forked from brightmart/deep_learning_by_andrew_ng_coursera
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Deep+Neural+Network+-+Application+v8.ipynb-2.json
989 lines (989 loc) · 300 KB
/
Deep+Neural+Network+-+Application+v8.ipynb-2.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Deep Neural Network for Image Classification: Application\n",
"\n",
"When you finish this, you will have finished the last programming assignment of Week 4, and also the last programming assignment of this course! \n",
"\n",
"You will use use the functions you'd implemented in the previous assignment to build a deep network, and apply it to cat vs non-cat classification. Hopefully, you will see an improvement in accuracy relative to your previous logistic regression implementation. \n",
"\n",
"**After this assignment you will be able to:**\n",
"- Build and apply a deep neural network to supervised learning. \n",
"\n",
"Let's get started!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1 - Packages"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's first import all the packages that you will need during this assignment. \n",
"- [numpy](www.numpy.org) is the fundamental package for scientific computing with Python.\n",
"- [matplotlib](http://matplotlib.org) is a library to plot graphs in Python.\n",
"- [h5py](http://www.h5py.org) is a common package to interact with a dataset that is stored on an H5 file.\n",
"- [PIL](http://www.pythonware.com/products/pil/) and [scipy](https://www.scipy.org/) are used here to test your model with your own picture at the end.\n",
"- dnn_app_utils provides the functions implemented in the \"Building your Deep Neural Network: Step by Step\" assignment to this notebook.\n",
"- np.random.seed(1) is used to keep all the random function calls consistent. It will help us grade your work."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import time\n",
"import numpy as np\n",
"import h5py\n",
"import matplotlib.pyplot as plt\n",
"import scipy\n",
"from PIL import Image\n",
"from scipy import ndimage\n",
"from dnn_app_utils_v3 import *\n",
"\n",
"%matplotlib inline\n",
"plt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plots\n",
"plt.rcParams['image.interpolation'] = 'nearest'\n",
"plt.rcParams['image.cmap'] = 'gray'\n",
"\n",
"%load_ext autoreload\n",
"%autoreload 2\n",
"\n",
"np.random.seed(1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2 - Dataset\n",
"\n",
"You will use the same \"Cat vs non-Cat\" dataset as in \"Logistic Regression as a Neural Network\" (Assignment 2). The model you had built had 70% test accuracy on classifying cats vs non-cats images. Hopefully, your new model will perform a better!\n",
"\n",
"**Problem Statement**: You are given a dataset (\"data.h5\") containing:\n",
" - a training set of m_train images labelled as cat (1) or non-cat (0)\n",
" - a test set of m_test images labelled as cat and non-cat\n",
" - each image is of shape (num_px, num_px, 3) where 3 is for the 3 channels (RGB).\n",
"\n",
