-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
259 lines (213 loc) · 10.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import pandas as pd
import spacy as sp
import random
import nltk
import datetime
import re
import os
from spacy.matcher import Matcher
from flask import Flask, render_template, request, jsonify
from fuzzywuzzy import process, fuzz
from nameExtract import extract_names
app = Flask(__name__)
app.debug = True
nlp = sp.load('en_core_web_md')
matcher = Matcher(nlp.vocab)
pwd = os.getcwd()
fileDir = pwd+'\\Data\\Faculty\\CSVs'
# reads the events data
e = pd.read_csv('data\Events\events.csv')
eNames = list(e['Name'])
eTimes = list(e['Time'])
# reads the faculty data
arch = pd.read_csv(fileDir+'\Archdata.csv')
archNames = list(arch['Name'])
archDesg = list(arch['Designation'])
archEmail = list(arch['E-mail'])
bt = pd.read_csv(fileDir+'\Btdata.csv')
btNames = list(bt['Name'])
btDesg = list(bt['Designation'])
btEmail = list(bt['E-mail'])
cv = pd.read_csv(fileDir+'\civildata.csv')
cvNames = list(cv['Name'])
cvDesg = list(cv['Designation'])
cvEmail = list(cv['E-mail'])
cs = pd.read_csv(fileDir+'\csedata.csv')
csNames = list(cs['Name'])
csDesg = list(cs['Designation'])
csEmail = list(cs['E-mail'])
ec = pd.read_csv(fileDir+'\ecedata.csv')
ecNames = list(ec['Name'])
ecDesg = list(ec['Designation'])
ecEmail = list(ec['E-mail'])
ee = pd.read_csv(fileDir+'\eeedata.csv')
eeNames = list(ee['Name'])
eeDesg = list(ee['Designation'])
eeEmail = list(ee['E-mail'])
mech = pd.read_csv(fileDir+'\mechdata.csv')
mechNames = list(mech['Name'])
mechDesg = list(mech['Designation'])
mechEmail = list(mech['E-mail'])
sh = pd.read_csv(fileDir+'\s&hdata.csv')
shNames = list(sh['Name'])
shDesg = list(sh['Designation'])
shEmail = list(sh['E-mail'])
# reads calendar data
cal = pd.read_csv('data\Calendar\calendar.csv')
calDate = list(cal['Date'])
hol = list(cal['Holiday'])
res = list(cal['Result'])
holIdx = [] # list conataining indexes of when it is a holiday
for i in range(len(hol)):
if hol[i] == 'Yes':
holIdx.append(i)
resIdx = res.index('Yes')
hi = ['Hi there!', 'Hey!', 'Hello! How can i help you?',
'Sup', 'What can I do for you?']
by = ['Bye!', 'See you!', 'Goodbye!', 'Have a nice day!']
def hello():
return random.choice(hi)
def bye():
return random.choice(by)
def sorry():
return "I'm sorry. I didn't understand you"
def faculty(words, text, userResponse):
facList = []
if re.search("Mr\.|Ms\.|Ar\.|Prof\.|Dr\.|Mrs\.", text):
text = re.sub("Mr\.|Ms\.|Ar\.|Prof\.|Dr\.|Mrs\.", "", text)
text = re.sub("^[a-z]", text[0].upper(), text)
text = re.sub("^can|^Can", "What ", text)
facList = extract_names(text)
for x in facList:
l = []
l.append(process.extractOne(x, archNames)[1])
l.append(process.extractOne(x, btNames)[1])
l.append(process.extractOne(x, cvNames)[1])
l.append(process.extractOne(x, csNames)[1])
l.append(process.extractOne(x, ecNames)[1])
l.append(process.extractOne(x, eeNames)[1])
l.append(process.extractOne(x, mechNames)[1])
l.append(process.extractOne(x, shNames)[1])
maxi = max(l)
maxIdx = l.index(maxi)
if maxi < 70:
output = " does not seem to be a part of any department."
return jsonify({ 'name':x, 'output':output, 'userResponse':userResponse,'type':'facError'})
if maxIdx == 0:
name = process.extractOne(x, archNames)[0]
emIdx = archNames.index(name)
email = archEmail[emIdx]
desg = archDesg[emIdx]
elif maxIdx == 1:
name = process.extractOne(x, btNames)[0]
emIdx = btNames.index(name)
email = btEmail[emIdx]
desg = btDesg[emIdx]
elif maxIdx == 2:
name = process.extractOne(x, cvNames)[0]
emIdx = cvNames.index(name)
email = cvEmail[emIdx]
desg = cvDesg[emIdx]
elif maxIdx == 3:
name = process.extractOne(x, csNames)[0]
emIdx = csNames.index(name)
email = csEmail[emIdx]
desg = csDesg[emIdx]
elif maxIdx == 4:
name = process.extractOne(x, ecNames)[0]
emIdx = ecNames.index(name)
email = ecEmail[emIdx]
desg = ecDesg[emIdx]
elif maxIdx == 5:
name = process.extractOne(x, eeNames)[0]
emIdx = eeNames.index(name)
email = eeEmail[emIdx]
desg = eeDesg[emIdx]
elif maxIdx == 6:
name = process.extractOne(x, mechNames)[0]
emIdx = mechNames.index(name)
email = mechEmail[emIdx]
desg = mechDesg[emIdx]
elif maxIdx == 7:
name = process.extractOne(x, shNames)[0]
emIdx = shNames.index(name)
email = shEmail[emIdx]
desg = shDesg[emIdx]
if ('mail' in words or 'e-mail' in words or 'email' in words) and ('designation'in words or 'job' in words or 'do' in words):
return jsonify({ 'name':name, 'email':email, 'desg':desg, 'userResponse':userResponse,'type':'dmail'})
if 'mail' in words or 'e-mail' in words or 'email' in words:
return jsonify({'name':name, 'email':email, 'userResponse':userResponse,'type':'email'})
if 'designation'in words or 'job' in words or 'do' in words:
return jsonify({'name':name, 'desg':desg, 'userResponse':userResponse,'type':'desg'})
userResponse = ''
text = ''
userResponse = 'Your response here.'
