Skip to content

Latest commit

 

History

History
301 lines (252 loc) · 6.27 KB

File metadata and controls

301 lines (252 loc) · 6.27 KB
comments difficulty edit_url tags
true
Hard
Stack
Array
Monotonic Stack

中文文档

Description

Given an integer array nums, return the number of non-empty subarrays with the leftmost element of the subarray not larger than other elements in the subarray.

A subarray is a contiguous part of an array.

 

Example 1:

Input: nums = [1,4,2,5,3]
Output: 11
Explanation: There are 11 valid subarrays: [1],[4],[2],[5],[3],[1,4],[2,5],[1,4,2],[2,5,3],[1,4,2,5],[1,4,2,5,3].

Example 2:

Input: nums = [3,2,1]
Output: 3
Explanation: The 3 valid subarrays are: [3],[2],[1].

Example 3:

Input: nums = [2,2,2]
Output: 6
Explanation: There are 6 valid subarrays: [2],[2],[2],[2,2],[2,2],[2,2,2].

 

Constraints:

  • 1 <= nums.length <= 5 * 104
  • 0 <= nums[i] <= 105

Solutions

Solution 1

Python3

class Solution:
    def validSubarrays(self, nums: List[int]) -> int:
        n = len(nums)
        right = [n] * n
        stk = []
        for i in range(n - 1, -1, -1):
            while stk and nums[stk[-1]] >= nums[i]:
                stk.pop()
            if stk:
                right[i] = stk[-1]
            stk.append(i)
        return sum(j - i for i, j in enumerate(right))

Java

class Solution {
    public int validSubarrays(int[] nums) {
        int n = nums.length;
        int[] right = new int[n];
        Arrays.fill(right, n);
        Deque<Integer> stk = new ArrayDeque<>();
        for (int i = n - 1; i >= 0; --i) {
            while (!stk.isEmpty() && nums[stk.peek()] >= nums[i]) {
                stk.pop();
            }
            if (!stk.isEmpty()) {
                right[i] = stk.peek();
            }
            stk.push(i);
        }
        int ans = 0;
        for (int i = 0; i < n; ++i) {
            ans += right[i] - i;
        }
        return ans;
    }
}

C++

class Solution {
public:
    int validSubarrays(vector<int>& nums) {
        int n = nums.size();
        vector<int> right(n, n);
        stack<int> stk;
        for (int i = n - 1; ~i; --i) {
            while (stk.size() && nums[stk.top()] >= nums[i]) {
                stk.pop();
            }
            if (stk.size()) {
                right[i] = stk.top();
            }
            stk.push(i);
        }
        int ans = 0;
        for (int i = 0; i < n; ++i) {
            ans += right[i] - i;
        }
        return ans;
    }
};

Go

func validSubarrays(nums []int) (ans int) {
	n := len(nums)
	right := make([]int, n)
	for i := range right {
		right[i] = n
	}
	stk := []int{}
	for i := n - 1; i >= 0; i-- {
		for len(stk) > 0 && nums[stk[len(stk)-1]] >= nums[i] {
			stk = stk[:len(stk)-1]
		}
		if len(stk) > 0 {
			right[i] = stk[len(stk)-1]
		}
		stk = append(stk, i)
	}
	for i, j := range right {
		ans += j - i
	}
	return
}

TypeScript

function validSubarrays(nums: number[]): number {
    const n = nums.length;
    const right: number[] = Array(n).fill(n);
    const stk: number[] = [];
    for (let i = n - 1; ~i; --i) {
        while (stk.length && nums[stk.at(-1)] >= nums[i]) {
            stk.pop();
        }
        if (stk.length) {
            right[i] = stk.at(-1)!;
        }
        stk.push(i);
    }
    let ans = 0;
    for (let i = 0; i < n; ++i) {
        ans += right[i] - i;
    }
    return ans;
}

Solution 2

Python3

class Solution:
    def validSubarrays(self, nums: List[int]) -> int:
        n = len(nums)
        stk = []
        ans = 0
        for i in range(n - 1, -1, -1):
            while stk and nums[stk[-1]] >= nums[i]:
                stk.pop()
            ans += (stk[-1] if stk else n) - i
            stk.append(i)
        return ans

Java

class Solution {
    public int validSubarrays(int[] nums) {
        int n = nums.length;
        Deque<Integer> stk = new ArrayDeque<>();
        int ans = 0;
        for (int i = n - 1; i >= 0; --i) {
            while (!stk.isEmpty() && nums[stk.peek()] >= nums[i]) {
                stk.pop();
            }
            ans += (stk.isEmpty() ? n : stk.peek()) - i;

            stk.push(i);
        }
        return ans;
    }
}

C++

class Solution {
public:
    int validSubarrays(vector<int>& nums) {
        int n = nums.size();
        stack<int> stk;
        int ans = 0;
        for (int i = n - 1; ~i; --i) {
            while (stk.size() && nums[stk.top()] >= nums[i]) {
                stk.pop();
            }
            ans += (stk.size() ? stk.top() : n) - i;
            stk.push(i);
        }
        return ans;
    }
};

Go

func validSubarrays(nums []int) (ans int) {
	n := len(nums)
	stk := []int{}
	for i := n - 1; i >= 0; i-- {
		for len(stk) > 0 && nums[stk[len(stk)-1]] >= nums[i] {
			stk = stk[:len(stk)-1]
		}
		ans -= i
		if len(stk) > 0 {
			ans += stk[len(stk)-1]
		} else {
			ans += n
		}
		stk = append(stk, i)
	}
	return
}

TypeScript

function validSubarrays(nums: number[]): number {
    const n = nums.length;
    const stk: number[] = [];
    let ans = 0;
    for (let i = n - 1; ~i; --i) {
        while (stk.length && nums[stk.at(-1)!] >= nums[i]) {
            stk.pop();
        }
        ans += (stk.at(-1) ?? n) - i;
        stk.push(i);
    }
    return ans;
}