` is specified, a FileHandler will
also be added.
Args:
logger_name (str, optional): root logger name. Default: 'root_logger'.
log_file (str | None): The log filename. If specified, a FileHandler
will be added to the root logger. Default None.
log_level (int, optional): The root logger level. Note that only the process of
rank 0 is affected, while other processes will set the level to
"Error" and be silent most of the time. Default logging.INFO.
Returns:
logging.Logger: The root logger.
"""
logger = logging.getLogger(logger_name)
# if the logger has been initialized, just return it.
if logger_name in initialized_logger:
return logger
# initialize stream handler
format_str = '%(asctime)s %(levelname)s: %(message)s'
stream_handler = logging.StreamHandler()
stream_handler.setFormatter(logging.Formatter(format_str))
logger.addHandler(stream_handler)
logger.propagate = False
# initialize logger level for each process
rank, _ = get_dist_info()
if rank != 0:
logger.setLevel('ERROR')
elif log_file is not None:
logger.setLevel(log_level)
# add file handler
file_handler = logging.FileHandler(log_file, 'w')
file_handler.setFormatter(logging.Formatter(format_str))
file_handler.setLevel(log_level)
logger.addHandler(file_handler)
# add logger to initialized logger
initialized_logger[logger_name] = True
return logger
def get_env_info():
"""Get environment information.
Currently, only log the software version.
"""
import torch
import torchvision
import platform
msg = ('\nVersion Information: '
f'\n\tPython: {platform.python_version()}'
f'\n\tPyTorch: {torch.__version__}'
f'\n\tTorchVision: {torchvision.__version__}')
return msg