comments | difficulty | edit_url | tags | ||
---|---|---|---|---|---|
true |
Medium |
|
You have planned some train traveling one year in advance. The days of the year in which you will travel are given as an integer array days
. Each day is an integer from 1
to 365
.
Train tickets are sold in three different ways:
- a 1-day pass is sold for
costs[0]
dollars, - a 7-day pass is sold for
costs[1]
dollars, and - a 30-day pass is sold for
costs[2]
dollars.
The passes allow that many days of consecutive travel.
- For example, if we get a 7-day pass on day
2
, then we can travel for7
days:2
,3
,4
,5
,6
,7
, and8
.
Return the minimum number of dollars you need to travel every day in the given list of days.
Example 1:
Input: days = [1,4,6,7,8,20], costs = [2,7,15] Output: 11 Explanation: For example, here is one way to buy passes that lets you travel your travel plan: On day 1, you bought a 1-day pass for costs[0] = $2, which covered day 1. On day 3, you bought a 7-day pass for costs[1] = $7, which covered days 3, 4, ..., 9. On day 20, you bought a 1-day pass for costs[0] = $2, which covered day 20. In total, you spent $11 and covered all the days of your travel.
Example 2:
Input: days = [1,2,3,4,5,6,7,8,9,10,30,31], costs = [2,7,15] Output: 17 Explanation: For example, here is one way to buy passes that lets you travel your travel plan: On day 1, you bought a 30-day pass for costs[2] = $15 which covered days 1, 2, ..., 30. On day 31, you bought a 1-day pass for costs[0] = $2 which covered day 31. In total, you spent $17 and covered all the days of your travel.
Constraints:
1 <= days.length <= 365
1 <= days[i] <= 365
days
is in strictly increasing order.costs.length == 3
1 <= costs[i] <= 1000
We define a function
The execution process of the function
- If
$i \geq n$ , it means all trips have ended, return$0$ ; - Otherwise, we need to consider three types of purchases: buying a 1-day pass, buying a 7-day pass, and buying a 30-day pass. We calculate the cost for these three purchasing methods separately and use binary search to find the index
$j$ of the next trip, then recursively call$\textit{dfs(j)}$ , and finally return the minimum cost among these three purchasing methods.
To avoid repeated calculations, we use memoization search to save the results that have already been calculated.
The time complexity is
class Solution:
def mincostTickets(self, days: List[int], costs: List[int]) -> int:
@cache
def dfs(i: int) -> int:
if i >= n:
return 0
ans = inf
for c, v in zip(costs, valid):
j = bisect_left(days, days[i] + v)
ans = min(ans, c + dfs(j))
return ans
n = len(days)
valid = [1, 7, 30]
return dfs(0)
class Solution {
private final int[] valid = {1, 7, 30};
private int[] days;
private int[] costs;
private Integer[] f;
private int n;
public int mincostTickets(int[] days, int[] costs) {
n = days.length;
f = new Integer[n];
this.days = days;
this.costs = costs;
return dfs(0);
}
private int dfs(int i) {
if (i >= n) {
return 0;
}
if (f[i] != null) {
return f[i];
}
f[i] = Integer.MAX_VALUE;
for (int k = 0; k < 3; ++k) {
int j = Arrays.binarySearch(days, days[i] + valid[k]);
j = j < 0 ? -j - 1 : j;
f[i] = Math.min(f[i], dfs(j) + costs[k]);
}
return f[i];
}
}
class Solution {
public:
int mincostTickets(vector<int>& days, vector<int>& costs) {
