comments | difficulty | edit_url | rating | source | tags | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
true |
Medium |
1724 |
Weekly Contest 291 Q3 |
|
Given an integer array nums
and two integers k
and p
, return the number of distinct subarrays, which have at most k
elements that are divisible by p
.
Two arrays nums1
and nums2
are said to be distinct if:
- They are of different lengths, or
- There exists at least one index
i
wherenums1[i] != nums2[i]
.
A subarray is defined as a non-empty contiguous sequence of elements in an array.
Example 1:
Input: nums = [2,3,3,2,2], k = 2, p = 2 Output: 11 Explanation: The elements at indices 0, 3, and 4 are divisible by p = 2. The 11 distinct subarrays which have at most k = 2 elements divisible by 2 are: [2], [2,3], [2,3,3], [2,3,3,2], [3], [3,3], [3,3,2], [3,3,2,2], [3,2], [3,2,2], and [2,2]. Note that the subarrays [2] and [3] occur more than once in nums, but they should each be counted only once. The subarray [2,3,3,2,2] should not be counted because it has 3 elements that are divisible by 2.
Example 2:
Input: nums = [1,2,3,4], k = 4, p = 1 Output: 10 Explanation: All element of nums are divisible by p = 1. Also, every subarray of nums will have at most 4 elements that are divisible by 1. Since all subarrays are distinct, the total number of subarrays satisfying all the constraints is 10.
Constraints:
1 <= nums.length <= 200
1 <= nums[i], p <= 200
1 <= k <= nums.length
Follow up:
Can you solve this problem in O(n2) time complexity?
We can enumerate the left endpoint
The time complexity is
class Solution:
def countDistinct(self, nums: List[int], k: int, p: int) -> int:
s = set()
n = len(nums)
base1, base2 = 131, 13331
mod1, mod2 = 10**9 + 7, 10**9 + 9
for i in range(n):
h1 = h2 = cnt = 0
for j in range(i, n):
cnt += nums[j] % p == 0
if cnt > k:
break
h1 = (h1 * base1 + nums[j]) % mod1
h2 = (h2 * base2 + nums[j]) % mod2
s.add(h1 << 32 | h2)
return len(s)
class Solution {
public int countDistinct(int[] nums, int k, int p) {
Set<Long> s = new HashSet<>();
int n = nums.length;
int base1 = 131, base2 = 13331;
int mod1 = (int) 1e9 + 7, mod2 = (int) 1e9 + 9;
for (int i = 0; i < n; ++i) {
long h1 = 0, h2 = 0;
int cnt = 0;
for (int j = i; j < n; ++j) {
cnt += nums[j] % p == 0 ? 1 : 0;
if (cnt > k) {
break;
}
h1 = (h1 * base1 + nums[j]) % mod1;
h2 = (h2 * base2 + nums[j]) % mod2;
s.add(h1 << 32 | h2);
}
}
return s.size();
}
}
class Solution {
public:
int countDistinct(vector<int>& nums, int k, int p) {
unordered_set<long long> s;
int n = nums.size();
int base1 = 131, base2 = 13331;
int mod1 = 1e9 + 7, mod2 = 1e9 + 9;
for (int i = 0; i < n; ++i) {
long long h1 = 0, h2 = 0;
int cnt = 0;
for (int j = i; j < n; ++j) {
cnt += nums[j] % p == 0;
if (cnt > k) {
break;
}
h1 = (h1 * base1 + nums[j]) % mod1;
h2 = (h2 * base2 + nums[j]) % mod2;
s.insert(h1 << 32 | h2);
}
}
return s.size();
}
};
func countDistinct(nums []int, k int, p int) int {
s := map[int]bool{}
base1, base2 := 131, 13331
mod1, mod2 := 1000000007, 1000000009
for i := range nums {
h1, h2, cnt := 0, 0, 0
for j := i; j < len(nums); j++ {
if nums[j]%p == 0 {
cnt++
if cnt > k {
break
}
}
h1 = (h1*base1 + nums[j]) % mod1
h2 = (h2*base2 + nums[j]) % mod2
s[h1<<32|h2] = true
}
}
return len(s)
}
function countDistinct(nums: number[], k: number, p: number): number {
const s = new Set<bigint>();
const [base1, base2] = [131, 13331];
const [mod1, mod2] = [1000000007, 1000000009];
for (let i = 0; i < nums.length; i++) {
let [h1, h2, cnt] = [0, 0, 0];
for (let j = i; j < nums.length; j++) {
if (nums[j] % p === 0) {
cnt++;
if (cnt > k) {
break;
}
}
h1 = (h1 * base1 + nums[j]) % mod1;
h2 = (h2 * base2 + nums[j]) % mod2;
s.add((BigInt(h1) << 32n) | BigInt(h2));
}
}
return s.size;
}
class Solution:
def countDistinct(self, nums: List[int], k: int, p: int) -> int:
n = len(nums)
s = set()
for i in range(n):
cnt = 0
t = ""
for x in nums[i:]:
cnt += x % p == 0
if cnt > k:
break
t += str(x) + ","
s.add(t)
return len(s)