-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathReprojectionStuff.py
291 lines (266 loc) · 13.1 KB
/
ReprojectionStuff.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import torch
from torch.autograd import Variable
from torch.autograd import Variable as V
import numpy as np
from LAF import rectifyAffineTransformationUpIsUp, LAFs_to_H_frames
from Utils import zeros_like
def linH(H, x, y):
assert x.size(0) == y.size(0)
A = torch.zeros(x.size(0),2,2)
if x.is_cuda:
A = A.cuda()
den = x * H[2,0] + y * H[2,1] + H[2,2]
num1_densq = (x*H[0,0] + y*H[0,1] + H[0,2]) / (den*den)
num2_densq = (x*H[1,0] + y*H[1,1] + H[1,2]) / (den*den)
A[:,0,0] = H[0,0]/den - num1_densq * H[2,0]
A[:,0,1] = H[0,1]/den - num1_densq * H[2,1]
A[:,1,0] = H[1,0]/den - num2_densq * H[2,0]
A[:,1,1] = H[1,1]/den - num2_densq * H[2,1]
return A
def reprojectLAFs(LAFs1, H1to2, return_LHFs = False):
LHF1 = LAFs_to_H_frames(LAFs1)
#LHF1_in_2 = torch.zeros(LHF1.size(0), ,3,3)
#if LHF1.is_cuda:
# LHF1_in_2 = LHF1_in_2.cuda()
#LHF1_in_2 = Variable(LHF1_in_2)
#LHF1_in_2[:,:,2] = torch.bmm(H1to2.expand(LHF1.size(0),3,3), LHF1[:,:,2:])
#LHF1_in_2[:,:,2] = LHF1_in_2[:,:,2] / LHF1_in_2[:,2:,2].expand(LHF1_in_2.size(0), 3)
#As = linH(H1to2, LAFs1[:,0,2], LAFs1[:,1,2])
#LHF1_in_2[:,0:2,0:2] = torch.bmm(As, LHF1[:,0:2,0:2])
xy1 = torch.bmm(H1to2.expand(LHF1.size(0),3,3), LHF1[:,:,2:])
xy1 = xy1 / xy1[:,2:,:].expand(xy1.size(0), 3, 1)
As = linH(H1to2, LAFs1[:,0,2], LAFs1[:,1,2])
AF = torch.bmm(As, LHF1[:,0:2,0:2])
if return_LHFs:
return LAFs_to_H_frames(torch.cat([AF, xy1[:,:2,:]], dim = 2))
return torch.cat([AF, xy1[:,:2,:]], dim = 2)
def Px2GridA(w, h):
A = torch.eye(3)
A[0,0] = 2.0 / float(w)
A[1,1] = 2.0 / float(h)
A[0,2] = -1
A[1,2] = -1
return A
def Grid2PxA(w, h):
A = torch.eye(3)
A[0,0] = float(w) / 2.0
A[0,2] = float(w) / 2.0
A[1,1] = float(h) / 2.0
A[1,2] = float(h) / 2.0
return A
def affineAug(img, max_add = 0.5):
img_s = img.squeeze()
h,w = img_s.size()
### Generate A
A = torch.eye(3)
rand_add = max_add *(torch.rand(3,3) - 0.5) * 2.0
##No perspective change
rand_add[2,0:2] = 0
rand_add[2,2] = 0;
A = A + rand_add
denormA = Grid2PxA(w,h)
normA = Px2GridA(w, h)
if img.is_cuda:
A = A.cuda()
denormA = denormA.cuda()
normA = normA.cuda()
grid = torch.nn.functional.affine_grid(A[0:2,:].unsqueeze(0), torch.Size((1,1,h,w)))
H_Orig2New = torch.mm(torch.mm(denormA, torch.inverse(A)), normA)
new_img = torch.nn.functional.grid_sample(img_s.float().unsqueeze(0).unsqueeze(0), grid)
return new_img, H_Orig2New,
def distance_matrix_vector(anchor, positive):
"""Given batch of anchor descriptors and positive descriptors calculate distance matrix"""
d1_sq = torch.sum(anchor * anchor, dim=1)
d2_sq = torch.sum(positive * positive, dim=1)
eps = 1e-12
return torch.sqrt(torch.abs((d1_sq.expand(positive.size(0), anchor.size(0)) +
torch.t(d2_sq.expand(anchor.size(0), positive.size(0)))
- 2.0 * torch.bmm(positive.unsqueeze(0), torch.t(anchor).unsqueeze(0)).squeeze(0))+eps))
