Skip to content

Latest commit

 

History

History
187 lines (144 loc) · 5.28 KB

File metadata and controls

187 lines (144 loc) · 5.28 KB
comments difficulty edit_url rating source tags
true
中等
1348
第 403 场周赛 Q2
数组
矩阵

English Version

题目描述

给你一个二维 二进制 数组 grid。请你找出一个边在水平方向和竖直方向上、面积 最小 的矩形,并且满足 grid 中所有的 1 都在矩形的内部。

返回这个矩形可能的 最小 面积。

 

示例 1:

输入: grid = [[0,1,0],[1,0,1]]

输出: 6

解释:

这个最小矩形的高度为 2,宽度为 3,因此面积为 2 * 3 = 6

示例 2:

输入: grid = [[0,0],[1,0]]

输出: 1

解释:

这个最小矩形的高度和宽度都是 1,因此面积为 1 * 1 = 1

 

提示:

  • 1 <= grid.length, grid[i].length <= 1000
  • grid[i][j] 是 0 或 1。
  • 输入保证 grid 中至少有一个 1 。

解法

方法一:求最小边界和最大边界

我们可以遍历 grid,找到所有 1 的最小边界,记为 $(x_1, y_1)$,最大边界,记为 $(x_2, y_2)$,那么最小矩形的面积就是 $(x_2 - x_1 + 1) \times (y_2 - y_1 + 1)$

时间复杂度 $O(m \times n)$,其中 $m$$n$ 分别是 grid 的行数和列数。空间复杂度 $O(1)$

Python3

class Solution:
    def minimumArea(self, grid: List[List[int]]) -> int:
        x1 = y1 = inf
        x2 = y2 = -inf
        for i, row in enumerate(grid):
            for j, x in enumerate(row):
                if x == 1:
                    x1 = min(x1, i)
                    y1 = min(y1, j)
                    x2 = max(x2, i)
                    y2 = max(y2, j)
        return (x2 - x1 + 1) * (y2 - y1 + 1)

Java

class Solution {
    public int minimumArea(int[][] grid) {
        int m = grid.length, n = grid[0].length;
        int x1 = m, y1 = n;
        int x2 = 0, y2 = 0;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (grid[i][j] == 1) {
                    x1 = Math.min(x1, i);
                    y1 = Math.min(y1, j);
                    x2 = Math.max(x2, i);
                    y2 = Math.max(y2, j);
                }
            }
        }
        return (x2 - x1 + 1) * (y2 - y1 + 1);
    }
}

C++

class Solution {
public:
    int minimumArea(vector<vector<int>>& grid) {
        int m = grid.size(), n = grid[0].size();
        int x1 = m, y1 = n;
        int x2 = 0, y2 = 0;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (grid[i][j] == 1) {
                    x1 = min(x1, i);
                    y1 = min(y1, j);
                    x2 = max(x2, i);
                    y2 = max(y2, j);
                }
            }
        }
        return (x2 - x1 + 1) * (y2 - y1 + 1);
    }
};

Go

func minimumArea(grid [][]int) int {
	x1, y1 := len(grid), len(grid[0])
	x2, y2 := 0, 0
	for i, row := range grid {
		for j, x := range row {
			if x == 1 {
				x1, y1 = min(x1, i), min(y1, j)
				x2, y2 = max(x2, i), max(y2, j)
			}
		}
	}
	return (x2 - x1 + 1) * (y2 - y1 + 1)
}

TypeScript

function minimumArea(grid: number[][]): number {
    const [m, n] = [grid.length, grid[0].length];
    let [x1, y1] = [m, n];
    let [x2, y2] = [0, 0];
    for (let i = 0; i < m; ++i) {
        for (let j = 0; j < n; ++j) {
            if (grid[i][j] === 1) {
                x1 = Math.min(x1, i);
                y1 = Math.min(y1, j);
                x2 = Math.max(x2, i);
                y2 = Math.max(y2, j);
            }
        }
    }
    return (x2 - x1 + 1) * (y2 - y1 + 1);
}