Skip to content

Latest commit

 

History

History
192 lines (150 loc) · 5.58 KB

File metadata and controls

192 lines (150 loc) · 5.58 KB
comments difficulty edit_url rating source tags
true
简单
1337
第 163 场周赛 Q1
数组
矩阵
模拟

English Version

题目描述

给你一个 mn 列的二维网格 grid 和一个整数 k。你需要将 grid 迁移 k 次。

每次「迁移」操作将会引发下述活动:

  • 位于 grid[i][j]j < n - 1)的元素将会移动到 grid[i][j + 1]
  • 位于 grid[i][n - 1] 的元素将会移动到 grid[i + 1][0]
  • 位于 grid[m - 1][n - 1] 的元素将会移动到 grid[0][0]

请你返回 k 次迁移操作后最终得到的 二维网格

 

示例 1:

输入:grid = [[1,2,3],[4,5,6],[7,8,9]], k = 1
输出:[[9,1,2],[3,4,5],[6,7,8]]

示例 2:

输入:grid = [[3,8,1,9],[19,7,2,5],[4,6,11,10],[12,0,21,13]], k = 4
输出:[[12,0,21,13],[3,8,1,9],[19,7,2,5],[4,6,11,10]]

示例 3:

输入:grid = [[1,2,3],[4,5,6],[7,8,9]], k = 9
输出:[[1,2,3],[4,5,6],[7,8,9]]

 

提示:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m <= 50
  • 1 <= n <= 50
  • -1000 <= grid[i][j] <= 1000
  • 0 <= k <= 100

解法

方法一:二维数组展开

根据题目描述,如果我们将二维数组展开成一维数组,那么每次迁移操作就是将数组中的元素向右移动一个位置,最后一个元素移动到数组的首位。

因此,我们可以将二维数组展开成一维数组,然后计算每个元素在最后的位置 $idx = (x, y)$,更新答案数组 ans[x][y] = grid[i][j] 即可。

时间复杂度 $O(m \times n)$,其中 $m$$n$ 分别是二维数组 grid 的行数和列数。需要遍历二维数组 grid 一次,计算每个元素在最后的位置。忽略答案数组的空间消耗,空间复杂度 $O(1)$

Python3

class Solution:
    def shiftGrid(self, grid: List[List[int]], k: int) -> List[List[int]]:
        m, n = len(grid), len(grid[0])
        ans = [[0] * n for _ in range(m)]
        for i, row in enumerate(grid):
            for j, v in enumerate(row):
                x, y = divmod((i * n + j + k) % (m * n), n)
                ans[x][y] = v
        return ans

Java

class Solution {
    public List<List<Integer>> shiftGrid(int[][] grid, int k) {
        int m = grid.length, n = grid[0].length;
        List<List<Integer>> ans = new ArrayList<>();
        for (int i = 0; i < m; ++i) {
            List<Integer> row = new ArrayList<>();
            for (int j = 0; j < n; ++j) {
                row.add(0);
            }
            ans.add(row);
        }
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                int idx = (i * n + j + k) % (m * n);
                int x = idx / n, y = idx % n;
                ans.get(x).set(y, grid[i][j]);
            }
        }
        return ans;
    }
}

C++

class Solution {
public:
    vector<vector<int>> shiftGrid(vector<vector<int>>& grid, int k) {
        int m = grid.size(), n = grid[0].size();
        vector<vector<int>> ans(m, vector<int>(n));
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                int idx = (i * n + j + k) % (m * n);
                int x = idx / n, y = idx % n;
                ans[x][y] = grid[i][j];
            }
        }
        return ans;
    }
};

Go

func shiftGrid(grid [][]int, k int) [][]int {
	m, n := len(grid), len(grid[0])
	ans := make([][]int, m)
	for i := range ans {
		ans[i] = make([]int, n)
	}
	for i := 0; i < m; i++ {
		for j := 0; j < n; j++ {
			idx := (i*n + j + k) % (m * n)
			x, y := idx/n, idx%n
			ans[x][y] = grid[i][j]
		}
	}
	return ans
}

TypeScript

function shiftGrid(grid: number[][], k: number): number[][] {
    const [m, n] = [grid.length, grid[0].length];
    const ans: number[][] = Array.from({ length: m }, () => Array.from({ length: n }, () => 0));
    for (let i = 0; i < m; ++i) {
        for (let j = 0; j < n; ++j) {
            const idx = (i * n + j + k) % (m * n);
            const [x, y] = [Math.floor(idx / n), idx % n];
            ans[x][y] = grid[i][j];
        }
    }
    return ans;
}