Skip to content

Latest commit

 

History

History
265 lines (217 loc) · 7.36 KB

File metadata and controls

265 lines (217 loc) · 7.36 KB
comments difficulty edit_url tags
true
中等
数组
数学

English Version

题目描述

给你两个整数 heightwidth ,代表一个大小为 height x width 的花园。你还得到了以下信息:

  • 一个数组 tree ,其中 tree = [treer, treec] 是花园中树的位置,
  • 一个数组 squirrel ,其中 squirrel = [squirrelr, squirrelc] 是花园中松鼠的位置,
  • 一个数组 nuts ,其中 nuts[i] = [nutir, nutic] 是花园中第 ith 个坚果的位置。

松鼠一次最多只能携带一个坚果,并且能够向上、下、左、右四个方向移动到相邻的单元格。

返回松鼠收集所有坚果并逐一放在树下的 最小距离

距离 是指移动的次数。

 

示例 1:

输入:height = 5, width = 7, tree = [2,2], squirrel = [4,4], nuts = [[3,0], [2,5]]
输出:12
解释:为实现最小的距离,松鼠应该先摘 [2, 5] 位置的坚果。

示例 2:

输入:height = 1, width = 3, tree = [0,1], squirrel = [0,0], nuts = [[0,2]]
输出:3

 

提示:

  • 1 <= height, width <= 100
  • tree.length == 2
  • squirrel.length == 2
  • 1 <= nuts.length <= 5000
  • nuts[i].length == 2
  • 0 <= treer, squirrelr, nutir <= height
  • 0 <= treec, squirrelc, nutic <= width

解法

方法一:数学

我们观察松鼠的移动路径,可以发现,松鼠会首先移动到某个坚果的位置,然后移动到树的位置。接下来,松鼠的移动路径之和等于“其余坚果到树的位置之和”再乘以 $2$

因此,我们只需要选出一个坚果,作为松鼠的第一个目标,使得其到树的位置之和最小,即可得到最小路径。

时间复杂度 $O(n)$,其中 $n$ 为坚果的数量。空间复杂度 $O(1)$

Python3

class Solution:
    def minDistance(
        self,
        height: int,
        width: int,
        tree: List[int],
        squirrel: List[int],
        nuts: List[List[int]],
    ) -> int:
        tr, tc = tree
        sr, sc = squirrel
        s = sum(abs(r - tr) + abs(c - tc) for r, c in nuts) * 2
        ans = inf
        for r, c in nuts:
            a = abs(r - tr) + abs(c - tc)
            b = abs(r - sr) + abs(c - sc)
            ans = min(ans, s - a + b)
        return ans

Java

import static java.lang.Math.*;

class Solution {
    public int minDistance(int height, int width, int[] tree, int[] squirrel, int[][] nuts) {
        int tr = tree[0], tc = tree[1];
        int sr = squirrel[0], sc = squirrel[1];
        int s = 0;
        for (var e : nuts) {
            s += abs(e[0] - tr) + abs(e[1] - tc);
        }
        s <<= 1;
        int ans = Integer.MAX_VALUE;
        for (var e : nuts) {
            int a = abs(e[0] - tr) + abs(e[1] - tc);
            int b = abs(e[0] - sr) + abs(e[1] - sc);
            ans = min(ans, s - a + b);
        }
        return ans;
    }
}

C++

class Solution {
public:
    int minDistance(int height, int width, vector<int>& tree, vector<int>& squirrel, vector<vector<int>>& nuts) {
        int tr = tree[0], tc = tree[1];
        int sr = squirrel[0], sc = squirrel[1];
        int s = 0;
        for (const auto& e : nuts) {
            s += abs(e[0] - tr) + abs(e[1] - tc);
        }
        s <<= 1;
        int ans = INT_MAX;
        for (const auto& e : nuts) {
            int a = abs(e[0] - tr) + abs(e[1] - tc);
            int b = abs(e[0] - sr) + abs(e[1] - sc);
            ans = min(ans, s - a + b);
        }
        return ans;
    }
};

Go

func minDistance(height int, width int, tree []int, squirrel []int, nuts [][]int) int {
	tr, tc := tree[0], tree[1]
	sr, sc := squirrel[0], squirrel[1]
	s := 0
	for _, e := range nuts {
		s += abs(e[0]-tr) + abs(e[1]-tc)
	}
	s <<= 1
	ans := math.MaxInt32
	for _, e := range nuts {
		a := abs(e[0]-tr) + abs(e[1]-tc)
		b := abs(e[0]-sr) + abs(e[1]-sc)
		ans = min(ans, s-a+b)
	}
	return ans
}

func abs(x int) int {
	if x < 0 {
		return -x
	}
	return x
}

TypeScript

function minDistance(
    height: number,
    width: number,
    tree: number[],
    squirrel: number[],
    nuts: number[][],
): number {
    const [tr, tc] = tree;
    const [sr, sc] = squirrel;
    const s = nuts.reduce((acc, [r, c]) => acc + (Math.abs(tr - r) + Math.abs(tc - c)) * 2, 0);
    let ans = Infinity;
    for (const [r, c] of nuts) {
        const a = Math.abs(tr - r) + Math.abs(tc - c);
        const b = Math.abs(sr - r) + Math.abs(sc - c);
        ans = Math.min(ans, s - a + b);
    }
    return ans;
}

Rust

impl Solution {
    pub fn min_distance(
        height: i32,
        width: i32,
        tree: Vec<i32>,
        squirrel: Vec<i32>,
        nuts: Vec<Vec<i32>>,
    ) -> i32 {
        let (tr, tc) = (tree[0], tree[1]);
        let (sr, sc) = (squirrel[0], squirrel[1]);
        let s: i32 = nuts
            .iter()
            .map(|nut| (nut[0] - tr).abs() + (nut[1] - tc).abs())
            .sum::<i32>()
            * 2;

        let mut ans = i32::MAX;
        for nut in &nuts {
            let a = (nut[0] - tr).abs() + (nut[1] - tc).abs();
            let b = (nut[0] - sr).abs() + (nut[1] - sc).abs();
            ans = ans.min(s - a + b);
        }

        ans
    }
}

C#

public class Solution {
    public int MinDistance(int height, int width, int[] tree, int[] squirrel, int[][] nuts) {
        int tr = tree[0], tc = tree[1];
        int sr = squirrel[0], sc = squirrel[1];
        int s = 0;

        foreach (var e in nuts) {
            s += Math.Abs(e[0] - tr) + Math.Abs(e[1] - tc);
        }
        s <<= 1;

        int ans = int.MaxValue;
        foreach (var e in nuts) {
            int a = Math.Abs(e[0] - tr) + Math.Abs(e[1] - tc);
            int b = Math.Abs(e[0] - sr) + Math.Abs(e[1] - sc);
            ans = Math.Min(ans, s - a + b);
        }

        return ans;
    }
}