-
Notifications
You must be signed in to change notification settings - Fork 25
/
test_segmentation.py
194 lines (151 loc) · 6.06 KB
/
test_segmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import math
import os
import random
import numpy as np
from duckietown_world import MapFormat1Constants
from gym_duckietown.envs import DuckietownEnv
from gym_duckietown.simulator import AGENT_SAFETY_RAD
POSITION_THRESHOLD = 0.04
REF_VELOCITY = 0.7
FOLLOWING_DISTANCE = 0.24
AGENT_SAFETY_GAIN = 1.15
class PurePursuitPolicy:
"""
A Pure Pusuit controller class to act as an expert to the model
...
Methods
-------
forward(images)
makes a model forward pass on input images
loss(*args)
takes images and target action to compute the loss function used in optimization
predict(observation)
takes an observation image and predicts using env information the action
"""
def __init__(
self, env, ref_velocity=REF_VELOCITY, following_distance=FOLLOWING_DISTANCE, max_iterations=1000
):
"""
Parameters
----------
ref_velocity : float
duckiebot maximum velocity (default 0.7)
following_distance : float
distance used to follow the trajectory in pure pursuit (default 0.24)
"""
self.env = env
self.following_distance = following_distance
self.max_iterations = max_iterations
self.ref_velocity = ref_velocity
def predict(self, observation):
"""
Parameters
----------
observation : image
image of current observation from simulator
Returns
-------
action: list
action having velocity and omega of current observation
"""
closest_point, closest_tangent = self.env.unwrapped.closest_curve_point(
self.env.cur_pos, self.env.cur_angle
)
if closest_point is None or closest_tangent is None:
self.env.reset()
closest_point, closest_tangent = self.env.unwrapped.closest_curve_point(
self.env.cur_pos, self.env.cur_angle
)
current_world_objects = self.env.objects
# to slow down if there's a duckiebot in front of you
# this is used to avoid hitting another moving duckiebot in the map
# in case of training LFV baseline
velocity_slow_down = 1
for obj in current_world_objects:
if not obj.static and obj.kind == MapFormat1Constants.KIND_DUCKIEBOT:
if True:
collision_penalty = abs(
obj.proximity(self.env.cur_pos, AGENT_SAFETY_RAD * AGENT_SAFETY_GAIN)
)
if collision_penalty > 0:
# this means we are approaching and we need to slow down
velocity_slow_down = collision_penalty
break
lookup_distance = self.following_distance
# projected_angle used to detect corners and to reduce the velocity accordingly
projected_angle, _, _ = self._get_projected_angle_difference(0.3)
velocity_scale = 1
current_tile_pos = self.env.get_grid_coords(self.env.cur_pos)
current_tile = self.env._get_tile(*current_tile_pos)
if "curve" in current_tile["kind"] or abs(projected_angle) < 0.92:
# slowing down by a scale of 0.5
velocity_scale = 0.5
_, closest_point, curve_point = self._get_projected_angle_difference(lookup_distance)
if closest_point is None: # if cannot find a curve point in max iterations
return [0, 0]
# Compute a normalized vector to the curve point
point_vec = curve_point - self.env.cur_pos
point_vec /= np.linalg.norm(point_vec)
right_vec = np.array([math.sin(self.env.cur_angle), 0, math.cos(self.env.cur_angle)])
dot = np.dot(right_vec, point_vec)
omega = -1 * dot
# range of dot is just -pi/2 and pi/2 and will be multiplied later by a gain adjustable if we are
# testing on a hardware or not
velocity = self.ref_velocity * velocity_scale
if velocity_slow_down < 0.2:
velocity = 0
omega = 0
action = [velocity, omega]
return action
def _get_projected_angle_difference(self, lookup_distance):
# Find the projection along the path
closest_point, closest_tangent = self.env.closest_curve_point(self.env.cur_pos, self.env.cur_angle)
iterations = 0
curve_angle = None
while iterations < 10:
# Project a point ahead along the curve tangent,
# then find the closest point to to that
follow_point = closest_point + closest_tangent * lookup_distance
curve_point, curve_angle = self.env.closest_curve_point(follow_point, self.env.cur_angle)
# If we have a valid point on the curve, stop
if curve_angle is not None and curve_point is not None:
break
iterations += 1
lookup_distance *= 0.5
if curve_angle is None: # if cannot find a curve point in max iterations
return None, None, None
else:
return np.dot(curve_angle, closest_tangent), closest_point, curve_point
def seed(s: int):
# torch.manual_seed(seed)
np.random.seed(s)
random.seed(s)
seed(random.randint(0, 9999999))
from PIL import Image
def to_image(np_array):
img = Image.fromarray(np_array, "RGB")
img.show()
i = 0
os.chdir("./src/gym_duckietown")
environment = DuckietownEnv(
domain_rand=False, max_steps=math.inf, randomize_maps_on_reset=False, map_name="loop_obstacles"
)
policy = PurePursuitPolicy(environment)
MAX_STEPS = 500
while True:
obs = environment.reset()
environment.render(segment=True)
rewards = []
nb_of_steps = 0
while True:
action = list(policy.predict(np.array(obs)))
action[1] *= 7
obs, rew, done, misc = environment.step(np.array(action))
rewards.append(rew)
environment.render(segment=int(nb_of_steps / 50) % 2 == 0)
# to_image(obs)
nb_of_steps += 1
if done or nb_of_steps > MAX_STEPS:
break
print("mean episode reward:", np.mean(rewards))
environment.close()