comments | difficulty | edit_url | tags | |||
---|---|---|---|---|---|---|
true |
中等 |
|
给你一个下标从 1 开始的整数数组 numbers
,该数组已按 非递减顺序排列 ,请你从数组中找出满足相加之和等于目标数 target
的两个数。如果设这两个数分别是 numbers[index1]
和 numbers[index2]
,则 1 <= index1 < index2 <= numbers.length
。
以长度为 2 的整数数组 [index1, index2]
的形式返回这两个整数的下标 index1
和 index2
。
你可以假设每个输入 只对应唯一的答案 ,而且你 不可以 重复使用相同的元素。
你所设计的解决方案必须只使用常量级的额外空间。
示例 1:
输入:numbers = [2,7,11,15], target = 9 输出:[1,2] 解释:2 与 7 之和等于目标数 9 。因此 index1 = 1, index2 = 2 。返回 [1, 2] 。
示例 2:
输入:numbers = [2,3,4], target = 6 输出:[1,3] 解释:2 与 4 之和等于目标数 6 。因此 index1 = 1, index2 = 3 。返回 [1, 3] 。
示例 3:
输入:numbers = [-1,0], target = -1 输出:[1,2] 解释:-1 与 0 之和等于目标数 -1 。因此 index1 = 1, index2 = 2 。返回 [1, 2] 。
提示:
2 <= numbers.length <= 3 * 104
-1000 <= numbers[i] <= 1000
numbers
按 非递减顺序 排列-1000 <= target <= 1000
- 仅存在一个有效答案
我们注意到数组按照非递减顺序排列,因此对于每个
时间复杂度
class Solution:
def twoSum(self, numbers: List[int], target: int) -> List[int]:
n = len(numbers)
for i in range(n - 1):
x = target - numbers[i]
j = bisect_left(numbers, x, lo=i + 1)
if j < n and numbers[j] == x:
return [i + 1, j + 1]
class Solution {
public int[] twoSum(int[] numbers, int target) {
for (int i = 0, n = numbers.length;; ++i) {
int x = target - numbers[i];
int l = i + 1, r = n - 1;
while (l < r) {
int mid = (l + r) >> 1;
if (numbers[mid] >= x) {
r = mid;
} else {
l = mid + 1;
}
}
if (numbers[l] == x) {
return new int[] {i + 1, l + 1};
}
}
}
}
class Solution {
public:
vector<int> twoSum(vector<int>& numbers, int target) {
for (int i = 0, n = numbers.size();; ++i) {
int x = target - numbers[i];
int j = lower_bound(numbers.begin() + i + 1, numbers.end(), x) - numbers.begin();
if (j < n && numbers[j] == x) {
return {i + 1, j + 1};
}
}
}
};
func twoSum(numbers []int, target int) []int {
for i, n := 0, len(numbers); ; i++ {
x := target - numbers[i]
j := sort.SearchInts(numbers[i+1:], x) + i + 1
if j < n && numbers[j] == x {
return []int{i + 1, j + 1}
}
}
}
function twoSum(numbers: number[], target: number): number[] {
const n = numbers.length;
for (let i = 0; ; ++i) {
const x = target - numbers[i];
let l = i + 1;
let r = n - 1;
while (l < r) {
const mid = (l + r) >> 1;
if (numbers[mid] >= x) {
r = mid;
} else {
l = mid + 1;
}
}
if (numbers[l] === x) {
return [i + 1, l + 1];
}
}
}
use std::cmp::Ordering;
impl Solution {
pub fn two_sum(numbers: Vec<i32>, target: i32) -> Vec<i32> {
let n = numbers.len();
let mut l = 0;
let mut r = n - 1;
loop {
match (numbers[l] + numbers[r]).cmp(&target) {
Ordering::Less => {
l += 1;
}
Ordering::Greater => {
r -= 1;
}
Ordering::Equal => {
break;
}
}
}
vec![(l as i32) + 1, (r as i32) + 1]
}
}
/**
* @param {number[]} numbers
* @param {number} target
* @return {number[]}
*/
var twoSum = function (numbers, target) {
const n = numbers.length;
for (let i = 0; ; ++i) {
const x = target - numbers[i];
let l = i + 1;
let r = n - 1;
while (l < r) {
const mid = (l + r) >> 1;
if (numbers[mid] >= x) {
r = mid;
} else {
l = mid + 1;
}
}
if (numbers[l] === x) {
return [i + 1, l + 1];
}
}
};
我们定义两个指针
时间复杂度
class Solution:
def twoSum(self, numbers: List[int], target: int) -> List[int]:
i, j = 0, len(numbers) - 1
while i < j:
x = numbers[i] + numbers[j]
if x == target:
return [i + 1, j + 1]
if x < target:
i += 1
else:
j -= 1
class Solution {
public int[] twoSum(int[] numbers, int target) {
for (int i = 0, j = numbers.length - 1;;) {
int x = numbers[i] + numbers[j];
if (x == target) {
return new int[] {i + 1, j + 1};
}
if (x < target) {
++i;
} else {
--j;
}
}
}
}
class Solution {
public:
vector<int> twoSum(vector<int>& numbers, int target) {
for (int i = 0, j = numbers.size() - 1;;) {
int x = numbers[i] + numbers[j];
if (x == target) {
return {i + 1, j + 1};
}
if (x < target) {
++i;
} else {
--j;
}
}
}
};
func twoSum(numbers []int, target int) []int {
for i, j := 0, len(numbers)-1; ; {
x := numbers[i] + numbers[j]
if x == target {
return []int{i + 1, j + 1}
}
if x < target {
i++
} else {
j--
}
}
}
function twoSum(numbers: number[], target: number): number[] {
for (let i = 0, j = numbers.length - 1; ; ) {
const x = numbers[i] + numbers[j];
if (x === target) {
return [i + 1, j + 1];
}
if (x < target) {
++i;
} else {
--j;
}
}
}
/**
* @param {number[]} numbers
* @param {number} target
* @return {number[]}
*/
var twoSum = function (numbers, target) {
for (let i = 0, j = numbers.length - 1; ; ) {
const x = numbers[i] + numbers[j];
if (x === target) {
return [i + 1, j + 1];
}
if (x < target) {
++i;
} else {
--j;
}
}
};