I have try :
features = preprocess_features(features) # [49216, 2], [49216], [2708, 1433]
supports = preprocess_adj(adj)
device = torch.device('cuda')
train_label = torch.from_numpy(y_train).long().to(device)
num_classes = train_label.shape[1]
train_label = train_label.argmax(dim=1)
train_mask = torch.from_numpy(train_mask.astype(np.bool)).bool().to(device)
val_label = torch.from_numpy(y_val).long().to(device)
val_label = val_label.argmax(dim=1)
val_mask = torch.from_numpy(val_mask.astype(np.bool)).bool().to(device)
test_label = torch.from_numpy(y_test).long().to(device)
test_label = test_label.argmax(dim=1)
test_mask = torch.from_numpy(test_mask.astype(np.bool)).bool().to(device)