def ratio_matrix_vector(a, p):
eps = 1e-12
return a.expand(p.size(0), a.size(0)) / (torch.t(p.expand(a.size(0), p.size(0))) + eps)
def inverseLHFs(LHFs):
LHF1_inv =torch.zeros(LHFs.size())
if LHFs.is_cuda:
LHF1_inv = LHF1_inv.cuda()
for i in range(LHF1_inv.size(0)):
LHF1_inv[i,:,:] = LHFs[i,:,:].inverse()
return LHF1_inv
def reproject_to_canonical_Frob_batched(LHF1_inv, LHF2, batch_size = 2, skip_center = False):
out = torch.zeros((LHF1_inv.size(0), LHF2.size(0)))
eye1 = torch.eye(3)
if LHF1_inv.is_cuda:
out = out.cuda()
eye1 = eye1.cuda()
len1 = LHF1_inv.size(0)
len2 = LHF2.size(0)
n_batches = int(np.floor(len1 / batch_size) + 1);
for b_idx in range(n_batches):
#print b_idx
start = b_idx * batch_size;
fin = min((b_idx+1) * batch_size, len1)
current_bs = fin - start
if current_bs == 0:
break
should_be_eyes = torch.bmm(LHF1_inv[start:fin, :, :].unsqueeze(0).expand(len2,current_bs, 3, 3).contiguous().view(-1,3,3),
LHF2.unsqueeze(1).expand(len2,current_bs, 3,3).contiguous().view(-1,3,3))
if skip_center:
out[start:fin, :] = torch.sum(((should_be_eyes - eye1.unsqueeze(0).expand_as(should_be_eyes))**2)[:,:2,:2] , dim=1).sum(dim = 1).view(current_bs, len2)
else:
out[start:fin, :] = torch.sum((should_be_eyes - eye1.unsqueeze(0).expand_as(should_be_eyes))**2 , dim=1).sum(dim = 1).view(current_bs, len2)
return out
def get_GT_correspondence_indexes(LAFs1, LAFs2, H1to2, dist_threshold = 4):
LHF2_in_1_pre = reprojectLAFs(LAFs2, torch.inverse(H1to2), True)
just_centers1 = LAFs1[:,:,2];
just_centers2_repr_to_1 = LHF2_in_1_pre[:,0:2,2];
dist = distance_matrix_vector(just_centers2_repr_to_1, just_centers1)
min_dist, idxs_in_2 = torch.min(dist,1)
plain_indxs_in1 = torch.arange(0, idxs_in_2.size(0))
if LAFs1.is_cuda:
plain_indxs_in1 = plain_indxs_in1.cuda()
mask = min_dist <= dist_threshold
return min_dist[mask], plain_indxs_in1[mask], idxs_in_2[mask]
def get_GT_correspondence_indexes_Fro(LAFs1,LAFs2, H1to2, dist_threshold = 4,
skip_center_in_Fro = False):
LHF2_in_1_pre = reprojectLAFs(LAFs2, torch.inverse(H1to2), True)
LHF1_inv = inverseLHFs(LAFs_to_H_frames(LAFs1))
frob_norm_dist = reproject_to_canonical_Frob_batched(LHF1_inv, LHF2_in_1_pre, batch_size = 2, skip_center = skip_center_in_Fro)
min_dist, idxs_in_2 = torch.min(frob_norm_dist,1)
plain_indxs_in1 = torch.arange(0, idxs_in_2.size(0))
if LAFs1.is_cuda:
plain_indxs_in1 = plain_indxs_in1.cuda()
#print min_dist.min(), min_dist.max(), min_dist.mean()
mask = min_dist <= dist_threshold
return min_dist[mask], plain_indxs_in1[mask], idxs_in_2[mask]
def get_GT_correspondence_indexes_Fro_and_center(LAFs1,LAFs2, H1to2,
dist_threshold = 4,
center_dist_th = 2.0,
scale_diff_coef = 0.3,
skip_center_in_Fro = False,
do_up_is_up = False,
return_LAF2_in_1 = False,
inv_to_eye = True):
LHF2_in_1_pre = reprojectLAFs(LAFs2, torch.inverse(H1to2), True)
if do_up_is_up:
sc2 = torch.sqrt(torch.abs(LHF2_in_1_pre[:,0,0] * LHF2_in_1_pre[:,1,1] - LHF2_in_1_pre[:,1,0] * LHF2_in_1_pre[:,0,1])).unsqueeze(-1).unsqueeze(-1).expand(LHF2_in_1_pre.size(0), 2,2)
