comments | difficulty | edit_url | tags | ||
---|---|---|---|---|---|
true |
简单 |
|
矩形以列表 [x1, y1, x2, y2]
的形式表示,其中 (x1, y1)
为左下角的坐标,(x2, y2)
是右上角的坐标。矩形的上下边平行于 x 轴,左右边平行于 y 轴。
如果相交的面积为 正 ,则称两矩形重叠。需要明确的是,只在角或边接触的两个矩形不构成重叠。
给出两个矩形 rec1
和 rec2
。如果它们重叠,返回 true
;否则,返回 false
。
示例 1:
输入:rec1 = [0,0,2,2], rec2 = [1,1,3,3] 输出:true
示例 2:
输入:rec1 = [0,0,1,1], rec2 = [1,0,2,1] 输出:false
示例 3:
输入:rec1 = [0,0,1,1], rec2 = [2,2,3,3] 输出:false
提示:
rect1.length == 4
rect2.length == 4
-109 <= rec1[i], rec2[i] <= 109
rec1
和rec2
表示一个面积不为零的有效矩形
我们记矩形
那么当满足以下任一条件时,矩形
- 满足
$y_3 \geq y_2$ ,即$\text{rec2}$ 在$\text{rec1}$ 的上方; - 满足
$y_4 \leq y_1$ ,即$\text{rec2}$ 在$\text{rec1}$ 的下方; - 满足
$x_3 \geq x_2$ ,即$\text{rec2}$ 在$\text{rec1}$ 的右方; - 满足
$x_4 \leq x_1$ ,即$\text{rec2}$ 在$\text{rec1}$ 的左方。
当以上条件都不满足时,矩形
时间复杂度
class Solution:
def isRectangleOverlap(self, rec1: List[int], rec2: List[int]) -> bool:
x1, y1, x2, y2 = rec1
x3, y3, x4, y4 = rec2
return not (y3 >= y2 or y4 <= y1 or x3 >= x2 or x4 <= x1)
class Solution {
public boolean isRectangleOverlap(int[] rec1, int[] rec2) {
int x1 = rec1[0], y1 = rec1[1], x2 = rec1[2], y2 = rec1[3];
int x3 = rec2[0], y3 = rec2[1], x4 = rec2[2], y4 = rec2[3];
return !(y3 >= y2 || y4 <= y1 || x3 >= x2 || x4 <= x1);
}
}
class Solution {
public:
bool isRectangleOverlap(vector<int>& rec1, vector<int>& rec2) {
int x1 = rec1[0], y1 = rec1[1], x2 = rec1[2], y2 = rec1[3];
int x3 = rec2[0], y3 = rec2[1], x4 = rec2[2], y4 = rec2[3];
return !(y3 >= y2 || y4 <= y1 || x3 >= x2 || x4 <= x1);
}
};
func isRectangleOverlap(rec1 []int, rec2 []int) bool {
x1, y1, x2, y2 := rec1[0], rec1[1], rec1[2], rec1[3]
x3, y3, x4, y4 := rec2[0], rec2[1], rec2[2], rec2[3]
return !(y3 >= y2 || y4 <= y1 || x3 >= x2 || x4 <= x1)
}
function isRectangleOverlap(rec1: number[], rec2: number[]): boolean {
const [x1, y1, x2, y2] = rec1;
const [x3, y3, x4, y4] = rec2;
return !(y3 >= y2 || y4 <= y1 || x3 >= x2 || x4 <= x1);
}