"Let's get more familiar with the dataset. Load the data by running the cell below."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The following code will show you an image in the dataset. Feel free to change the index and re-run the cell multiple times to see other images. "
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"train_x_orig, train_y, test_x_orig, test_y, classes = load_data()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"y = 0. It's a non-cat picture.\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAWEAAAFiCAYAAAAna2l5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJztvXmQZ1d15/k9vz33rDVrVVVJpV1oBYHcgABhMEzbgI2x\n3R7TbgLTGCtG3eMYy9h4rEERHhuHGZo28hDt6bGNlw4ixm4wbiMLBLKQhGTQUhIqlWrfsiorK/ft\nt9/5I7Mq873vNytfZlXp/Up1PhEV0jt53333vuXky/t95xwLIcBxHMdJh0zaA3Acx7mccSfsOI6T\nIu6EHcdxUsSdsOM4Toq4E3Ycx0kRd8KO4zgp4k7YcRwnRdwJO47jpIg7YcdxnBRxJ+w4jpMiF80J\nm9mvmdlBM5sxs++b2Zsu1rEcx3EuVS6KEzaznwPwRwB+F8BtAF4A8LCZrb0Yx3Mcx7lUsYuRwMfM\nvg/g6RDCfXPbBuAogC+GED4Xa7sGwHsBHAJQvuCDcRzHee0pAdgO4OEQwtC5GuYu9JHNLA/gDgC/\nd8YWQghm9i0Ad4ld3gvgry70OBzHcVqAXwTw1+dqcMGdMIC1ALIABmL2AQDXivaHAOB//+3fwrZt\nV+CLf/wQ/pd7P4VmrUoN69UKH6yzN7K9L35UAH/78iT3pf4AsEQmic213PfYf8HOu39FN8ok6232\nD4cL12657H30y7j6Xf8ecrUq6TFj7Va42+LtzvGzPY88hGt//FNz/cVaigOoNTn596HYV10DOTZ1\nby0yiR/94x/jxvfde+5Gicahxrv0X76J76tztNv1jf+Em//1fYs2S3KE5M9BomZJHz8AwLNf+wJu\n/8B/OEf/5+5sbOAQnvqr3wXm/Nu5uBhOeLmUAWDbtitw7TXXoLOzA9decw0aVV6ZqFXYtrFnTWS7\n0c4H6Do9RjbthM/jgZoz5ood6OrbqfZqGSe81H65Yge6N1wN5Z7CCsd2fg8UX6xz9ZcrdaJ74zWJ\nx3HBnbAamnTCeg75Ugd6Nl17zjbJxnFxnfC52uVLnVi1+cwc1L7n1/9K2mUTzP0MhVInVm851zVI\n/OwtucR6MZzwaQANAH0xex+Ak4vt9MU/fgidnR14efcruP+3fhuh2cQ977wb737nOy7CEB3HcS4M\nh559GIefeyRiq85MJN7/gjvhEELNzH4I4B4AXwfOCnP3APjiYvv9wec+h5vf8Ab821/+Zfz5n/0Z\n+o8cojZT4v1kYHI0sr1ldQe1ecvWItm+f4yXOxriF6X6LRiWej029YfgIqT81ivbmS26n6l3RHWO\nqJ3qL9ma0ErmcOb/43sm/8sy2RuufEdKbIw3OdNm8fMfbbeUTe69kqEto//5o5z5efLVjZX99aTn\nlOw+XbQ3W3APLbHfjjveix13vDdiGz76Cv7x8/820fEu1nLE5wH82ZwzfgbAfwTQDuDPLtLxHMdx\nLkkuihMOIXx17pvgz2J2GeJ5AO8NIQwute8HP/jBizGk14z1192d9hDOmw3XvyPtIZwXG298V9pD\nOC823/zutIdw3my99dKew7bb3vOaHeuiCXMhhIcAPLTc/T50iTvhvuvekfYQzpsNN7wz7SGcFxtv\nuiftIZwXrw8n/No5sYvB9ttfu/F77gjHcZwUaYVP1AAAmXodmXrt7Pa2q66mNsePHiLb+Eg0GKVR\nm6E277uRv1sr5Hnq3zvM+zaUCpdEyBCNZFcXWJi72AKe3vlCjmPlfcnPz+gzYSUiir4SCljy87YL\n+Bnf+X3al0ywSnKMi91/8nGoG0Qdk5slDA3ga78cQW+Z+wD+Juw4jpMq7oQdx3FSxJ2w4zhOirgT\ndhzHSZGWEeYmX3wZY1PzYdbtN15PbbZcsZ1sg4VCZHvoFGfwCU1O/PPeG1isy1qJbI8f4X1rOmQu\nSsI8FOcjiK1YyHgNxpFMnDoPIUrk4dDaUdSa5NKJ3eZsFzaPw8r7Typ+rVSEu7D9J7+mSfJaJOpq\nkX3VPbO0gJ50/JHRLyNbkL8JO47jpIg7YcdxnBRxJ+w4jpMiLbMm3NvWgbUd3We3x19+hdpMiXzC\n67ddEdnO5/PUZqC/n2yNJvf1rmt43/EaZ2D74Yka2ZJwPpmukvaXpP/Ea1xJx5Zk/Ttxruak7RLt\nKmwrX7OUJM5otvSa6kqzjS3ev9o3ie3CZLI71zGTBPhcbL0kabsVjcODNRzHcS4N3Ak7juOkiDth\nx3GcFHEn7DiOkyItI8xZLgtbkNmst6eX2kwdPka28elo5rNV13L2tVy+QLYTx4+SrVlvkO3WrTzW\nI5P8u+v0ZDOy/doESays/+TVdFd40ITHSKxJnkfgSxoBLSsVYC+0MJekqOdi+yZqk3CeK8/cltYz\nlOS6nPuYyxmSvwk7juOkiDthx3GcFHEn7DiOkyLuhB3HcVKkZYS5oVMnMNA2L6C1dfdQm97eNWQr\nD41Ftsd2/YjadN94Hdm2br+SbMePHCLbtjV1st22mYWGR/dFf5+FZJrIBRcf4lFuMpvZSsq1nGPf\nC1pSKWkZHd3hio55ftcgaSaxC1lWSLVbuQiXaBxJX9eSRmi2tDAXa5P4/pv/3+W83fqbsOM4Toq4\nE3Ycx0kRd8KO4zgp4k7YcRwnRVpGmDs6PIxCW9vZ7X2PfZva3PP2e8i27YqowJarVKnN5Ass1nXc\neC33ddVOsr285xDZ9g1NkS1O8qi0pcurAMsRopaO9rngEWJSjUl0gES7XdCyQucjYCVsp8U6tW+S\ncUhrsnbysqzsHK00HeUizTQrTGV5XudI7hk/H9xGVWJa+NwuRyz0N2HHcZwUcSfsOI6TIu6EHcdx\nUsSdsOM4Toq0jDBXKXWj3L767PYrmW5qU3rqabJt2bQtsp1fIO6doafONeEmX+IadoVrriJbs72P\nbCcmDpJtxVE7SdMBrnhfsWfglJ3NRoVsmQzfHpkc19wLTe4Pzeg5z+T5uqixZc4jnSPQJEujGqsl\nqOaZ5dqC8twW2kU7fo/JZJK929AhEgppydslvbdigljCV7PE6S2TdSeEuaXbLKf/5ELz0vuprhae\ntowLc47jOJcG7oQdx3FSxJ2w4zhOirgTdhzHSZGWEeaKhRxKxfnhFLpYmGsvZMlmMRFkePAE79fN\n9eq6iywUTe89QLbxaqcYLf/uSrIOryPhVOgNp89Eg8XF2syw2DfaTvU/M3KcbNOjfN661nCBvXw3\n26oVjiBsTJ+O9rXlFh5rnaMbQ3WSbJWJEbEvC2xxMRAAyqOD0d2mR6lNLsePQb7AdQlL61m4LXSv\nJ1vbBm6HDN+7zZigmclyGwiRL7lIq6ID1U24dBRhcrExqSDFx2zWo/Ui6w2+P3L5EneVY2HVjM9l\nRsxTzTwuqqlnaKl5Jk79CX8TdhzHSZVlO2Eze5uZfd3MjptZ08x+SrT5rJn1m9m0mT1iZpyUwXEc\nx1nRm3AHgOcBfAribd7M7gdwL4BPALgTwBSAh82M/75zHMe5zFn2mnAI4ZsAvgkAphdG7gPwYAjh\nG3NtPgpgAMAHAXx15UN1HMd5/XFBhTkz2wFgA4CzeShDCONm9jSAu3AOJ1wsFdDWPr/oXijyi3NG\nhVPFTPtFnbijezk67l0/8QGyrV67jmwjx1h0aooCciEWhdaoTvB+NRadMDNIpuzUSbI1ytzfxNQY\n2eLjMOMosrggBAB5cStkhspkmz6xh4+phAtEjzFxeh+1Kc+wuBaEWKfGm1VClLousbHlxC3UFBpf\nZZr/SCyPnyZbsYtF31yVhU/LshBcbUTHVuxhkS9T4lqLWSFOZYodfEwhTiWJckscCZcwslPWOYxH\nMgKY3P1oZLuZZ1G854qb+Jh5juLMqrEV+BpYlu97yuy50lStCbnQwtwGzC5RDMTsA3M/cxzHcRbg\nX0c4juOkyIX+TvgkZl/U+xB9G+4D8Ny5dvyTv/oKOtrnE6ScGp/AddfdhOuu5z8/HMdxWoX9z/wj\n9j/zzYitOiOWHhfhgjrhEMJBMzsJ4B4AuwDAzLoBvBnAl86176c++jFcvWO+VNHzp+IrGkDhNAcn\nxNdvMus2UptXnmP/v/PV/WRb3ccZ0yA+oG9UeBwT/S9ExzFxiNrkjNc7q+UZsulv7MXH7Q1e763V\noza1dpoVf/+oTGiTMyKYgg8p1wZr9dharFqkkzECYl23wTaRtw1ZseAbYuvEQayTqvMBsb5cFevV\njSle0x86xMEl2SYfJJ+PjqV+QqzLF0TWuizbCh28Nh0KvKZaXJCp8OzYuqJr0dkSB0pl8pxBTq3F\nqigFuXYs9u2+8k3RcXSu4nHk1EdWYr1aZE4Mk6fIVp7kdf6OTTdG+8qe+8OunXe+HzvvfD8ytXn9\naPDIHvztH3zsnPudYdlO2Mw6AOzE/MyvNLNbAAyHEI4C+AKAz5jZPgCHADwI4BiAry33WI7jOK93\nVvIm/EYA38HsK0sA8Edz9j8H8LEQwufMrB3AlwH0AngcwPtCCPwa4TiOc5mzku+EH8MSgl4I4QEA\nD6xsSI7jOJcP/nWE4zhOirRMFrVSIYf24nw2pNBg6cVEsEb8w/K163gxf/UmFuuKogySUhDqYxxk\nUD/AZZaKU0OR7XyGhZ1SkedULfIxx8ZFFjUlsCllKyacFcR+FSF05cW5VUJXTvzaLtdZrSvkoqJT\nhxCYyhX+YL9SFYKYECAbTW5XFHPIxVS3Sk1JekxHSWRWE6e7WuOx5Svi3hXC6mQlukIntDtk8izc\nNoMQ+UaHyKbS9hWF0JzJR4UnE8Jfrq2L++rl4JJcN4vb+S4Ogsq1sfiX7Ym2ywgRVaGCS7IiC17I\n8tgyEyysZuIBTjJWg6+7nZz/AMCGjqqhSvxN2HEcJ0XcCTuO46SIO2HHcZwUcSfsOI6TIi0jzI2P\njWJkeD56pTHJUWm5JSJXACBX4FInRZGRLZewbIyJEkKZGY68qVSjC/VVIRzdtIEFtzfdxWV/Hn2G\nowVf3MuRPVUhiMXFyxkhRNUzSwtpAFAWIlm2wOetKUTIdT1R4eUdP/YWavPkM/9CtoPHWSgpiIo2\ndaGvZcQVjNtClufeJuYuKw3lROSeGEcxL86R1AOjYyuIaLP4fQUAM3W+j+ICJAAURYYwGWpYjYt/\nLAZmJ8d5HEP93Jc4cbkSX8BciYW+fPfayHZbL+f8KgqbihZETmSay7MfKHatJRuVMxKiakb4hen9\nT5z9/8qwKD22CP4m7DiOkyLuhB3HcVLEnbDjOE6KuBN2HMdJkZYR5rL5PHILolyGTrP4tbVtDdni\nGQezQhiIpwwEgIxKuSeEndBgEaRS5jR5cQGls8jCwM6tbyTbVdvvINv1t3G9nT/9ysNke/pZFkam\ny1HlJYg5KaEyLwTNtrZk7To7OGXimlXR6KctV2yhNj+zgaMbH/oKV8AanWShKJ6iEgDE0Ciirb2N\nr7uKApyqilSI4pgZkc0xI4S5jg4