LHF2_in_1 = torch.zeros(LHF2_in_1_pre.size())
if LHF2_in_1_pre.is_cuda:
LHF2_in_1 = LHF2_in_1.cuda()
LHF2_in_1[:, :2,:2] = rectifyAffineTransformationUpIsUp(LHF2_in_1_pre[:, :2,:2]/sc2) * sc2
LHF2_in_1[:,:, 2] = LHF2_in_1_pre[:,:,2]
sc1 = torch.sqrt(torch.abs(LAFs1[:,0,0] * LAFs1[:,1,1] - LAFs1[:,1,0] * LAFs1[:,0,1])).unsqueeze(-1).unsqueeze(-1).expand(LAFs1.size(0), 2,2)
LHF1 = LAFs_to_H_frames(torch.cat([rectifyAffineTransformationUpIsUp(LAFs1[:, :2,:2]/sc1) * sc1, LAFs1[:,:,2:]], dim = 2 ))
else:
LHF2_in_1 = LHF2_in_1_pre
LHF1 = LAFs_to_H_frames(LAFs1)
if inv_to_eye:
LHF1_inv = inverseLHFs(LHF1)
frob_norm_dist = reproject_to_canonical_Frob_batched(LHF1_inv, LHF2_in_1, batch_size = 2, skip_center = skip_center_in_Fro)
else:
if not skip_center_in_Fro:
frob_norm_dist = distance_matrix_vector(LHF2_in_1.view(LHF2_in_1.size(0), -1), LHF1.view(LHF1.size(0),-1))
else:
frob_norm_dist = distance_matrix_vector(LHF2_in_1[:,0:2, 0:2].contiguous().view(LHF2_in_1.size(0), -1), LHF1[:,0:2,0:2].contiguous().view(LHF1.size(0),-1))
#### Center replated
just_centers1 = LAFs1[:,:,2];
just_centers2_repr_to_1 = LHF2_in_1[:,0:2,2];
if scale_diff_coef > 0:
scales1 = torch.sqrt(torch.abs(LAFs1[:,0,0] * LAFs1[:,1,1] - LAFs1[:,1,0] * LAFs1[:,0,1]))
scales2 = torch.sqrt(torch.abs(LHF2_in_1[:,0,0] * LHF2_in_1[:,1,1] - LHF2_in_1[:,1,0] * LHF2_in_1[:,0,1]))
scale_matrix = ratio_matrix_vector(scales2, scales1)
scale_dist_mask = (torch.abs(1.0 - scale_matrix) <= scale_diff_coef)
center_dist_mask = distance_matrix_vector(just_centers2_repr_to_1, just_centers1) >= center_dist_th
frob_norm_dist_masked = (1.0 - scale_dist_mask.float() + center_dist_mask.float()) * 1000. + frob_norm_dist;
min_dist, idxs_in_2 = torch.min(frob_norm_dist_masked,1)
plain_indxs_in1 = torch.arange(0, idxs_in_2.size(0))
if LAFs1.is_cuda:
plain_indxs_in1 = plain_indxs_in1.cuda()
#min_dist, idxs_in_2 = torch.min(dist,1)
#print min_dist.min(), min_dist.max(), min_dist.mean()
mask = (min_dist <= dist_threshold )
if return_LAF2_in_1:
return min_dist[mask], plain_indxs_in1[mask], idxs_in_2[mask], LHF2_in_1[:,0:2,:]
else:
return min_dist[mask], plain_indxs_in1[mask], idxs_in_2[mask]
def get_closest_correspondences_idxs(LHF1, LHF2_in_1, xy_th, scale_log):
xy1 = LHF1[:,0:2,2];
xy2in1 = LHF2_in_1[:,0:2,2];
center_dist_matrix = distance_matrix_vector(xy2in1, xy1)
scales1 = torch.sqrt(torch.abs(LHF1[:,0,0] * LHF1[:,1,1] - LHF1[:,1,0] * LHF1[:,0,1]));
scales2 = torch.sqrt(torch.abs(LHF2_in_1[:,0,0] * LHF2_in_1[:,1,1] - LHF2_in_1[:,1,0] * LHF2_in_1[:,0,1]));
scale_matrix = torch.abs(torch.log(ratio_matrix_vector(scales2, scales1)))
mask_matrix = 1000.0*(scale_matrix > scale_log).float() * (center_dist_matrix > xy_th).float() + center_dist_matrix + scale_matrix
d2_to_1, nn_idxs_in_2 = torch.min(mask_matrix,1)
d1_to_2, nn_idxs_in_1 = torch.min(mask_matrix,0)
flat_idxs_1 = torch.arange(0, nn_idxs_in_2.size(0));
