Skip to content

Latest commit

 

History

History
271 lines (226 loc) · 6.89 KB

File metadata and controls

271 lines (226 loc) · 6.89 KB
comments difficulty edit_url tags
true
困难
字典树
数组
字符串
回溯

English Version

题目描述

给定一个单词集合 words (没有重复),找出并返回其中所有的 单词方块 。 words 中的同一个单词可以被 多次 使用。你可以按 任意顺序 返回答案。

一个单词序列形成了一个有效的 单词方块 的意思是指从第 k 行和第 k 列  0 <= k < max(numRows, numColumns) 来看都是相同的字符串。

  • 例如,单词序列 ["ball","area","lead","lady"] 形成了一个单词方块,因为每个单词从水平方向看和从竖直方向看都是相同的。

 

示例 1:

输入:words = ["area","lead","wall","lady","ball"]
输出: [["ball","area","lead","lady"],
["wall","area","lead","lady"]]
解释:
输出包含两个单词方块,输出的顺序不重要,只需要保证每个单词方块内的单词顺序正确即可。 

示例 2:

输入:words = ["abat","baba","atan","atal"]
输出:[["baba","abat","baba","atal"],
["baba","abat","baba","atan"]]
解释:
输出包含两个单词方块,输出的顺序不重要,只需要保证每个单词方块内的单词顺序正确即可。 

 

提示:

  • 1 <= words.length <= 1000
  • 1 <= words[i].length <= 4
  • words[i] 长度相同
  • words[i] 只由小写英文字母组成
  • words[i] 都 各不相同

解法

方法一:前缀树 + DFS

根据已添加单词确定下一个单词的前缀,继续进行搜索。

比如已经添加了两个单词 $ball$$area$,要添加下一个单词,我们首先要获取下一个单词的前缀,第一个字母是第一个单词的第三个位置 $l$,第二个字母是第二个单词的第三个位置 $e$,这样就构成了前缀 $le$。然后找出所有前缀为 $le$ 的单词,作为下一个单词。

Python3

class Trie:
    def __init__(self):
        self.children = [None] * 26
        self.v = []

    def insert(self, w, i):
        node = self
        for c in w:
            idx = ord(c) - ord('a')
            if node.children[idx] is None:
                node.children[idx] = Trie()
            node = node.children[idx]
            node.v.append(i)

    def search(self, w):
        node = self
        for c in w:
            idx = ord(c) - ord('a')
            if node.children[idx] is None:
                return []
            node = node.children[idx]
        return node.v


class Solution:
    def wordSquares(self, words: List[str]) -> List[List[str]]:
        def dfs(t):
            if len(t) == len(words[0]):
                ans.append(t[:])
                return
            idx = len(t)
            pref = [v[idx] for v in t]
            indexes = trie.search(''.join(pref))
            for i in indexes:
                t.append(words[i])
                dfs(t)
                t.pop()

        trie = Trie()
        ans = []
        for i, w in enumerate(words):
            trie.insert(w, i)
        for w in words:
            dfs([w])
        return ans

Java

class Trie {
    Trie[] children = new Trie[26];
    List<Integer> v = new ArrayList<>();

    void insert(String word, int i) {
        Trie node = this;
        for (char c : word.toCharArray()) {
            c -= 'a';
            if (node.children[c] == null) {
                node.children[c] = new Trie();
            }
            node = node.children[c];
            node.v.add(i);
        }
    }

    List<Integer> search(String pref) {
        Trie node = this;
        for (char c : pref.toCharArray()) {
            c -= 'a';
            if (node.children[c] == null) {
                return Collections.emptyList();
            }
            node = node.children[c];
        }
        return node.v;
    }
}

class Solution {
    private Trie trie = new Trie();
    private String[] words;
    private List<List<String>> ans = new ArrayList<>();

    public List<List<String>> wordSquares(String[] words) {
        this.words = words;
        for (int i = 0; i < words.length; ++i) {
            trie.insert(words[i], i);
        }

        List<String> t = new ArrayList<>();
        for (String w : words) {
            t.add(w);
            dfs(t);
            t.remove(t.size() - 1);
        }
        return ans;
    }

    private void dfs(List<String> t) {
        if (t.size() == words[0].length()) {
            ans.add(new ArrayList<>(t));
            return;
        }
        int idx = t.size();
        StringBuilder pref = new StringBuilder();
        for (String x : t) {
            pref.append(x.charAt(idx));
        }
        List<Integer> indexes = trie.search(pref.toString());
        for (int i : indexes) {
            t.add(words[i]);
            dfs(t);
            t.remove(t.size() - 1);
        }
    }
}

Go

type Trie struct {
	children [26]*Trie
	v        []int
}

func newTrie() *Trie {
	return &Trie{}
}
func (this *Trie) insert(word string, i int) {
	node := this
	for _, c := range word {
		c -= 'a'
		if node.children[c] == nil {
			node.children[c] = newTrie()
		}
		node = node.children[c]
		node.v = append(node.v, i)
	}
}
func (this *Trie) search(word string) []int {
	node := this
	for _, c := range word {
		c -= 'a'
		if node.children[c] == nil {
			return []int{}
		}
		node = node.children[c]
	}
	return node.v
}

func wordSquares(words []string) [][]string {
	trie := newTrie()
	for i, w := range words {
		trie.insert(w, i)
	}
	ans := [][]string{}
	var dfs func([]string)
	dfs = func(t []string) {
		if len(t) == len(words[0]) {
			cp := make([]string, len(t))
			copy(cp, t)
			ans = append(ans, cp)
			return
		}
		idx := len(t)
		pref := []byte{}
		for _, v := range t {
			pref = append(pref, v[idx])
		}
		indexes := trie.search(string(pref))
		for _, i := range indexes {
			t = append(t, words[i])
			dfs(t)
			t = t[:len(t)-1]
		}
	}
	for _, w := range words {
		dfs([]string{w})
	}
	return ans
}