Skip to content

Latest commit

 

History

History
282 lines (238 loc) · 9.41 KB

File metadata and controls

282 lines (238 loc) · 9.41 KB
comments difficulty edit_url tags
true
中等
深度优先搜索
广度优先搜索
数组
矩阵
最短路
堆(优先队列)

English Version

题目描述

迷宫中有一个球,它有空地 (表示为 0) 和墙 (表示为 1)。球可以向上向下向左向右滚过空地,但直到撞上墙之前它都不会停止滚动。当球停止时,它才可以选择下一个滚动方向。

给定 m × n迷宫(maze),球的起始位置 (start = [startrow, startcol]) 和目的地 (destination = [destinationrow, destinationcol]),返回球在目的地 (destination) 停止的最短距离。如果球不能在目的地 (destination) 停止,返回 -1

距离是指球从起始位置 ( 不包括 ) 到终点 ( 包括 ) 所经过的空地数。

你可以假设迷宫的边界都是墙 ( 见例子 )。

 

示例 1:

输入: maze = [[0,0,1,0,0],[0,0,0,0,0],[0,0,0,1,0],[1,1,0,1,1],[0,0,0,0,0]], start = [0,4], destination = [4,4]
输出: 12
解析: 一条最短路径 : left -> down -> left -> down -> right -> down -> right。
             总距离为 1 + 1 + 3 + 1 + 2 + 2 + 2 = 12。

示例 2:

输入: maze = [[0,0,1,0,0],[0,0,0,0,0],[0,0,0,1,0],[1,1,0,1,1],[0,0,0,0,0]], start = [0,4], destination = [3,2]
输出: -1
解析: 球不可能在目的地停下来。注意,你可以经过目的地,但不能在那里停下来。

示例 3:

输入: maze = [[0,0,0,0,0],[1,1,0,0,1],[0,0,0,0,0],[0,1,0,0,1],[0,1,0,0,0]], start = [4,3], destination = [0,1]
输出: -1

 

注意:

  • m == maze.length
  • n == maze[i].length
  • 1 <= m, n <= 100
  • maze[i][j] 是 0 或 1.
  • start.length == 2
  • destination.length == 2
  • 0 <= startrow, destinationrow < m
  • 0 <= startcol, destinationcol < n
  • 球和目的地都存在于一个空地中,它们最初不会处于相同的位置。
  • 迷宫至少包含两个空地

解法

方法一:BFS

我们定义一个二维数组 $dist$,其中 $dist[i][j]$ 表示从起始位置到达 $(i,j)$ 的最短路径长度。初始时,$dist$ 中的所有元素都被初始化为一个很大的数,除了起始位置,因为起始位置到自身的距离是 $0$

然后,我们定义一个队列 $q$,将起始位置加入队列。随后不断进行以下操作:弹出队列中的首元素,将其四个方向上可以到达的位置加入队列中,并且在 $dist$ 中记录这些位置的距离,直到队列为空。

最后,如果终点位置的距离仍然是一个很大的数,说明从起始位置无法到达终点位置,返回 $-1$,否则返回终点位置的距离。

时间复杂度 $O(m \times n \times \max(m, n))$,空间复杂度 $O(m \times n)$。其中 $m$$n$ 分别是迷宫的行数和列数。

Python3

class Solution:
    def shortestDistance(
        self, maze: List[List[int]], start: List[int], destination: List[int]
    ) -> int:
        m, n = len(maze), len(maze[0])
        dirs = (-1, 0, 1, 0, -1)
        si, sj = start
        di, dj = destination
        q = deque([(si, sj)])
        dist = [[inf] * n for _ in range(m)]
        dist[si][sj] = 0
        while q:
            i, j = q.popleft()
            for a, b in pairwise(dirs):
                x, y, k = i, j, dist[i][j]
                while 0 <= x + a < m and 0 <= y + b < n and maze[x + a][y + b] == 0:
                    x, y, k = x + a, y + b, k + 1
                if k < dist[x][y]:
                    dist[x][y] = k
                    q.append((x, y))
        return -1 if dist[di][dj] == inf else dist[di][dj]