hGOdiNhWxKQTeWkNEQQoBryrKNjVEtGRcIKyLfKV5IUo2xTia\nQgjONUTJqkku1xUGo2WhsrmXqE1bO0e6tnVyes5cB99b7b0cMZdr8lxDPnpdMiIlaK7/ebJlpud9\nlpVZyFwMfxN2HMdJEXfCjuM4KeJO2HEcJ0XcCTuO46RIywhzpUIe7aV5laOzg2taqWifeBq7anmK\n2nR2doj9uK9mhZWMjmnub6cIfyrGUtutEfXk1maEcpThsXX37iDbr/0Kt9vw9X8m26H+6O/VYomV\now4hpOXzPDaTqQRFusi4wAQgExNI20Xq0Jtvu5Zsrx46RLZ/ePRxsk1MsGBaNr4u2dh7RlFE/ImM\njwgim6jQyGQ6UaHfIZ8X0Xyxp68pDtCe50c0iAEbB6ChIQYyMcFC1PhU1GZCcKuKZ0+lBc2IdKIV\n0V8Qglj83srkWBxVqUMnJ6a5q8xxMuUzu8lWFJGGFYs+M20i4m9z4xjZ1q6e/3CgqvKSLoK/CTuO\n46SIO2HHcZwUcSfsOI6TIu6EHcdxUqRlhLmDe3ejMTFydnv0NKduDL0cdRVX2EKdBbGJEe6rmeeI\nmoFDB8iWf24X2d4jxJhGrB5bEDWo8mKxvm/TZm5XYlGy2WRx45d+/ifJ9tIrhyLb+46IVJZNFtya\nQiipi9puNSnGiOjD2HAzQgld3c3z/On3v5dsh45yva5nnt9PtnpdpNRcHY3662lnEbEKVuFmRGRZ\nZYbPR6cQNEsiNaYSleO1+XJiv4a411Qaz5xK4ylEp94etnXHyr2NjPEBhkTdQxF0KqkLMU2lCo2L\n7CYEyKa4LkEIf0pTrgtBvRpYjG/EUnmuESl08/URsoX8FfP/n1s67e4Z/E3YcRwnRdwJO47jpIg7\nYcdxnBRxJ+w4jpMiLSPM1Wt11BekD3xl96vU5pY7OBUdYsJFeztHt7S1sa1cLpNt/z4We04N8gJ8\nr0gFabnoqTQhalV2s8g3cmA92Xa+9f1kKxS4FtYIDw0337gzsl0sHqI2rxzgSKSpaRY024VAOBWS\npXiM63AqPiqfYfVk28Z1ZPu5D7AAefDI/0O2iUmObozXY+sQeStFkBcKJVGzLcePS0+HeoSESFZk\nWzYmKBVLIpUlXxaYqJMXhHDbEEKwEqxysWi+tWt4TqI8G04NiTSvfHsgL+auiJ9elXRTlDNEUHXz\nRDuhH8vIyLZiLNqzMUZtekQUroqUTIK/CTuO46SIO2HHcZwUcSfsOI6TIi2zJvzOO+7CzTuvPrv9\nhmtvpDaN4UmyxVeb5PqkON7w0DDZnvsBl1NpL4vMauIj+EJsYdEgAiJGeW2pNnGYbKeOcymjVeve\nQrb16zeSbXBwILJ97VU7qU0us5dsP3yey0ndeNWVZHv1CAe+jIyLLFYxpmd4cXNElC1a3cXr97dc\nfzXZrtm5nWzPv/Qy2WqxAI74NqBLD60risxw4pVF3VsmohiCWJ8txNanMznurSieUBWc0BDrovWa\neBbE89GMBUVkxKx6u/l+Fo8BTg2rdWJVGon3rcSuTVYcQK1py4yIQoRQWfDUGnNnPrpzEXzv5jpY\nuwgLsiTm4inyzoG/CTuO46SIO2HHcZwUcSfsOI6TIu6EHcdxUqRlhLlSPo/2wvwX4bdsZ1GouZVX\n2+OZl/JZLudTKLDYMzh4kmzTkyww5UTKqpoIxMiFqC1eVgfQH58rDBNkGxl8jGwdPTeTbcOGaMmg\n00Mc0XHl9uvI1tPB582yfN56eq4i2zO7OMhldDwaOFGrs2BzeoTnqYS59jyfy4WBPWcIQoyJi1/t\nQunKC7VHJItDJstXUMSbSJGsTZRVysWEJxFvIZFBDGJsBXHeVAmluCUrhLmGyF5Wrqjnkdt18iVF\nucLHmIpnqRNzEnq3zMhWFc+tmntRBa/Esqb1rN5AbRpC+YtcA3EeFsPfhB3HcVLEnbDjOE6KLMsJ\nm9mnzewZMxs3swEz+zszu0a0+6yZ9ZvZtJk9Ymb8sarjOI6z7DfhtwH4zwDeDODdAPIA/snMztYz\nN7P7AdwL4BMA7gQwBeBhM0ueat5xHOcyYVnCXAghkt7LzH4ZwCkAdwD43pz5PgAPhhC+MdfmowAG\nAHwQwFcX69sQjT4yIQ5kxQq8xWSFVVnO/PWGrfwivmv3ANkgBLeGWMxXpYBC3JYRooXYT9lkFq4M\nCw1T48+RrV6NRgKuXfMmajM2JiLENnBWqM4uLgE1LIS+H7uDhb6nntsT2TaRqiyX43HMiDRcFaWS\nibxsKiKqpyuW3U5kIIOwFUX0mhLhlPwiqvLI0KyGReel9itXeL+qKBfU0cHvU1kxupBAYMuL0MBc\nlge3ZhWfkK4ukX2uqNKXsW14JHo+hkf5updFVrmmmKe6F9RzZcbncsPazsh2PssHVZGHkVtSPdaL\ncL5rwr2YvQ+HAcDMdgDYAODbZxqEEMYBPA3grvM8luM4zuuOFTthm/027AsAvhdCOBO0vwGzTjn+\nmjkw9zPHcRxnAefznfBDAG4A8K8u0Fgcx3EuO1bkhM3sjwG8H8DbQggnFvzoJGYXXvoQfRvuA8AL\nmAv49P/9JfR0RNdiPvzOe/Cz77pnJUN0HMd5Tdi99wBe2XcgYqtUxeL1IizbCc854A8AuDuEcGTh\nz0IIB83sJIB7AOyaa9+N2a8pvnSufn/vV+/FrVfPf+0mNBAEkbMuHpiSFZEy29dwWaRwO0eb7frh\ni9xOpOGTdUwSBMioxXyVelOi0vAJIadaPhTZHh4YpzY9a+4kWyP0kC2b5Q9a+jZw+kw7xSLnW26N\npp88OcApMGs1FuFmysImouO6e9TYWOjrbIveSRkhMOWFrZjnO7AhrpW6BsgLo1j4y8Tu56bov6Od\n++oQaRJF1SZZ8kg8HgixwY0OsQPJC1G8ZxWfbyXCKVE2L9JU9sZSim5YzWM9eZonMDzJ41VllpS4\n2KFC5prR6M6mEO9y2flrcOO1V+PGa69GszG/38DgEL7yt3/PfQuW5YTN7CEAvwDgpwBMmdkZ7zYW\nQjhTtO0LAD5jZvsAHALwIIBjAL62nGM5juNcDiz3TfiTmH0n+27M/u8A/AUAhBA+Z2btAL6M2a8n\nHgfwvhBC8vdzx3Gcy4Tlfiec6GuKEMIDAB5YwXgcx3EuKzx3hOM4Toq0TCpLM10railCvLabCJXJ\nCmGgWGBRQQkIUjhTdezitoT7lePp+wCUq5z7r62kFBVVTy9qa9Y5wm3kFKfF7Fp1G9nae24imwrw\n6+tj4TMuOnW2c6rMmaky2eKpSYGoCHKGG3ZsJtvU8DExjti2isQUOTC3r+UaYvtPj5Kt0uQahEpg\nm5nh69fZGY/mE1F6IoyuGPjerTc5VahKPylr4sWembqow6fyhKpnozrDilhWREZmRUrRRiyqsE2I\nkldewX31TbPtYD+npVXnY20vR9guFNgAGdyndfiw8BqrKE+Nvwk7juOkiDthx3GcFHEn7DiOkyLu\nhB3HcVKkZYS5makpTE7MR3eVOji1Yj7LC/DxBXKt7SmxhyNlMiKFnyKoZfm4LpeoJ2BkZJJsz397\nF9nuuH0r2TZt6BI9xucqzoj4ZHtq/CWydfXuIFuh0MtHFGLa+r5ovqah04PURqVMVDkAQ2CR4x3/\n6h1kq45zdODx40cj27UqC2locv9b13IazwY4Su/RXa/yOOo8h9FxPucb10UF2N427r9nnK/xNZtY\nlHypephsM9kZspk454VYhF9vDz9nNRU5KrSnUrsQ4UQNv5II8ZspxyLVRDpRVdutJq5fpaLCEviY\nnW3sAuuxe6QhovtUitvcAnHUxJgWw9+EHcdxUsSdsOM4Toq4E3Ycx0kRd8KO4zgp0jLC3It792B6\nauLs9uDwELW59dobyHbNlVdFtpV+oNIS6ug8ETGnY4zI0ox1aOr3m4h+KhQ6yaZqog4OcirIjRs4\n/SQdQRRGMyF0xSPtAKBRF/kARbnWXI5vo7hYt3YN5yWsT46RbXJKRDoJgWZtD6fUfOf7foZse1+N\nCmf7932P2gwcO0m23lUsQL5xNYt1B0+dItuJEZ5XewdHDDZj4s30FEe99bC2hokxNo6MsRA1lueI\nxK4uvt8y7dHr19sl3EKex1Zp8DHrdd63NqUi3zgicaIeFamDqMs3IvL0nhrjeyZXYcG7KB7lxhQL\niY1m9L5v5PimNwgBcsH5yDbEs7MI/ibsOI6TIu6EHcdxUsSdsOM4Toq0zJrwiUYBufr8x+v/0s/Z\nvzIN/jA+F/s9cvAUr++98cbryaZK1aggDLVWqgIx4jYdrKH654Wqts5usuXzHGSgxjY5GV0HPHKc\n19CuvorXkvMiSOK5554h2403cV3Xnh5eP83GgmGCyKSlagO1l3j9rSDeFWrtvLbZt4nXXTtja6Ab\nN/N+3/qHvyPbTJnP945NXDD8xnU898qkWMgt8rUq5qLr5GacPQ8Zvn5VsRabFSJHW577yxa2cLu+\nKyLbm/OcLS5T5zXWl45w1rrbrufMe2NjvJ7cPyP0ka7oudy1Zze1qZ0+QbZmnc9HUdzPnSLoItfk\nfWuxQIymCsxo8Hp7NIuaSDe4CP4m7DiOkyLuhB3HcVLEnbDjOE6KuBN2HMdJkZYR5rZesQU7t195\ndvt04I+dO8XH20ePHY9snxjlj+f/eg9nCLt503ayKaFLimlC1IsPLSPKwajuVVarjk7OnGVgoVLE\nNaDRjPb34stHqU1PF4sKW7awYHN6mI85MTFBts5OFrvicxWVZTBZ5aCRjrwQT3hXVIXQ18ixMNcV\nC9QptbFwdNPNLObWho+TDULY2bSegw6ef3Ev2TI1vh/yndHgj9XrWDCdzrEgNjrNYlJbie+Z1SIT\n4cbNXIpq30D0Old6WdBTGd5uvpL7nxI35ekRFirXrFlLtgMHDka2J45zZriMyL7W3sVCdvy6A8Cq\nwONoy/B1mawtLcyZKCcVFgiEQQU6LYK/CTuO46SIO2HHcZwUcSfsOI6TIu6EHcdxUqRlhLntG9fh\n2u2bzm6vu4qFouorHDG3qhZdIM/3tFGbp2ZYLKgIoQRCcFM2Ld9F+wuBf7+Z6r7CYsGW9RyZNTnG\n5YFmZqbIlo0JF9Mi65QuzyQiuoosdJXLLOqdPNFPttHRaNTV5i1XUJsf7dlHtjtu2Ek2VXZqeobP\nW7ZTlF6K6TMFnhJ6hEg0OMLRYLUqiy0zVT4f5RkW01BjoWhsIio8DQwOcF8iW1dTvDtlRSa7XhGR\neODIfrINx8pCtTU4Q9248fOyppePOTrFJaYqVb5Wu18+wscYj4q+IScyAIryRuu6WSBcI7L29Rb5\nvFXGWXy2WAa2png2VJQeFtiankXNcRzn0sCdsOM4Toq4E3Ycx0kRd8KO4zgp0jLC3JHDhyKVc57c\nzaLN267nlJS3bNsa2Z45xWJE7yBH0eWaSvDgfU2UJFLRX/G1ey1+sala4ZSJnWBBoqebo9J6OcAK\nk9PRKLSmEDIUJkScvnXryTY6yqV7MqLsTyUmmCpxrVbnE3JalAYKWT4fhyZYUNmwQ6RuRPT8doqU\nklXjyD2FnEON9602RfmrCl+HXCE6llBhAblW5bkXu9rJpqI4T5/gSMDuzTyHro6oG+jvP0BtwLcp\nXg1srOcfcpwWAAAgAElEQVTYJgL3cHqEI87q5eh5q9dY3MoUePxNEyK4KGVkQyx8Zqoi7DTmB1Ta\n20aN5xlq88KcLA22CP4m7DiOkyLuhB3HcVLEnbDjOE6KuBN2HMdJkZYR5mAWWU2vVDgiZWKCI5Es\nE43uUZFDbe0sZGRnkkbCiUV5YWvGbJmEkXZTExxhlBF18jZsZiExl2VxI17bykSkU9LIwA6hqJTa\nOBViWxsLYpNTImoshqqvF4SQWK7yPPMZPh8HjnD6yZ7O6P0wXeD7qiHSjhZKHFqnzocJBagu5pAT