forked from nvpro-samples/vk_raytracing_tutorial_KHR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathraycommon.glsl
181 lines (154 loc) · 5.37 KB
/
raycommon.glsl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
/*
* Copyright (c) 2014-2021, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* SPDX-FileCopyrightText: Copyright (c) 2014-2021 NVIDIA CORPORATION
* SPDX-License-Identifier: Apache-2.0
*/
//-
// This utility compresses a normal(x,y,z) to a uint and decompresses it
#define C_Stack_Max 3.402823466e+38f
uint CompressUnitVec(vec3 nv)
{
// map to octahedron and then flatten to 2D (see 'Octahedron Environment Maps' by Engelhardt & Dachsbacher)
if((nv.x < C_Stack_Max) && !isinf(nv.x))
{
const float d = 32767.0f / (abs(nv.x) + abs(nv.y) + abs(nv.z));
int x = int(roundEven(nv.x * d));
int y = int(roundEven(nv.y * d));
if(nv.z < 0.0f)
{
const int maskx = x >> 31;
const int masky = y >> 31;
const int tmp = 32767 + maskx + masky;
const int tmpx = x;
x = (tmp - (y ^ masky)) ^ maskx;
y = (tmp - (tmpx ^ maskx)) ^ masky;
}
uint packed = (uint(y + 32767) << 16) | uint(x + 32767);
if(packed == ~0u)
return ~0x1u;
return packed;
}
else
{
return ~0u;
}
}
float ShortToFloatM11(const int v) // linearly maps a short 32767-32768 to a float -1-+1 //!! opt.?
{
return (v >= 0) ? (uintBitsToFloat(0x3F800000u | (uint(v) << 8)) - 1.0f) :
(uintBitsToFloat((0x80000000u | 0x3F800000u) | (uint(-v) << 8)) + 1.0f);
}
vec3 DecompressUnitVec(uint packed)
{
if(packed != ~0u) // sanity check, not needed as isvalid_unit_vec is called earlier
{
int x = int(packed & 0xFFFFu) - 32767;
int y = int(packed >> 16) - 32767;
const int maskx = x >> 31;
const int masky = y >> 31;
const int tmp0 = 32767 + maskx + masky;
const int ymask = y ^ masky;
const int tmp1 = tmp0 - (x ^ maskx);
const int z = tmp1 - ymask;
float zf;
if(z < 0)
{
x = (tmp0 - ymask) ^ maskx;
y = tmp1 ^ masky;
zf = uintBitsToFloat((0x80000000u | 0x3F800000u) | (uint(-z) << 8)) + 1.0f;
}
else
{
zf = uintBitsToFloat(0x3F800000u | (uint(z) << 8)) - 1.0f;
}
return normalize(vec3(ShortToFloatM11(x), ShortToFloatM11(y), zf));
}
else
{
return vec3(C_Stack_Max);
}
}
//-------------------------------------------------------------------------------------------------
// Avoiding self intersections (see Ray Tracing Gems, Ch. 6)
//
vec3 OffsetRay(in vec3 p, in vec3 n)
{
const float intScale = 256.0f;
const float floatScale = 1.0f / 65536.0f;
const float origin = 1.0f / 32.0f;
ivec3 of_i = ivec3(intScale * n.x, intScale * n.y, intScale * n.z);
vec3 p_i = vec3(intBitsToFloat(floatBitsToInt(p.x) + ((p.x < 0) ? -of_i.x : of_i.x)),
intBitsToFloat(floatBitsToInt(p.y) + ((p.y < 0) ? -of_i.y : of_i.y)),
intBitsToFloat(floatBitsToInt(p.z) + ((p.z < 0) ? -of_i.z : of_i.z)));
return vec3(abs(p.x) < origin ? p.x + floatScale * n.x : p_i.x, //
abs(p.y) < origin ? p.y + floatScale * n.y : p_i.y, //
abs(p.z) < origin ? p.z + floatScale * n.z : p_i.z);
}
//////////////////////////// AO //////////////////////////////////////
#define EPS 0.05
const float M_PI = 3.141592653589;
void ComputeDefaultBasis(const vec3 normal, out vec3 x, out vec3 y)
{
// ZAP's default coordinate system for compatibility
vec3 z = normal;
const float yz = -z.y * z.z;
y = normalize(((abs(z.z) > 0.99999f) ? vec3(-z.x * z.y, 1.0f - z.y * z.y, yz) : vec3(-z.x * z.z, yz, 1.0f - z.z * z.z)));
x = cross(y, z);
}
//-------------------------------------------------------------------------------------------------
// Random
//-------------------------------------------------------------------------------------------------
// Generate a random unsigned int from two unsigned int values, using 16 pairs
// of rounds of the Tiny Encryption Algorithm. See Zafar, Olano, and Curtis,
// "GPU Random Numbers via the Tiny Encryption Algorithm"
uint tea(uint val0, uint val1)
{
uint v0 = val0;
uint v1 = val1;
uint s0 = 0;
for(uint n = 0; n < 16; n++)
{
s0 += 0x9e3779b9;
v0 += ((v1 << 4) + 0xa341316c) ^ (v1 + s0) ^ ((v1 >> 5) + 0xc8013ea4);
v1 += ((v0 << 4) + 0xad90777d) ^ (v0 + s0) ^ ((v0 >> 5) + 0x7e95761e);
}
return v0;
}
uvec2 pcg2d(uvec2 v)
{
v = v * 1664525u + 1013904223u;
v.x += v.y * 1664525u;
v.y += v.x * 1664525u;
v = v ^ (v >> 16u);
v.x += v.y * 1664525u;
v.y += v.x * 1664525u;
v = v ^ (v >> 16u);
return v;
}
// Generate a random unsigned int in [0, 2^24) given the previous RNG state
// using the Numerical Recipes linear congruential generator
uint lcg(inout uint prev)
{
uint LCG_A = 1664525u;
uint LCG_C = 1013904223u;
prev = (LCG_A * prev + LCG_C);
return prev & 0x00FFFFFF;
}
// Generate a random float in [0, 1) given the previous RNG state
float rnd(inout uint seed)
{
return (float(lcg(seed)) / float(0x01000000));
}