-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
56 lines (41 loc) · 1.41 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from typing import Union
from fastapi import FastAPI
from pydantic import BaseModel
from sentence_transformers import SentenceTransformer, util # type: ignore
import torch
from typing import List
app = FastAPI()
modelName = "drmzperx/inci-all-MiniLM-L6-v4"
model = SentenceTransformer(modelName)
class Query(BaseModel):
query: str
corpus: List[str]
authid: List[str]
@app.get("/")
def read_root():
return {"Skinlyzer": "Similarity API v1"}
@app.post("/similarity/{domain}")
def read_item(domain: str, query: Query | None = None):
print("Model: " + modelName)
print("Domain: " + domain)
# print("Body: " + str(query))
corpus = query.corpus
authids = query.authid
queryIn = query.query
# print("Query: " + queryIn)
# print("Corpus: " + str(corpus))
query_embedding = model.encode(queryIn)
corpus_embeddings = model.encode(corpus)
dot_scores = util.cos_sim(query_embedding, corpus_embeddings)[0]
top_results = torch.topk(dot_scores, k=len(corpus))
list_results = []
for score, idx in zip(top_results[0], top_results[1]):
list_results.append({"text": corpus[idx], "sim": "{:.4f}".format(score)})
print(authids[idx], "(Score: {:.4f})".format(score))
return list_results
@app.get("/status")
def update_item():
return {"status": "ok", "model": modelName}
@app.get("/test/{text}")
def update_item(text: str):
return {"text": text}