if LHF1.is_cuda:
flat_idxs_1 = flat_idxs_1.cuda()
mask = d2_to_1 <= 100.0;
final_mask = (flat_idxs_1 == nn_idxs_in_1[nn_idxs_in_2].float()).float() * mask.float()
idxs_in1 = flat_idxs_1[final_mask.long()].nonzero().squeeze()
idxs_in_2_final = nn_idxs_in_2[idxs_in1];
#torch.arange(0, nn_idxs_in_2.size(0))#[mask2.data]
return idxs_in1, idxs_in_2_final
def get_LHFScale(LHF):
return torch.sqrt(torch.abs(LHF[:,0,0] * LHF[:,1,1] - LHF[:,1,0] * LHF[:,0,1]));
def LAFMagic(LAFs1, LAFs2, H1to2, xy_th = 5.0, scale_log = 0.4, t = 1.0, sc = 1.0, aff = 1.0):
LHF2_in_1 = reprojectLAFs(LAFs2, torch.inverse(H1to2), True)
LHF1 = LAFs_to_H_frames(LAFs1)
idxs_in1, idxs_in_2 = get_closest_correspondences_idxs(LHF1, LHF2_in_1, xy_th, scale_log)
if len(idxs_in1) == 0:
print('Warning, no correspondences found')
return None
LHF1_good = LHF1[idxs_in1,:,:]
LHF2_good = LHF2_in_1[idxs_in_2,:,:]
scales1 = get_LHFScale(LHF1_good);
scales2 = get_LHFScale(LHF2_good);
max_scale = torch.max(scales1,scales2);
min_scale = torch.min(scales1, scales2);
mean_scale = 0.5 * (max_scale + min_scale)
eps = 1e-12;
if t != 0:
dist_loss = torch.sqrt(torch.sum((LHF1_good[:,0:2,2] - LHF2_good[:,0:2,2])**2, dim = 1) + eps) / V(mean_scale.data);
else:
dist_loss = 0
if sc != 0 :
scale_loss = torch.log1p( (max_scale-min_scale)/(mean_scale))
else:
scale_loss = 0
if aff != 0:
A1 = LHF1_good[:,:2,:2] / scales1.view(-1,1,1).expand(scales1.size(0),2,2);
A2 = LHF2_good[:,:2,:2] / scales2.view(-1,1,1).expand(scales2.size(0),2,2);
shape_loss = ((A1 - A2)**2).mean(dim = 1).mean(dim = 1);
else:
shape_loss = 0;
loss = t * dist_loss + sc * scale_loss + aff *shape_loss;
#print dist_loss, scale_loss, shape_loss
return loss, idxs_in1, idxs_in_2, LHF2_in_1[:,0:2,:]
def LAFMagicFro(LAFs1, LAFs2, H1to2, xy_th = 5.0, scale_log = 0.4):
LHF2_in_1 = reprojectLAFs(LAFs2, torch.inverse(H1to2), True)
LHF1 = LAFs_to_H_frames(LAFs1)
idxs_in1, idxs_in_2 = get_closest_correspondences_idxs(LHF1, LHF2_in_1, xy_th, scale_log)
if len(idxs_in1) == 0:
print('Warning, no correspondences found')
return None
LHF1_good = LHF1[idxs_in1,:,:]
LHF2_good = LHF2_in_1[idxs_in_2,:,:]
scales1 = get_LHFScale(LHF1_good);
scales2 = get_LHFScale(LHF2_good);
max_scale = torch.max(scales1,scales2);
min_scale = torch.min(scales1, scales2);
mean_scale = 0.5 * (max_scale + min_scale)
eps = 1e-12;
dist_loss = (torch.sqrt((LHF1_good.view(-1,9) - LHF2_good.view(-1,9))**2 + eps) / V(mean_scale.data).view(-1,1).expand(LHF1_good.size(0),9)).mean(dim=1);
loss = dist_loss;
#print dist_loss, scale_loss, shape_loss
return loss, idxs_in1, idxs_in_2, LHF2_in_1[:,0:2,:]
def pr_l(x):
return x.mean().data.cpu().numpy()[0]
def add_1(A):
add = torch.eye(2).unsqueeze(0).expand(A.size(0),2,2)
add = torch.cat([add, torch.zeros(A.size(0),2,1)], dim = 2)
if A.is_cuda:
add = add.cuda()
return add
def identity_loss(A):
return torch.clamp(torch.sqrt((A - add_1(A))**2 + 1e-15).view(-1,6).mean(dim = 1) - 0.3*0, min = 0.0, max = 100.0).mean()