comments | difficulty | edit_url | rating | source | tags | ||
---|---|---|---|---|---|---|---|
true |
Medium |
2024 |
Biweekly Contest 44 Q3 |
|
There is an integer array perm
that is a permutation of the first n
positive integers, where n
is always odd.
It was encoded into another integer array encoded
of length n - 1
, such that encoded[i] = perm[i] XOR perm[i + 1]
. For example, if perm = [1,3,2]
, then encoded = [2,1]
.
Given the encoded
array, return the original array perm
. It is guaranteed that the answer exists and is unique.
Example 1:
Input: encoded = [3,1] Output: [1,2,3] Explanation: If perm = [1,2,3], then encoded = [1 XOR 2,2 XOR 3] = [3,1]
Example 2:
Input: encoded = [6,5,4,6] Output: [2,4,1,5,3]
Constraints:
3 <= n < 105
n
is odd.encoded.length == n - 1
We notice that the array
The time complexity is
class Solution:
def decode(self, encoded: List[int]) -> List[int]:
n = len(encoded) + 1
a = b = 0
for i in range(0, n - 1, 2):
a ^= encoded[i]
for i in range(1, n + 1):
b ^= i
perm = [0] * n
perm[-1] = a ^ b
for i in range(n - 2, -1, -1):
perm[i] = encoded[i] ^ perm[i + 1]
return perm
class Solution {
public int[] decode(int[] encoded) {
int n = encoded.length + 1;
int a = 0, b = 0;
for (int i = 0; i < n - 1; i += 2) {
a ^= encoded[i];
}
for (int i = 1; i <= n; ++i) {
b ^= i;
}
int[] perm = new int[n];
perm[n - 1] = a ^ b;
for (int i = n - 2; i >= 0; --i) {
perm[i] = encoded[i] ^ perm[i + 1];
}
return perm;
}
}
class Solution {
public:
vector<int> decode(vector<int>& encoded) {
int n = encoded.size() + 1;
int a = 0, b = 0;
for (int i = 0; i < n - 1; i += 2) {
a ^= encoded[i];
}
for (int i = 1; i <= n; ++i) {
b ^= i;
}
vector<int> perm(n);
perm[n - 1] = a ^ b;
for (int i = n - 2; ~i; --i) {
perm[i] = encoded[i] ^ perm[i + 1];
}
return perm;
}
};
func decode(encoded []int) []int {
n := len(encoded) + 1
a, b := 0, 0
for i := 0; i < n-1; i += 2 {
a ^= encoded[i]
}
for i := 1; i <= n; i++ {
b ^= i
}
perm := make([]int, n)
perm[n-1] = a ^ b
for i := n - 2; i >= 0; i-- {
perm[i] = encoded[i] ^ perm[i+1]
}
return perm
}