comments | difficulty | edit_url | rating | source | tags | ||||
---|---|---|---|---|---|---|---|---|---|
true |
Hard |
1808 |
Biweekly Contest 80 Q4 |
|
The score of an array is defined as the product of its sum and its length.
- For example, the score of
[1, 2, 3, 4, 5]
is(1 + 2 + 3 + 4 + 5) * 5 = 75
.
Given a positive integer array nums
and an integer k
, return the number of non-empty subarrays of nums
whose score is strictly less than k
.
A subarray is a contiguous sequence of elements within an array.
Example 1:
Input: nums = [2,1,4,3,5], k = 10 Output: 6 Explanation: The 6 subarrays having scores less than 10 are: - [2] with score 2 * 1 = 2. - [1] with score 1 * 1 = 1. - [4] with score 4 * 1 = 4. - [3] with score 3 * 1 = 3. - [5] with score 5 * 1 = 5. - [2,1] with score (2 + 1) * 2 = 6. Note that subarrays such as [1,4] and [4,3,5] are not considered because their scores are 10 and 36 respectively, while we need scores strictly less than 10.
Example 2:
Input: nums = [1,1,1], k = 5 Output: 5 Explanation: Every subarray except [1,1,1] has a score less than 5. [1,1,1] has a score (1 + 1 + 1) * 3 = 9, which is greater than 5. Thus, there are 5 subarrays having scores less than 5.
Constraints:
1 <= nums.length <= 105
1 <= nums[i] <= 105
1 <= k <= 1015
First, we calculate the prefix sum array
Next, we enumerate each element of the array
The time complexity is
class Solution:
def countSubarrays(self, nums: List[int], k: int) -> int:
s = list(accumulate(nums, initial=0))
ans = 0
for i in range(1, len(s)):
left, right = 0, i
while left < right:
mid = (left + right + 1) >> 1
if (s[i] - s[i - mid]) * mid < k:
left = mid
else:
right = mid - 1
ans += left
return ans
class Solution {
public long countSubarrays(int[] nums, long k) {
int n = nums.length;
long[] s = new long[n + 1];
for (int i = 0; i < n; ++i) {
s[i + 1] = s[i] + nums[i];
}
long ans = 0;
for (int i = 1; i <= n; ++i) {
int left = 0, right = i;
while (left < right) {
int mid = (left + right + 1) >> 1;
if ((s[i] - s[i - mid]) * mid < k) {
left = mid;
} else {
right = mid - 1;
}
}
ans += left;
}
return ans;
}
}
class Solution {
public:
long long countSubarrays(vector<int>& nums, long long k) {
int n = nums.size();
long long s[n + 1];
s[0] = 0;
for (int i = 0; i < n; ++i) {
s[i + 1] = s[i] + nums[i];
}
long long ans = 0;
for (int i = 1; i <= n; ++i) {
int left = 0, right = i;
while (left < right) {
int mid = (left + right + 1) >> 1;
if ((s[i] - s[i - mid]) * mid < k) {
left = mid;
} else {
right = mid - 1;
}
}
ans += left;
}
return ans;
}
};
func countSubarrays(nums []int, k int64) (ans int64) {
n := len(nums)
s := make([]int64, n+1)
for i, v := range nums {
s[i+1] = s[i] + int64(v)
}
for i := 1; i <= n; i++ {
left, right := 0, i
for left < right {
mid := (left + right + 1) >> 1
if (s[i]-s[i-mid])*int64(mid) < k {
left = mid
} else {
right = mid - 1
}
}
ans += int64(left)
}
return
}
We can use two pointers to maintain a sliding window, so that the sum of the elements in the window is less than
The time complexity is
class Solution:
def countSubarrays(self, nums: List[int], k: int) -> int:
ans = s = j = 0
for i, v in enumerate(nums):
s += v
while s * (i - j + 1) >= k:
s -= nums[j]
j += 1
ans += i - j + 1
return ans
class Solution {
public long countSubarrays(int[] nums, long k) {
long ans = 0, s = 0;
for (int i = 0, j = 0; i < nums.length; ++i) {
s += nums[i];
while (s * (i - j + 1) >= k) {
s -= nums[j++];
}
ans += i - j + 1;
}
return ans;
}
}
class Solution {
public:
long long countSubarrays(vector<int>& nums, long long k) {
long long ans = 0, s = 0;
for (int i = 0, j = 0; i < nums.size(); ++i) {
s += nums[i];
while (s * (i - j + 1) >= k) {
s -= nums[j++];
}
ans += i - j + 1;
}
return ans;
}
};
func countSubarrays(nums []int, k int64) (ans int64) {
s, j := 0, 0
for i, v := range nums {
s += v
for int64(s*(i-j+1)) >= k {
s -= nums[j]
j++
}
ans += int64(i - j + 1)
}
return
}