-
Notifications
You must be signed in to change notification settings - Fork 0
/
extract_filters.py
141 lines (112 loc) · 5.81 KB
/
extract_filters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
from build_weighted_model import build_weighted_model
from common import get_layer_output_function, WINDOW_SIZE, WINDOW_STRIDE
from keras.models import model_from_yaml
import librosa as lbr
import numpy as np
from functools import partial
from optparse import OptionParser
import _pickle as pickle
import os
def compose(f, g):
return lambda x: f(g(x))
def undo_layer(length, stride, ij):
i, j = ij
return stride * i, stride * (j - 1) + length
def extract_filters(model, data, filters_path, count0):
x = data['x']
track_paths = data['track_paths']
conv_layer_names = []
i = 1
while True:
name = 'convolution_' + str(i)
if model.get_layer(name) is None:
break
conv_layer_names.append(name)
i += 1
# Generate undoers for every convolutional layer. Undoer is a function
# translating a pair of coordinates in feature space (mel spectrograms or
# features extracted by convolutional layers) to the sample space (raw
# audio signal).
conv_layer_undoers = []
# undo the mel spectrogram extraction
undoer = partial(undo_layer, WINDOW_SIZE, WINDOW_STRIDE)
for name in conv_layer_names:
layer = model.get_layer(name)
length = layer.filter_length
stride = layer.subsample_length
# undo the convolution layer
undoer = compose(partial(undo_layer, length, stride), undoer)
conv_layer_undoers.append(undoer)
# undo the pooling layer
undoer = compose(partial(undo_layer, 2, 2), undoer)
conv_layer_output_funs = map(partial(get_layer_output_function, model), conv_layer_names)
# Extract track chunks with highest activations for each filter in each
# convolutional layer.
for (layer_index, output_fun) in enumerate(conv_layer_output_funs):
layer_path = os.path.join(filters_path, conv_layer_names[layer_index])
if not os.path.exists(layer_path):
os.makedirs(layer_path)
print('Computing outputs for layer', conv_layer_names[layer_index])
output = output_fun(x)
# matrices of shape n_tracks x time x n_filters
max_over_time = np.amax(output, axis=1)
argmax_over_time = np.argmax(output, axis=1)
# number of input chunks to extract for each filter
count = count0 // 2 ** layer_index
argmax_over_track = \
np.argpartition(max_over_time, -count, axis=0)[-count:, :]
undoer = conv_layer_undoers[layer_index]
for filter_index in range(argmax_over_track.shape[1]):
print('Processing layer', conv_layer_names[layer_index], 'filter', filter_index)
track_indices = argmax_over_track[:, filter_index]
time_indices = argmax_over_time[track_indices, filter_index]
sample_rate = [None]
def extract_sample_from_track(undoer, indices):
track_index, time_index = indices
track_path = track_paths[track_index]
# TODO: Location where we must replace the librosa
(track_samples, sample_rate[0]) = lbr.load(track_path, mono=True)
(t1, t2) = undoer((time_index, time_index + 1))
return track_samples[t1: t2]
samples_for_filter = np.concatenate(
map(partial(extract_sample_from_track, undoer), zip(track_indices, time_indices)))
filter_path = os.path.join(layer_path, '{}.wav'.format(filter_index))
# TODO: Location where we must replace the librosa
lbr.output.write_wav(filter_path, samples_for_filter,
sample_rate[0])
if __name__ == '__main__':
parser = OptionParser()
parser.add_option('-m', '--model_path', dest='model_path',
default=os.path.join(os.path.dirname(__file__),
'models/model.yaml'),
help='path to the model YAML file', metavar='MODEL_PATH')
parser.add_option('-w', '--weights_path', dest='weights_path',
default=os.path.join(os.path.dirname(__file__),
'models/weights.best.hdf5'),
help='path to the model weights hdf5 file',
metavar='WEIGHTS_PATH')
parser.add_option('-d', '--data_path', dest='data_path',
default=os.path.join(os.path.dirname(__file__),
'data/data.pkl'),
help='path to the data pickle',
metavar='DATA_PATH')
parser.add_option('-f', '--filters_path', dest='filters_path',
default=os.path.join(os.path.dirname(__file__),
'filters'),
help='path to the output filters directory',
metavar='FILTERS_PATH')
parser.add_option('-c', '--count0', dest='count0',
default='4',
help=('number of chunks to extract from the first convolutional ' +
'layer, this number is halved for each next layer'),
metavar='COUNT0')
options, args = parser.parse_args()
model = build_weighted_model(options.weights_path)
pickle_data_0 = pickle.load(open('../ai-data/data_part0.pkl', 'rb'))
pickle_data_1 = pickle.load(open('../ai-data/data_part1.pkl', 'rb'))
pickle_data_2 = pickle.load(open('../ai-data/data_part2.pkl', 'rb'))
pickle_data_3 = pickle.load(open('../ai-data/data_part3.pkl', 'rb'))
pickle_data_concat = {
'x': np.concatenate((pickle_data_0['x'], pickle_data_1['x'], pickle_data_2['x'], pickle_data_3['x'])),
'y': np.concatenate((pickle_data_0['y'], pickle_data_1['y'], pickle_data_2['y'], pickle_data_3['y']))}
extract_filters(model, pickle_data_concat, options.filters_path, int(options.count0))