-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscip_utilities.py
295 lines (249 loc) · 12.2 KB
/
scip_utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
"""
Miscellaneous SCIP-related utilities.
"""
import numpy as np
import scipy.sparse as sp
def init_scip_params(model, seed, heuristics=True, presolving=True, separating=True, conflict=True):
seed = seed % 2147483648 # SCIP seed range
# set up randomization
model.setBoolParam('randomization/permutevars', True)
model.setIntParam('randomization/permutationseed', seed)
model.setIntParam('randomization/randomseedshift', seed)
# separation only at root node
model.setIntParam('separating/maxrounds', 0)
# no restart
model.setIntParam('presolving/maxrestarts', 0)
# if asked, disable presolving
if not presolving:
model.setIntParam('presolving/maxrounds', 0)
model.setIntParam('presolving/maxrestarts', 0)
# if asked, disable separating (cuts)
if not separating:
model.setIntParam('separating/maxroundsroot', 0)
# if asked, disable conflict analysis (more cuts)
if not conflict:
model.setBoolParam('conflict/enable', False)
# if asked, disable primal heuristics
if not heuristics:
model.setHeuristics(scip.SCIP_PARAMSETTING.OFF)
def extract_state(model, buffer=None):
"""
Compute a bipartite graph representation of the solver. In this
representation, the variables and constraints of the MILP are the
left- and right-hand side nodes, and an edge links two nodes iff the
variable is involved in the constraint. Both the nodes and edges carry
features.
Parameters
----------
model : pyscipopt.scip.Model
The current model.
buffer : dict
A buffer to avoid re-extracting redundant information from the solver
each time.
Returns
-------
variable_features : dictionary of type {'names': list, 'values': np.ndarray}
The features associated with the variable nodes in the bipartite graph.
edge_features : dictionary of type ('names': list, 'indices': np.ndarray, 'values': np.ndarray}
The features associated with the edges in the bipartite graph.
This is given as a sparse matrix in COO format.
constraint_features : dictionary of type {'names': list, 'values': np.ndarray}
The features associated with the constraint nodes in the bipartite graph.
"""
if buffer is None or model.getNNodes() == 1:
buffer = {}
# update state from buffer if any
s = model.getState(buffer['scip_state'] if 'scip_state' in buffer else None)
if 'state' in buffer:
obj_norm = buffer['state']['obj_norm']
else:
obj_norm = np.linalg.norm(s['col']['coefs'])
obj_norm = 1 if obj_norm <= 0 else obj_norm
row_norms = s['row']['norms']
row_norms[row_norms == 0] = 1
# Column features
n_cols = len(s['col']['types'])
if 'state' in buffer:
col_feats = buffer['state']['col_feats']
else:
col_feats = {}
col_feats['type'] = np.zeros((n_cols, 4)) # BINARY INTEGER IMPLINT CONTINUOUS
col_feats['type'][np.arange(n_cols), s['col']['types']] = 1
col_feats['coef_normalized'] = s['col']['coefs'].reshape(-1, 1) / obj_norm
col_feats['has_lb'] = ~np.isnan(s['col']['lbs']).reshape(-1, 1)
col_feats['has_ub'] = ~np.isnan(s['col']['ubs']).reshape(-1, 1)
col_feats['sol_is_at_lb'] = s['col']['sol_is_at_lb'].reshape(-1, 1)
col_feats['sol_is_at_ub'] = s['col']['sol_is_at_ub'].reshape(-1, 1)
col_feats['sol_frac'] = s['col']['solfracs'].reshape(-1, 1)
col_feats['sol_frac'][s['col']['types'] == 3] = 0 # continuous have no fractionality
col_feats['basis_status'] = np.zeros((n_cols, 4)) # LOWER BASIC UPPER ZERO
col_feats['basis_status'][np.arange(n_cols), s['col']['basestats']] = 1
col_feats['reduced_cost'] = s['col']['redcosts'].reshape(-1, 1) / obj_norm
col_feats['age'] = s['col']['ages'].reshape(-1, 1) / (s['stats']['nlps'] + 5)
col_feats['sol_val'] = s['col']['solvals'].reshape(-1, 1)
col_feats['inc_val'] = s['col']['incvals'].reshape(-1, 1)
