-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathMain_Preprocess.m
64 lines (57 loc) · 2.22 KB
/
Main_Preprocess.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
%% Preprocessing the EEG data downloaded from BCI Competition IV.
%% Dongrui Wu, drwu@hust.edu.cn
clc; clearvars;
% % --------------------- Dataset 1: MI Data 1------------------------------
% Dataset 1: http://www.bbci.de/competition/iv/desc_1.html
% 7 subjects, 100 trials in each class, 59 EEG channels
dataFolder='D:\Data\BCICIV_1\';
files=dir([dataFolder 'BCICIV_ca*.mat']);
ref=[];
for s=1:length(files)
s
load([dataFolder files(s).name]); fs=nfo.fs;
EEG=.1*double(cnt);
b=fir1(50,2*[8 30]/nfo.fs);%FIRfiltDesign(nfo.fs,8,30,[],[],1)
EEG=filter(b,1,EEG);
y=mrk.y'; %(-1 for class one or 1 for class two)
nTrials=length(y);
X=nan(size(EEG,2),300,nTrials);
for i=1:nTrials
X(:,:,i)=EEG(mrk.pos(i)+0.5*nfo.fs:mrk.pos(i)+3.5*nfo.fs-1,:)'; % [0.5-3.5] seconds epoch, channels*Times
end
save(['./Data1/A' num2str(s) '.mat'],'X','y','fs');
end
%% --------------------- Dataset 2a: MI Data 2a ------------------------------
% Dataset 2a: http://www.bbci.de/competition/iv/desc_2a.pdf
% 9 subjects, 72 trials in each class, 22 EEG channels
ref=[];
dataFolder='D:\Data\BCICIV_2a\';
files=dir([dataFolder '*T.gdf']);
for s=1:length(files)
s
try
[EEG, h] = sload([dataFolder files(s).name]); % need to enable bioSig toolbox
catch
run('D:\Matlab2020a\toolbox\biosig4octmat-3.3.0\biosig_installer.m');
[EEG, h] = sload([dataFolder files(s).name]); % need to enable bioSig toolbox
end
EEG(:,end-2:end)=[]; % last three channels are EOG
for i=1:size(EEG,2)
EEG(isnan(EEG(:,i)),i)=nanmean(EEG(:,i));
end
b=fir1(50,2*[8 30]/h.SampleRate); %FIRfiltDesign(h.SampleRate,8,30,22,[],1);
EEG=filter(b,1,EEG); %band pass filetring
ids1=h.EVENT.POS(h.EVENT.TYP==769); % left hand
ids2=h.EVENT.POS(h.EVENT.TYP==770); % right hand
y=[-ones(length(ids1),1); ones(length(ids2),1)];
ids=[ids1; ids2];
X=[];
for i=length(ids):-1:1
X(:,:,i)=EEG(ids(i)+round(.5*h.SampleRate):ids(i)+round(3.5*h.SampleRate-1),:)';
end
[~,index]=sort(ids);
y=y(index); X=X(:,:,index);
nTrials=length(y);
fs=h.SampleRate;
save(['./Data2/A' num2str(s) '.mat'],'X','y','fs');
end