Skip to content

Latest commit

 

History

History
361 lines (299 loc) · 9.14 KB

File metadata and controls

361 lines (299 loc) · 9.14 KB
comments difficulty edit_url tags
true
中等
数组
双指针
二分查找

English Version

题目描述

给你一个下标从 1 开始的整数数组 numbers ,该数组已按 非递减顺序排列  ,请你从数组中找出满足相加之和等于目标数 target 的两个数。如果设这两个数分别是 numbers[index1]numbers[index2] ,则 1 <= index1 < index2 <= numbers.length

以长度为 2 的整数数组 [index1, index2] 的形式返回这两个整数的下标 index1 index2

你可以假设每个输入 只对应唯一的答案 ,而且你 不可以 重复使用相同的元素。

你所设计的解决方案必须只使用常量级的额外空间。

 

示例 1:

输入:numbers = [2,7,11,15], target = 9
输出:[1,2]
解释:2 与 7 之和等于目标数 9 。因此 index1 = 1, index2 = 2 。返回 [1, 2] 。

示例 2:

输入:numbers = [2,3,4], target = 6
输出:[1,3]
解释:2 与 4 之和等于目标数 6 。因此 index1 = 1, index2 = 3 。返回 [1, 3] 。

示例 3:

输入:numbers = [-1,0], target = -1
输出:[1,2]
解释:-1 与 0 之和等于目标数 -1 。因此 index1 = 1, index2 = 2 。返回 [1, 2] 。

 

提示:

  • 2 <= numbers.length <= 3 * 104
  • -1000 <= numbers[i] <= 1000
  • numbers非递减顺序 排列
  • -1000 <= target <= 1000
  • 仅存在一个有效答案

解法

方法一:二分查找

我们注意到数组按照非递减顺序排列,因此对于每个 $numbers[i]$,可以通过二分查找的方式找到 $target - numbers[i]$ 的位置,如果存在,那么返回 $[i + 1, j + 1]$ 即可。

时间复杂度 $O(n \times \log n)$,其中 $n$ 为数组 $numbers$ 的长度。空间复杂度 $O(1)$

Python3

class Solution:
    def twoSum(self, numbers: List[int], target: int) -> List[int]:
        n = len(numbers)
        for i in range(n - 1):
            x = target - numbers[i]
            j = bisect_left(numbers, x, lo=i + 1)
            if j < n and numbers[j] == x:
                return [i + 1, j + 1]

Java

class Solution {
    public int[] twoSum(int[] numbers, int target) {
        for (int i = 0, n = numbers.length;; ++i) {
            int x = target - numbers[i];
            int l = i + 1, r = n - 1;
            while (l < r) {
                int mid = (l + r) >> 1;
                if (numbers[mid] >= x) {
                    r = mid;
                } else {
                    l = mid + 1;
                }
            }
            if (numbers[l] == x) {
                return new int[] {i + 1, l + 1};
            }
        }
    }
}

C++

class Solution {
public:
    vector<int> twoSum(vector<int>& numbers, int target) {
        for (int i = 0, n = numbers.size();; ++i) {
            int x = target - numbers[i];
            int j = lower_bound(numbers.begin() + i + 1, numbers.end(), x) - numbers.begin();
            if (j < n && numbers[j] == x) {
                return {i + 1, j + 1};
            }
        }
    }
};

Go

func twoSum(numbers []int, target int) []int {
	for i, n := 0, len(numbers); ; i++ {
		x := target - numbers[i]
		j := sort.SearchInts(numbers[i+1:], x) + i + 1
		if j < n && numbers[j] == x {
			return []int{i + 1, j + 1}
		}
	}
}

TypeScript

function twoSum(numbers: number[], target: number): number[] {
    const n = numbers.length;
    for (let i = 0; ; ++i) {
        const x = target - numbers[i];
        let l = i + 1;
        let r = n - 1;
        while (l < r) {
            const mid = (l + r) >> 1;
            if (numbers[mid] >= x) {
                r = mid;
            } else {
                l = mid + 1;
            }
        }
        if (numbers[l] === x) {
            return [i + 1, l + 1];
        }
    }
}