col_feats['avg_inc_val'] = s['col']['avgincvals'].reshape(-1, 1)
col_feat_names = [[k, ] if v.shape[1] == 1 else [f'{k}_{i}' for i in range(v.shape[1])] for k, v in col_feats.items()]
col_feat_names = [n for names in col_feat_names for n in names]
col_feat_vals = np.concatenate(list(col_feats.values()), axis=-1)
variable_features = {
'names': col_feat_names,
'values': col_feat_vals,}
# Row features
if 'state' in buffer:
row_feats = buffer['state']['row_feats']
has_lhs = buffer['state']['has_lhs']
has_rhs = buffer['state']['has_rhs']
else:
row_feats = {}
has_lhs = np.nonzero(~np.isnan(s['row']['lhss']))[0]
has_rhs = np.nonzero(~np.isnan(s['row']['rhss']))[0]
row_feats['obj_cosine_similarity'] = np.concatenate((
-s['row']['objcossims'][has_lhs],
+s['row']['objcossims'][has_rhs])).reshape(-1, 1)
row_feats['bias'] = np.concatenate((
-(s['row']['lhss'] / row_norms)[has_lhs],
+(s['row']['rhss'] / row_norms)[has_rhs])).reshape(-1, 1)
row_feats['is_tight'] = np.concatenate((
s['row']['is_at_lhs'][has_lhs],
s['row']['is_at_rhs'][has_rhs])).reshape(-1, 1)
row_feats['age'] = np.concatenate((
s['row']['ages'][has_lhs],
s['row']['ages'][has_rhs])).reshape(-1, 1) / (s['stats']['nlps'] + 5)
# # redundant with is_tight
# tmp = s['row']['basestats'] # LOWER BASIC UPPER ZERO
# tmp[s['row']['lhss'] == s['row']['rhss']] = 4 # LOWER == UPPER for equality constraints
# tmp_l = tmp[has_lhs]
# tmp_l[tmp_l == 2] = 1 # LHS UPPER -> BASIC
# tmp_l[tmp_l == 4] = 2 # EQU UPPER -> UPPER
# tmp_l[tmp_l == 0] = 2 # LHS LOWER -> UPPER
# tmp_r = tmp[has_rhs]
# tmp_r[tmp_r == 0] = 1 # RHS LOWER -> BASIC
# tmp_r[tmp_r == 4] = 2 # EQU LOWER -> UPPER
# tmp = np.concatenate((tmp_l, tmp_r)) - 1 # BASIC UPPER ZERO
# row_feats['basis_status'] = np.zeros((len(has_lhs) + len(has_rhs), 3))
# row_feats['basis_status'][np.arange(len(has_lhs) + len(has_rhs)), tmp] = 1
tmp = s['row']['dualsols'] / (row_norms * obj_norm)
row_feats['dualsol_val_normalized'] = np.concatenate((
-tmp[has_lhs],
+tmp[has_rhs])).reshape(-1, 1)
row_feat_names = [[k, ] if v.shape[1] == 1 else [f'{k}_{i}' for i in range(v.shape[1])] for k, v in row_feats.items()]
row_feat_names = [n for names in row_feat_names for n in names]
row_feat_vals = np.concatenate(list(row_feats.values()), axis=-1)
constraint_features = {
'names': row_feat_names,
'values': row_feat_vals,}
# Edge features
if 'state' in buffer:
edge_row_idxs = buffer['state']['edge_row_idxs']
edge_col_idxs = buffer['state']['edge_col_idxs']
edge_feats = buffer['state']['edge_feats']
else:
coef_matrix = sp.csr_matrix(
(s['nzrcoef']['vals'] / row_norms[s['nzrcoef']['rowidxs']],
(s['nzrcoef']['rowidxs'], s['nzrcoef']['colidxs'])),
shape=(len(s['row']['nnzrs']), len(s['col']['types'])))
coef_matrix = sp.vstack((
-coef_matrix[has_lhs, :],
coef_matrix[has_rhs, :])).tocoo(copy=False)
edge_row_idxs, edge_col_idxs = coef_matrix.row, coef_matrix.col
edge_feats = {}
edge_feats['coef_normalized'] = coef_matrix.data.reshape(-1, 1)
edge_feat_names = [[k, ] if v.shape[1] == 1 else [f'{k}_{i}' for i in range(v.shape[1])] for k, v in edge_feats.items()]
edge_feat_names = [n for names in edge_feat_names for n in names]
edge_feat_indices = np.vstack([edge_row_idxs, edge_col_idxs])
edge_feat_vals = np.concatenate(list(edge_feats.values()), axis=-1)
edge_features = {
'names': edge_feat_names,
'indices': edge_feat_indices,
'values': edge_feat_vals,}
if 'state' not in buffer:
buffer['state'] = {
'obj_norm': obj_norm,
'col_feats': col_feats,
'row_feats': row_feats,
'has_lhs': has_lhs,
'has_rhs': has_rhs,
'edge_row_idxs': edge_row_idxs,
'edge_col_idxs': edge_col_idxs,
'edge_feats': edge_feats,
}
return constraint_features, edge_features, variable_features
SOLVING_STATS_SEQUENCE_LENGTH = 50
SOLVING_STATS_FEATURES = [
'opennodes_90quant_norm',
'opennodes_75quant_normfirst',