\naVgLudi1EvX1KmKeEzNCHM1xVFqxndNsjk/zuWzEBNJGg8cxNs39m0g3Oz3B9ekaIjo1NPj9r1CI\nXqucSEdZFqr44CSLo6vzfI7qk2JsQtSrivnHaTb5mKExb1P38WL4m7DjOE6KLMsJm9knzewFMxub\n+/ekmf1ErM1nzazfzKbN7BEz42QAjuM4DoDlvwkfBXA/gNsB3AHgUQBfM7PrAcDM7gdwL4BPALgT\nwBSAh81s6fd7x3Gcy5BlOeEQwj+EEL4ZQtgfQtgXQvgMgEkAb5lrch+AB0MI3wghvATgowA2Afjg\nBR214zjO64QVC3NmlgHwEQDtAJ40sx0ANgD49pk2IYRxM3sawF0Avnqu/jKZLLILIqPyeSVE8UJ9\nnI4urrXVLmyZshCOVMo6JbDJdvFtFX3H+/V0cLTZunWbuf/GQbJVhLjYiEVYbVjLaRqzQiSKC3qA\njhDr6GRxKivaKcGK+2dbmxDEqlMcndTTxRGE02UWS+L6yMlTnBK0ARH1JiKijg+wiFoQtdfa2sV1\nEdGB8aiquFAHAEGEqg1PDJEtYyw4dnZzms1cjR95i4lT9Tqngx0aZRFudbe47iLaM1fgY9YbPNdq\nTOxqinNWnhaRaEWOeiuLKMiaEKkbIr9sPMpURZ2GLF/3sCACMuSVaK5ZthM2s5sAPAWgBGACwIdC\nCHvM7C7MfgAQjw0cwKxzdhzHcWKs5E34FQC3AOgB8GEAf2Fmb7+go3Icx7lMWLYTDiHUAZzJ8PGc\nmd2J2bXgz2E280Ufom/DfQCeW6rfL//NX6Jjwfe8Q+OTuOGaG3DjdTcud4iO4zivGa8cOo5XD/Uj\nhPklkKr4tn0xLkSwRgZAMYRw0MxOArgHwC4AMLNuAG8G8KWlOvn3v/A/4+rt289uP/bC7gswNMdx\nnIvLdds347rtmxEW6AinRsbxN488nWj/ZTlhM/s9AP8I4AiALgC/COBuAO+Za/IFAJ8xs30ADgF4\nEMAxAF9bqu9mox4VKsRieD6nPuaIRaqJCKOODo6YwyCLLEnRwlysxpxazBdBNNODbBw6KsSjJgse\ngxkWUJqx2nY71vN+baUJstVFzaxTw7vIdvLky2SrCJHzRH+0hlgp/zPURol3DXHelK0g7oWuThb1\nKrF6b52dLOjVx/kxmJrkOe3fJyKuyAI0wYJYVohTjWpU3JmY5PuqVubrkqvyUbPtLJjmMnzfN+ss\nYjXqsbSjOXFM4SlMfVyVEfNUzwLvSUJwWdQRnJzm8Xf08PmuN3kcNSE+yyjZmFinAkxrBXG+bcEx\nc8lTWS73TXg9gD8HsBHAGGbfeN8TQngUAEIInzOzdgBfBtAL4HEA7wshiKp4juM4zrKccAjh4wna\nPADggRWOx3Ec57LCc0c4juOkiDthx3GcFGmZVJaNmRnUp6bObvdkRZ0usVB/OFZHq9nFC+aVsqh7\n1RCSSsLoOGmLRQA1RVSaCYGiXhZizAwvoWcKLDoF8Ts0Lm7kReTOwk9pzjA2xvW3Hv0WBzlWyixo\n1mo8joCo6LTjytuoTc+qq8h2eoKv8dg4H9OETZ3z8mS0XWEtp3ecBAtYQ2W+VtnA6RGHhvneiqc1\nBYBshvtrxmS9RpmvVdsMC829ge/xrjXX8L4lbnd64iWyTdaiIqSJsQaRWnZ4hkWyEPheaDR4XtUK\ni2k9schWMxaVTYVZiufRiixa14Wop6LhGpmoqFYX428Efh4zC6JkVb3KxfA3YcdxnBRxJ+w4jpMi\n7oQdx3FSpGXWhKf7T2CyPr8+s16sGZ146XmynYotB73xve+hNl0qi1pmhGyqlJH6UDtJZjW11pTJ\n8BpXEAELGZEtLiuyyllWrMXGMmIVi7x2lc/zMYdGOBBhcIiDOkriQ/5mULdR1GYiW5UqOzU9xet2\n2RzPPd/gduMHOJBkcjh6nWeueSu12WO8Tpxbw+vVw4cf5nZFvgaVutAbRAJAy05FtgvifGQafP1K\n4tWpMszr1SHLz9CEKFPUzEXHWxXliOJBQACQEWu2InkgGiJjWrHIc7Vs9Dq3t/FzW2jjde5MhjOa\nTUzzWn2bGK8qRdWIZXNrNEUZLjHRepjvvyHO12L4m7DjOE6KuBN2HMdJEXfCjuM4KeJO2HEcJ0Va\nRpg7tvcFNE8uyHAlhJyMEKLai9GsWHnxQfaONSy8VDbywv3ajevJNhG4nYlgh0ZcrEuQaQ1YpHSK\nEDfUR+rxsjRzxshmRmS1ahfixsQEZw3r7thEtkb9JNtq/DF7Nnat8jkWRbZu2Uq2wUHOIDcywiJq\nyViwWnv9LWQ78Go0JWrf6m5qY4U1ZMuteRPZxvk2wsCLL5Dt5jxf09379vNx4+V2Mnzhy1k+t6Ue\nUQKqfYps5fIw2WozPLb1a7dFtqemeRy1Gb4GKsNbyJfY1uT7tC7Ey3qsnFFezD2XYxGuJMRnGGcx\nq3Zwqa+KUEzrQ9F7cHKSfUBXgec0MjovhI5MJM9Z5m/CjuM4KeJO2HEcJ0XcCTuO46SIO2HHcZwU\naRlhLtueQ65rQcSMEObiohPAUWgzVV6Qz0xylNDmO1jE+ciNnIlqZogFialTp8g2dvRoZHvkeD+3\nEaJTVUQTBSHQQGWPEkKl2JH7F5GBfetXk+3nPvyvyTY2ymLPqUE+H+VqVCw5PcjncWyUbdu2bSPb\nmjUsnJ08zELX2rWbydbWEY26OlljYect21iAHBxjwabYx9F2/3zkKNlu2ijGIR61Z08ciGzPiCjR\ntl6e+9q115FtssL31tTMMbKtyXF/G9ftjGxv27KR2jz63X8m26lhjqgMGRbm8lm2FaqcBS8Ty4LX\n1cmZ0DZuvIJsORVhKu7x6ZnTZKuUWdCsV6K26jTvNzjG/ecxf8/bJPe7GP4m7DiOkyLuhB3HcVLE\nnbDjOE6KuBN2HMdJkZYR5kIIMkXkQlTBkJmZ6AL409/5NrVZu2kL2a64lYW5nq19ZGtURPmaqkjn\nOBMVVWqjnFrw1R8+R7bnXnqVbKuEAClFOFnqJbaZuMoKNyyVWFBp28DnctMmFtNODkb7O9HPotOx\nw4e4r80sauVFGk8lLqrTFi/3VKurck/c1ws/4Gu1d9e/kO3UMRZgB4WQ2Ll6B9nyU1FRtjzIYk5j\nitM5TuVY1KpU+F6o1ngcXW0cMXiyPyrghTpHnap0jhPjLKzWxfMCkUKyO8MRc6tjEauZLF93zPBz\nVRel0MZYn0exKSL8xP0Qf4jygfcrlji6tnPdG87+f3XkFPAip1ZV+Juw4zhOirgTdhzHSRF3wo7j\nOCniTthxHCdFWkaYm10MnxcqlEYXxO+MRmyB//TYYWrT1i3qs+V4QV7VrwptXAsrCWErCw8lIQJU\nRR23mkhR2aZSWQpbaEZPnBKdNErBE9F8EMKW2LNeibbrP86CykyDhaPb7+RjLlLoj0yNBtuqteh1\nmJlmkaV+itNzfvP/+1uyHT7CUXpFIRrWZ/jaF7pZEGtWoyJkeyeLWrmKiOga4QiuukhZOjXG6UnH\nmxw9uqY3Kv4NnhqiNqdHWawz4T5CkwXYRo7v03GRQrIrdq1qQzzP9gm+xrlVHO05Osnj7REpRrMz\nXFvRQvSamhARO3pZoM52z0caZqviPl4EfxN2HMdJEXfCjuM4KeJO2HEcJ0XcCTuO46RICwlzUWlI\niT1B1GiLR5LFa5sBQLbA08y1cUpDFYWVlHi9t2yej5ktcgQaCizsNFXoV0KbxVKANpssKjRF+sxM\nRpxbkU40qP54TyCWlrDe4P0OHeRowe88yhGPJuY5PcMC24u5Xj7G/lci2/EISwBo5p4lW7sQ3Das\n5mi+nu4esl25gW0nhSDYHovEypT4npwQtd1OD3PEXCPDQte4iGhTNQc726K2bI7b5IW41tfJ7SYr\nfM/UGiJ8TYjPY7G0sc0M91Xu5mcoJ2rdTU3zdS6pUnSitmKtEBXjrU08o1lOs5ltzPeVabAAuhj+\nJuw4jpMi7oQdx3FSxJ2w4zhOirgTdhzHSZEWEuYCFspxqsScTMsYMyqRaFrUkTq6j0Wh1SKr3WqR\nBtNETSstJcb2U3uJaLAghKigfl0mSlMp+gpCXBM2dQ2g9m0qoS8qZpTrHA325DOc6u/oSY6Sev//\n9BNke+XVvWTLr+L6Y4eOn4hsN2a4Hl7dWLEZFvUAxyc4urE6xZGAhcCRgKdGODJrbCp6TnraWZjL\ni+u+fuM6slUqyVJ0joxzRNuBo9FzosTcsRGOotvcIQTvHO87Ps5zzwlhznLReybkhdhYFilXi3xv\nlSssBvLMgZwQqcuxczljfG6H+vn+27xjgaBXd2HOcRznkuC8nLCZ/aaZNc3s8zH7Z82s38ymzewR\nM9u5WB+O4ziXMyt2wmb2JgCfAPBCzH4/gHvnfnYngCkAD5sZ/63lOI5zmbOiNWEz6wTwlwA+DuB3\nYj++D8CDIYRvzLX9KIABAB8E8NXF+mwCiK4miQVJsY4UD1hQCbdOjfA64H//L39Ctje/811ke+sv\nfIwPmeXMavH1N7Wutsgiq7CodsnqFMX3lWvOwmYiECaodTs5Bx7b5GR0DfHZZ3dRm1f28Prv/oOc\n0ezAgWNkaxfZ7T72sevJtrY9aivP8Lrxtx77IdkqYk2xWuYgiVPHeK20kOM//HJCR+htj9pUGada\nnc/36BAHGFQqHLAwOc1rpZPTIstZLJCm2eQ1UBUrNDglMrxV+Zi1Go9N3uKNaLtSjoNehkV2tHYT\nmexExsJajq9BRty7zUZ030pV6CXDR8h2tDifzW1sgtfBF2Olb8JfAvD3IYRHIwMz2wFgA4CzYU8h\nhHEATwO4a4XHchzHed2y7DdhM/t5ALcCeKP48QbM/o4biNkH5n7mOI7jLGBZTtjMtgD4AoB3hxBE\nQLjjOI6zHJb7JnwHgHUAnrX5rCpZAG83s3sBXIfZBcI+RN+G+wBwDfEF/OOPDqIU+y7wDZvW4ubN\n/E2k4zhOq3ByfBID41PIDD511larJ39HXa4T/haAN8RsfwZgN4DfDyEcMLOTAO4BsAsAzKwbwJsx\nu468KD/74/dg6/q1Z7frOf6AvpFlWzMb/eiiKbJE1YUQNTXNH1MP1DlD04wQaDpEMrQ4UvxSQRii\nncpy1hTCWUYu6YdzbJ0ZiDApmyxvlIxQiZ7frT2c4Wz7B24jW0cnn9yxIRZjmkf2kW2zcbtb3/rm\nyPbAAIu0X//6N8k2PMSCWzawqFUS2fhGRGBGVxfPf2wqKkSNTQxTm7LIEKYecH3PKHGbTfG7SN2T\n2SyLX0EIeFUhSIsYKCk+Z2JBP6V2LjemJjAuxDqZeU9kCqzXRPBRTCAdFcJcaYGbKXV0YltHJzZu\nu/WsbWx8FI8/8x3aT7EsJxxCmAIQCXMysykAQyGE3XOmLwD4jJntA3AIwIMAjgH42nKO5TiOczlw\nIcKWI7/SQgifM7N2AF8G0AvgcQDvCyGI71Qcx3Eub87bCYcQ6OPaEMIDAB44374dx3Fe73juCMdx\nnBRpmSxqq295O9bvuOrs9ot7D1KbeHYjADh1OiqCjI3zIv22zRvJtvcEC3MvnuQomMni98j2Mx98\nB9m6u5WIEMWUKqIi2oS4EY9qAoCM1OVi/SXTZmTDRiNZ5JSJMjTFXLThpjX8lUtj9WqyTc/w9Vu9\nahXZ8t1vItuoiGQc3B3N1DY9xf1PjrMINz3F0XGrV3WTDRm+LhMigdboFJcaqlaj57dWVxnqxAUU\nqQKVmKbuLZMRmrE2qi9ByLBY19bBUW5BZNlrCCExhOj5aC/yDZ4vdpItJ8oxTU7w9RudYGFVPWul\nUtSWETf9aIUv8sT+H539/3JF5WzT+Juw4zhOirgTdhzHSRF3wo7jOCniTthxHCdFWkaY27xjK668\n/uqz23/7yBPUZmCAxY2J0ajQolIGZppsu2oL5xMqC1Fv125