-
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathclifford_eula.dem
53 lines (41 loc) · 1.35 KB
/
clifford_eula.dem
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
/* Copyright (C) 2016 Dimiter Prodanov
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be
* useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* clffordan demo
*/
if get('clifford,'version)=false then load("clifford")$
if get('cliffordan,'version)=false then load("cliffordan")$
"Clifford implements Clifford algebra for Maxima."$
"Euler-Lagrange problems in G(3)"$
clifford(e,3);
derivabbrev:true$
"initialize variables"$
AA: celem(A,[t,x,y,z]);
dependsv(A,[t,x,y,z]);
r:cvect([x,y,z]);
"F-multivector"$
F:mvectdiff(AA,t-r);
"Lagrangian density"$
L:lambda([x],1/2*scalarpart(cliffsimpall(x.x)))(F);
"scalar, vector and bivector parts"$
S:scalarpart(F);
V:vectorpart(F);
Q:grpart(F,2);
"identity"$
L-1/2*(S.S+V.V+Q.Q),cliffsimpall;
"Euler- Lagrange equations"$
dA:mvectdiff(AA,r);
ELeq:ciELfdiff(L, t+r,[AA,dA]);
"matrix form"$
bdecompose(ELeq);
derivabbrev:false$
/* End of demo -- comment line needed by MAXIMA to resume demo menu */