int valid[3] = {1, 7, 30};
int n = days.size();
int f[n];
memset(f, 0, sizeof(f));
function<int(int)> dfs = [&](int i) {
if (i >= n) {
return 0;
}
if (f[i]) {
return f[i];
}
f[i] = INT_MAX;
for (int k = 0; k < 3; ++k) {
int j = lower_bound(days.begin(), days.end(), days[i] + valid[k]) - days.begin();
f[i] = min(f[i], dfs(j) + costs[k]);
}
return f[i];
};
return dfs(0);
}
};
func mincostTickets(days []int, costs []int) int {
valid := [3]int{1, 7, 30}
n := len(days)
f := make([]int, n)
var dfs func(int) int
dfs = func(i int) int {
if i >= n {
return 0
}
if f[i] > 0 {
return f[i]
}
f[i] = 1 << 30
for k := 0; k < 3; k++ {
j := sort.SearchInts(days, days[i]+valid[k])
f[i] = min(f[i], dfs(j)+costs[k])
}
return f[i]
}
return dfs(0)
}
function mincostTickets(days: number[], costs: number[]): number {
const n = days.length;
const f: number[] = Array(n).fill(0);
const valid: number[] = [1, 7, 30];
const search = (x: number): number => {
let [l, r] = [0, n];
while (l < r) {
const mid = (l + r) >> 1;
if (days[mid] >= x) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
};
const dfs = (i: number): number => {
if (i >= n) {
return 0;
}
if (f[i]) {
return f[i];
}
f[i] = Infinity;
for (let k = 0; k < 3; ++k) {
const j = search(days[i] + valid[k]);
f[i] = Math.min(f[i], dfs(j) + costs[k]);
}
return f[i];
};
return dfs(0);
}
Let's denote the last day in the
We can calculate the value of
The final answer is
The time complexity is
class Solution:
def mincostTickets(self, days: List[int], costs: List[int]) -> int:
m = days[-1]
f = [0] * (m + 1)
valid = [1, 7, 30]
j = 0
for i in range(1, m + 1):
if i == days[j]:
f[i] = inf
for c, v in zip(costs, valid):
f[i] = min(f[i], f[max(0, i - v)] + c)
j += 1
else:
f[i] = f[i - 1]
return f[m]
class Solution {
public int mincostTickets(int[] days, int[] costs) {
int m = days[days.length - 1];
int[] f = new int[m + 1];
final int[] valid = {1, 7, 30};
for (int i = 1, j = 0; i <= m; ++i) {
if (i == days[j]) {
f[i] = Integer.MAX_VALUE;
for (int k = 0; k < 3; ++k) {
int c = costs[k], v = valid[k];
f[i] = Math.min(f[i], f[Math.max(0, i - v)] + c);
}
++j;
} else {
f[i] = f[i - 1];
}
}
return f[m];
}
}
class Solution {
public:
int mincostTickets(vector<int>& days, vector<int>& costs) {
int m = days.back();
int f[m + 1];
f[0] = 0;
int valid[3] = {1, 7, 30};
for (int i = 1, j = 0; i <= m; ++i) {
if (i == days[j]) {
f[i] = INT_MAX;
for (int k = 0; k < 3; ++k) {
int c = costs[k], v = valid[k];
f[i] = min(f[i], f[max(0, i - v)] + c);
}
++j;
} else {
f[i] = f[i - 1];
}
}
return f[m];
}
};
func mincostTickets(days []int, costs []int) int {
m := days[len(days)-1]
f := make([]int, m+1)
valid := [3]int{1, 7, 30}
for i, j := 1, 0; i <= m; i++ {
if i == days[j] {
f[i] = 1 << 30
for k, v := range valid {
c := costs[k]
f[i] = min(f[i], f[max(0, i-v)]+c)
}
j++
} else {
f[i] = f[i-1]
}
}
return f[m]
}
function mincostTickets(days: number[], costs: number[]): number {
const m = days.at(-1)!;
const f: number[] = Array(m).fill(0);
const valid: number[] = [1, 7, 30];
for (let i = 1, j = 0; i <= m; ++i) {
if (i === days[j]) {
f[i] = Infinity;
for (let k = 0; k < 3; ++k) {
const [c, v] = [costs[k], valid[k]];
f[i] = Math.min(f[i], f[Math.max(0, i - v)] + c);
}
++j;
} else {
f[i] = f[i - 1];
}
}
return f[m];
}