'opennodes_90quant_normfirst',
'cutoffbound',
'avgpseudocostscorecurrentrun',
'primalbound',
'dualboundroot',
'ndeactivatednodes',
'ncreatednodesrun',
'ntotalnodes',
'nleaves',
'nduallps',
'nstrongbranchs',
'nlps',
'nnodelps',
'gap',
'avgpseudocostscore_normfirst',
'nnodes_done',
'nnodesleft',
'transgap',
'nbacktracks',
'avgdualbound_normfirst',
'avgpseudocostscore_norm',
'nnodeinitlpiterations',
'nnodelpiterations',
#
'nlpiterations',
'nrootlpiterations',
'nrootfirstlpiterations',
'nprimallpiterations',
'nduallpiterations',
'nbarrierlpiterations',
'nresolvelpiterations',
'nprimalresolvelpiterations',
'ndualresolvelpiterations',
'nnodelpiterations',
'nnodeinitlpiterations',
'ndivinglpiterations',
'nstrongbranchlpiterations',
'nrootstrongbranchlpiterations',
#
'solvingtime',
]
def pack_solving_stats(solving_stats):
solving_stats = {name: np.asarray([s[name]
for s in solving_stats[-SOLVING_STATS_SEQUENCE_LENGTH:]])
for name in solving_stats[0].keys()}
solving_stats = normalize_solving_stats(solving_stats,
length=SOLVING_STATS_SEQUENCE_LENGTH)
solving_stats = np.stack([solving_stats[feature_name]
for feature_name in SOLVING_STATS_FEATURES], axis=-1)
return solving_stats
def normalize_solving_stats(solving_stats, length=SOLVING_STATS_SEQUENCE_LENGTH):
solving_stats = {name: np.pad(vals[-length:], (max(length-len(vals), 0), 0), mode='edge') for name, vals in solving_stats.items()}
nnodes_done = solving_stats['ninternalnodes'] + solving_stats['nfeasibleleaves'] + solving_stats['ninfeasibleleaves'] + solving_stats['nobjlimleaves']
solving_stats['nnodes_done'] = nnodes_done
lp_obj_norm = [(v - lb) / ((ub - lb) if ub > lb else 1) for v, lb, ub in zip(solving_stats['lp_obj'], solving_stats['dualbound'], solving_stats['primalbound'])]
solving_stats['lp_obj_norm'] = lp_obj_norm
lp_obj_normfirst = [(v - solving_stats['dualbound'][0]) / ((solving_stats['primalbound'][0] - solving_stats['dualbound'][0]) if solving_stats['primalbound'][0] > solving_stats['dualbound'][0] else 1) for v in solving_stats['lp_obj']]
solving_stats['lp_obj_normfirst'] = lp_obj_normfirst
solving_stats['avgdualbound'] /= (np.abs(solving_stats['avglowerbound']) + solving_stats['dualbound'])
avgdualbound_normfirst = [(v - solving_stats['dualbound'][0]) / ((solving_stats['primalbound'][0] - solving_stats['dualbound'][0]) if solving_stats['primalbound'][0] > solving_stats['dualbound'][0] else 1) for v in solving_stats['avgdualbound']]
solving_stats['avgdualbound_normfirst'] = avgdualbound_normfirst
avgpseudocostscore_norm = [(v - lb) / ((ub - lb) if ub > lb else 1) for v, lb, ub in zip(solving_stats['avgpseudocostscore'], solving_stats['dualbound'], solving_stats['primalbound'])]
solving_stats['avgpseudocostscore_norm'] = avgpseudocostscore_norm
avgpseudocostscore_normfirst = [(v - solving_stats['dualbound'][0]) / ((solving_stats['primalbound'][0] - solving_stats['dualbound'][0]) if solving_stats['primalbound'][0] > solving_stats['dualbound'][0] else 1) for v in solving_stats['avgpseudocostscore']]
solving_stats['avgpseudocostscore_normfirst'] = avgpseudocostscore_normfirst
for k in (10, 25, 50, 75, 90):
quint = f'opennodes_{k}quant'
quint_norm = f'opennodes_{k}quant_norm'
quint_normfirst = f'opennodes_{k}quant_normfirst'
opennodes_quint_norm = [(v - lb) / ((ub - lb) if ub > lb else 1) for v, lb, ub in zip(solving_stats[quint], solving_stats['dualbound'], solving_stats['primalbound'])]
solving_stats[quint_norm] = opennodes_quint_norm
opennodes_quint_normfirst = [(v - solving_stats['dualbound'][0]) / ((solving_stats['primalbound'][0] - solving_stats['dualbound'][0]) if solving_stats['primalbound'][0] > solving_stats['dualbound'][0] else 1) for v in solving_stats[quint]]
solving_stats[quint_normfirst] = opennodes_quint_normfirst
return solving_stats