forked from meetps/pytorch-semseg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscratch.py
50 lines (43 loc) · 1.57 KB
/
scratch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import os
import yaml
import time
import shutil
import torch
import random
import argparse
import numpy as np
from torch.utils import data
from tqdm import tqdm
from ptsemseg.models import get_model
from ptsemseg.loss import get_loss_function
from ptsemseg.loader import get_loader
from ptsemseg.utils import get_logger
from ptsemseg.metrics import runningScore, averageMeter
from ptsemseg.augmentations import get_composed_augmentations
from ptsemseg.schedulers import get_scheduler
from ptsemseg.optimizers import get_optimizer
from tensorboardX import SummaryWriter
from ptsemseg.utils import recursive_glob
from ptsemseg.augmentations import Compose, RandomHorizontallyFlip, RandomRotate, Scale
from ptsemseg.loader.sunrgbd_loader import SUNRGBDLoader
if __name__ == "__main__":
import matplotlib.pyplot as plt
augmentations = Compose([Scale(512), RandomRotate(10), RandomHorizontallyFlip(10)])
local_path = "/home/diego/cs4960R/sunrgbd-meta-data/"
dst = SUNRGBDLoader(local_path, is_transform=True, augmentations=augmentations)
bs = 4
trainloader = data.DataLoader(dst, batch_size=bs, num_workers=0)
for i, data_samples in enumerate(trainloader):
imgs, labels = data_samples
imgs = imgs.numpy()[:, ::-1, :, :]
imgs = np.transpose(imgs, [0, 2, 3, 1])
f, axarr = plt.subplots(bs, 2)
for j in range(bs):
axarr[j][0].imshow(imgs[j])
axarr[j][1].imshow(dst.decode_segmap(labels.numpy()[j]))
plt.show()
a = input()
if a == "ex":
break
else:
plt.close()