output = 'Chatbot response.'
words = ''
def start():
return render_template('index.html', output=hello())
hiComp = [nlp('hi'), nlp('sup')]
byeComp = [nlp('see you later'), nlp('bye')]
eventComp = [nlp("what events are occuring in college?"),
nlp("let me know what events are going on in college")]
holidayComp = [nlp("what days are holidays?"), nlp("is tomorrow a holiday?")]
resultComp = [nlp("what days are results coming out?"),
nlp("is tomorrow the results?")]
profComp = [nlp('what is email?'), nlp('what is job?')]
def main1():
userResponse = request.form['userResponse']
text = userResponse
user = nlp(userResponse.lower())
words = [x.lemma_ for x in user]
if user.similarity(hiComp[0]) > 0.7 or user.similarity(hiComp[1]) > 0.7:
output = hello()
return jsonify({'userResponse': userResponse, 'output': output, 'type': 'default'})
elif user.similarity(byeComp[0]) > 0.9 or user.similarity(byeComp[1]) > 0.9:
output = bye()
return jsonify({'userResponse': userResponse, 'output': output, 'type': 'default'})
# questions related to events occuring in college
elif (user.similarity(eventComp[0]) > 0.85 or user.similarity(eventComp[1]) > 0.85) and 'event' in words:
if eNames:
output = "The following events are occuring: "
return jsonify({'output': output, 'eNames': eNames, 'eTimes': eTimes, 'userResponse': userResponse, 'type': 'event'})
else:
output = 'No events are going on currently.'
return jsonify({'userResponse': userResponse, 'output': output, 'type': 'default'})
# questions related to holidays
elif user.similarity(holidayComp[1]) > 0.85 and 'tomorrow' in words and 'holiday' in words:
tomDateIndex = calDate.index(
str(datetime.date.today()+datetime.timedelta(days=1)))
if hol[tomDateIndex] == 'Yes' or (datetime.date.today()+datetime.timedelta(days=1)).strftime("%A") == 'Sunday':
output = 'Yes, tomorrow is a holiday!'
return jsonify({'userResponse': userResponse, 'output': output, 'type': 'default'})
else:
output = 'Sorry, tomorrow is not a holiday'
return jsonify({'userResponse': userResponse, 'output': output, 'type': 'default'})
elif user.similarity(holidayComp[0]) > 0.85 and 'holiday' in words:
output = 'The following dates are upcoming holidays:'
return jsonify({'calDate': calDate, 'holIdx': holIdx, 'output': output, 'userResponse': userResponse, 'type': 'holiday'})
# questions related to results release
elif user.similarity(resultComp[1]) > 0.85 and 'tomorrow' in words and 'result' in words:
tomDateIndex = calDate.index(
str(datetime.date.today()+datetime.timedelta(days=1)))
if res[tomDateIndex] == 'Yes':
output = 'Yes, tomorrow the results will be released!'
return jsonify({'userResponse': userResponse, 'output': output, 'type': 'default'})
else:
output = 'The results will not be released tomorrow. They will be released on '
return jsonify({'userResponse': userResponse, 'output': output, 'calDate': calDate, 'resIdx': resIdx, 'type': 'result'})
elif user.similarity(resultComp[0]) > 0.85 and 'result' in words:
output = 'The results will be released on '
return jsonify({'userResponse': userResponse, 'output': output, 'calDate': calDate, 'resIdx': resIdx, 'type': 'result'})
# questions related to faculty
elif re.search("Ar\.\s[a-zA-Z]+|Ar\.[a-zA-Z]+|Prof\.\s[a-zA-Z]+|Mr\.\s[a-zA-Z]+|Dr\.\s[a-zA-Z]+|Ms\.\s[a-zA-Z]+|Mrs\.\s[a-zA-Z]+|Prof\.[a-zA-Z]+|Mr\.[a-zA-Z]+|Dr\.[a-zA-Z]+|Ms\.[a-zA-Z]+|Mrs\.[a-zA-Z]+", text) or nlp(text).similarity(profComp[0]) > 0.7 or nlp(text).similarity(profComp[1]) > 0.7:
temp = re.sub(
"Ar\.\s[a-zA-Z]+|Ar\.[a-zA-Z]+|Prof\.\s[a-zA-Z]+|Mr\.\s[a-zA-Z]+|Dr\.\s[a-zA-Z]+|Ms\.\s[a-zA-Z]+|Mrs\.\s[a-zA-Z]+|Prof\.[a-zA-Z]+|Mr\.[a-zA-Z]+|Dr\.[a-zA-Z]+|Ms\.[a-zA-Z]+|Mrs\.[a-zA-Z]+", " ", text)
if(nlp(temp).similarity(profComp[0]) > 0.7 or nlp(temp).similarity(profComp[1]) > 0.7 or nlp(text).similarity(profComp[0]) > 0.7 or nlp(text).similarity(profComp[1]) > 0.7):
return faculty(words, text, userResponse)
else:
output = "I'm sorry, I didn't understand that."
return jsonify({'userResponse': userResponse, 'output': output, 'type': 'default'})
else:
output = sorry()
return jsonify({'userResponse': userResponse, 'output': output, 'type': 'default'})