Rust

use std::cmp::Ordering;

impl Solution {
    pub fn two_sum(numbers: Vec<i32>, target: i32) -> Vec<i32> {
        let n = numbers.len();
        let mut l = 0;
        let mut r = n - 1;
        loop {
            match (numbers[l] + numbers[r]).cmp(&target) {
                Ordering::Less => {
                    l += 1;
                }
                Ordering::Greater => {
                    r -= 1;
                }
                Ordering::Equal => {
                    break;
                }
            }
        }
        vec![(l as i32) + 1, (r as i32) + 1]
    }
}

JavaScript

/**
 * @param {number[]} numbers
 * @param {number} target
 * @return {number[]}
 */
var twoSum = function (numbers, target) {
    const n = numbers.length;
    for (let i = 0; ; ++i) {
        const x = target - numbers[i];
        let l = i + 1;
        let r = n - 1;
        while (l < r) {
            const mid = (l + r) >> 1;
            if (numbers[mid] >= x) {
                r = mid;
            } else {
                l = mid + 1;
            }
        }
        if (numbers[l] === x) {
            return [i + 1, l + 1];
        }
    }
};

方法二:双指针

我们定义两个指针 $i$$j$,分别指向数组的第一个元素和最后一个元素。每次计算 $numbers[i] + numbers[j]$,如果和等于目标值,那么返回 $[i + 1, j + 1]$ 即可。如果和小于目标值,那么将 $i$ 右移一位,如果和大于目标值,那么将 $j$ 左移一位。

时间复杂度 $O(n)$,其中 $n$ 为数组 $numbers$ 的长度。空间复杂度 $O(1)$

Python3

class Solution:
    def twoSum(self, numbers: List[int], target: int) -> List[int]:
        i, j = 0, len(numbers) - 1
        while i < j:
            x = numbers[i] + numbers[j]
            if x == target:
                return [i + 1, j + 1]
            if x < target:
                i += 1
            else:
                j -= 1

Java

class Solution {
    public int[] twoSum(int[] numbers, int target) {
        for (int i = 0, j = numbers.length - 1;;) {
            int x = numbers[i] + numbers[j];
            if (x == target) {
                return new int[] {i + 1, j + 1};
            }
            if (x < target) {
                ++i;
            } else {
                --j;
            }
        }
    }
}

C++

class Solution {
public:
    vector<int> twoSum(vector<int>& numbers, int target) {
        for (int i = 0, j = numbers.size() - 1;;) {
            int x = numbers[i] + numbers[j];
            if (x == target) {
                return {i + 1, j + 1};
            }
            if (x < target) {
                ++i;
            } else {
                --j;
            }
        }
    }
};

Go

func twoSum(numbers []int, target int) []int {
	for i, j := 0, len(numbers)-1; ; {
		x := numbers[i] + numbers[j]
		if x == target {
			return []int{i + 1, j + 1}
		}
		if x < target {
			i++
		} else {
			j--
		}
	}
}

TypeScript

function twoSum(numbers: number[], target: number): number[] {
    for (let i = 0, j = numbers.length - 1; ; ) {
        const x = numbers[i] + numbers[j];
        if (x === target) {
            return [i + 1, j + 1];
        }
        if (x < target) {
            ++i;
        } else {
            --j;
        }
    }
}

JavaScript

/**
 * @param {number[]} numbers
 * @param {number} target
 * @return {number[]}
 */
var twoSum = function (numbers, target) {
    for (let i = 0, j = numbers.length - 1; ; ) {
        const x = numbers[i] + numbers[j];
        if (x === target) {
            return [i + 1, j + 1];
        }
        if (x < target) {
            ++i;
        } else {
            --j;
        }
    }
};