Java

class Solution {
    public int shortestDistance(int[][] maze, int[] start, int[] destination) {
        int m = maze.length, n = maze[0].length;
        final int inf = 1 << 30;
        int[][] dist = new int[m][n];
        for (var row : dist) {
            Arrays.fill(row, inf);
        }
        int si = start[0], sj = start[1];
        int di = destination[0], dj = destination[1];
        dist[si][sj] = 0;
        Deque<int[]> q = new ArrayDeque<>();
        q.offer(new int[] {si, sj});
        int[] dirs = {-1, 0, 1, 0, -1};
        while (!q.isEmpty()) {
            var p = q.poll();
            int i = p[0], j = p[1];
            for (int d = 0; d < 4; ++d) {
                int x = i, y = j, k = dist[i][j];
                int a = dirs[d], b = dirs[d + 1];
                while (
                    x + a >= 0 && x + a < m && y + b >= 0 && y + b < n && maze[x + a][y + b] == 0) {
                    x += a;
                    y += b;
                    ++k;
                }
                if (k < dist[x][y]) {
                    dist[x][y] = k;
                    q.offer(new int[] {x, y});
                }
            }
        }
        return dist[di][dj] == inf ? -1 : dist[di][dj];
    }
}

C++

class Solution {
public:
    int shortestDistance(vector<vector<int>>& maze, vector<int>& start, vector<int>& destination) {
        int m = maze.size(), n = maze[0].size();
        int dist[m][n];
        memset(dist, 0x3f, sizeof(dist));
        int si = start[0], sj = start[1];
        int di = destination[0], dj = destination[1];
        dist[si][sj] = 0;
        queue<pair<int, int>> q;
        q.emplace(si, sj);
        int dirs[5] = {-1, 0, 1, 0, -1};
        while (!q.empty()) {
            auto [i, j] = q.front();
            q.pop();
            for (int d = 0; d < 4; ++d) {
                int x = i, y = j, k = dist[i][j];
                int a = dirs[d], b = dirs[d + 1];
                while (x + a >= 0 && x + a < m && y + b >= 0 && y + b < n && maze[x + a][y + b] == 0) {
                    x += a;
                    y += b;
                    ++k;
                }
                if (k < dist[x][y]) {
                    dist[x][y] = k;
                    q.emplace(x, y);
                }
            }
        }
        return dist[di][dj] == 0x3f3f3f3f ? -1 : dist[di][dj];
    }
};

Go

func shortestDistance(maze [][]int, start []int, destination []int) int {
	m, n := len(maze), len(maze[0])
	dist := make([][]int, m)
	const inf = 1 << 30
	for i := range dist {
		dist[i] = make([]int, n)
		for j := range dist[i] {
			dist[i][j] = inf
		}
	}
	dist[start[0]][start[1]] = 0
	q := [][]int{start}
	dirs := [5]int{-1, 0, 1, 0, -1}
	for len(q) > 0 {
		p := q[0]
		q = q[1:]
		i, j := p[0], p[1]
		for d := 0; d < 4; d++ {
			x, y, k := i, j, dist[i][j]
			a, b := dirs[d], dirs[d+1]
			for x+a >= 0 && x+a < m && y+b >= 0 && y+b < n && maze[x+a][y+b] == 0 {
				x, y, k = x+a, y+b, k+1
			}
			if k < dist[x][y] {
				dist[x][y] = k
				q = append(q, []int{x, y})
			}
		}
	}
	di, dj := destination[0], destination[1]
	if dist[di][dj] == inf {
		return -1
	}
	return dist[di][dj]
}

TypeScript

function shortestDistance(maze: number[][], start: number[], destination: number[]): number {
    const m = maze.length;
    const n = maze[0].length;
    const dist: number[][] = Array.from({ length: m }, () =>
        Array.from({ length: n }, () => Infinity),
    );
    const [si, sj] = start;
    const [di, dj] = destination;
    dist[si][sj] = 0;
    const q: number[][] = [[si, sj]];
    const dirs = [-1, 0, 1, 0, -1];
    while (q.length) {
        const [i, j] = q.shift()!;
        for (let d = 0; d < 4; ++d) {
            let [x, y, k] = [i, j, dist[i][j]];
            const [a, b] = [dirs[d], dirs[d + 1]];
            while (x + a >= 0 && x + a < m && y + b >= 0 && y + b < n && maze[x + a][y + b] === 0) {
                x += a;
                y += b;
                ++k;
            }
            if (k < dist[x][y]) {
                dist[x][y] = k;
                q.push([x, y]);
            }
        }
    }
    return dist[di][dj] === Infinity ? -1 : dist[di][dj];
}