Oowh7nEw/+6G7I9udIqxuRpRZKpd5\nAb8uBLF6jaOkLCuijmIagio9BBF9d/o0R3k9+8J+svV087zuuO0qsmVKXZHthhAuJ0W5oIqIEAM4\nPWIwvqYHj/eTrVCItnvmmX+hNuUyiywNoU2NTPJ1yYkITZ1xlc95oRAVtvIi1aKOUUya6nTp+2Nu\ncJHNhkgDOSmi0hpN4T5MnI+siPYU5yPe38QUX5fVOT65ne1tZMuLdtOTnAJ0Rlz7uGCqrl2zwc9j\nrTyfmrUmzuFi+Juw4zhOirgTdhzHSRF3wo7jOCniTthxHCdFWkaYW7d6FTb1zUdVrVnNkTflSRGF\nEqvB1Wjy75WJSRZ2NosoulMNFuHWb2YB7/k9R8lW/IfHIts7tnGE2ED/cbLVhOBWlXW6ODpJRTZl\nY2F0QdWOE1FC//TdH5HtsSdeIdsbruPzUZ/mc37sSFQEefpFFuHKVSHOiJpq1SqLdXWhnP3g+WfJ\ntmVTdLyHDx+mNhv6+FptEfeHSo+oItqUsKWEGhU1FicjlDRt42sgbWIO9Vg05uHDJ6jN+DiLWjLa\nM2H6TJP1C6PbM2U+Z6PG4vaqHj5AqSjEujynws1P8X05NTEW2Q7iXstmWESt1+fvUxUluBj+Juw4\njpMi7oQdx3FSxJ2w4zhOirgTdhzHSZGWEeZKpSLaF0S+bN7cR22OH+eIuUasOOjkNAtdjSov8Pef\n4r7KQkE4sfsA2TpKvCj/p//1/41snx7hBf+3vvlWsnW1cV8Tkyw+lAqqxhcv/mdj6kY2w+djepqF\nhplx/n28vmMt2RoTLHg8+l1OO/ry3pOR7YPHOCKvUOQ5ZYRgUxfzbBf1x1bVWcBbuyoq8F555ZXU\nJgQhVom0kiqSsSlETlU/TaUAzWYzsTbcSKYOFUYpwon7WdWiOzkQTeV58hSn9qyLunbqWsGSRfNl\nRLtsLCVqQwhi00Ksy2U4mq+HM14il+Noz/Y2vo9yMdFtYnyM2jQbfK8t1CST1mIE/E3YcRwnVdwJ\nO47jpIg7YcdxnBRxJ+w4jpMiLSPMIQRggQCzeRNHMWXze8k2OR0V2GbKLCCURdTYnr3c17VX8TG/\n/wTXmCuWWJwqZaMCzd1vu5Pa3HUX10UbOMFRdM2qiOI5dYhsdfErNJ7CL7D2hWOnOfLw1u3Xk+2G\nK9/IY8uzkPHM8y+TbfVY9MBr12+hNuKyyKim9g4+Zr7A7XK5AtmysdSmSuRr1NmmIhnjkWWzNpHm\nMGG0VFyuUiJcUtSuDSEanh5igbT/5OnItpbW+AhafBLiooiiU6Xz4oJjXCADtDgqHnlgQkTWdfJ1\nyWX5WW4WogJeZy/PaWqcz2OlOv9cqVSoi+Fvwo7jOCniTthxHCdF3Ak7juOkSMusCZ84OYDeVfPZ\nyVaLr6371nNmtYnx6JpwrcQLRD2d7WS7Yutqst1+601ku/GGa8Q4eO24pyu6tpTP8/pkTpSvufrq\nnWSbHBsm29ieJ7m/qUGyNS26Flut86LwTKaXbOjg862CRoZPnSJbXqwDXrklugbcEIuAJtb8MlkR\nlEIWoCkW3Rpy7TEWACCCMOLlbACd4UyuJ4t1Yhl0kSCGQe2nspKpTGhqX0VXJ6+v79wRvVbH+vka\nj46yTqGCUhKaEqFmpIJSajV1/cT9Fvh+7u7kdrls1F80s/wsd3Wz/2jW5teEa/UaRN45ib8JO47j\npIg7YcdxnBRxJ+w4jpMi7oQdx3FSpGWEuZ6eLqxes+rs9uq1vPCtPtBvNt4W2V61ikWn3p4usrW1\ncUYlVa7liSdYEMuCBZrO9qgwV6lwQER5eoZsSqzbvYcDSTqbPN5Skc9RJRMVtipCoJgZ43GMHDpJ\nttFR/iC9JrJpKRErbrIszzMvhDn1Eb8Sp5RIpoIkarGAhXqNhTQl4ijBTZWKUpnEmqKdCnaI76uz\nry2932z/TCHPj7eqPhQP1piY5KxkECWVpOKW1JagWWORsBHaT10X8X5ZC3w+Jqb5OW0vRo+by/Kz\n1xT3bk/bvKBXrlbAueg0/ibsOI6TIu6EHcdxUsSdsOM4Toq4E3Ycx0mRlhHmVq3qxfp1a85uV4WA\ncsuNN5BtYeYiAHj44W9TmzfefjvZinleWC+XeZG+p5sjjILITjU2Fi2BUq1x+RMV6fTSi8+T7St/\n8RWy/crHP0G2mTqPd3oyOo6RES7NMj7G0U+qfI0SmFR0WTbPUW7FYlSoDAmjwVS5IBVt1xAinMqw\nVYvdR1qE477U2M4nok2KabF2SpjLqrJFwqbUrykhOh08IgTYsWhsV5AyX7LSS5KE7fhUqvJJyrS0\nMAwAZZUZrykytdWjwnVHkfcriI8EaguEuXiZsXPhb8KO4zgpsiwnbGa/a2bN2L+XY20+a2b9ZjZt\nZo+YGSdHcBzHcQCs7E34JQB9ADbM/XvrmR+Y2f0A7gXwCQB3ApgC8LCZcQYMx3EcZ0VrwvUQAqfv\nmuU+AA+GEL4BAGb2UQADAD4I4KsrG6LjOM7rl5U44avN7DiAMoCnAHw6hHDUzHZg9s34rDIWQhg3\ns6cB3IUlnPCRvYfRkZ0XwTZeuZXaNBq8QF6JiWnr1nLEXK3GEWJDQ9xXtcpiWkGUzJmZ4f7iop4S\nT+JpFQGgv7+fbJ0dnHrz0OFDZCs2ODXfeEwgVJFfSuhSfxSZiJLKF4RQlOXbqFqPimTqmGoYSnBT\nEVFB9qdEt1gqy4TliNT102IdmXQqSxlwFuKGRMdUZYvGxjlx4qGjLMJNTbFYR0dIOE8VfSeFsyAE\nTXnelhrYYsF3yf6glwKveD4qsaOUhcheyrGtozTvK0KTReLFWO5yxPcB/DKA9wL4JIAdAP7ZzDow\n64ADZt98FzIw9zPHcRwnxrLehEMIDy/YfMnMngFwGMBHALxyIQfmOI5zOXBe3wmHEMbM7FUAOwF8\nF7N/jPQh+jbcB+C5pfr6w8//Abo65xPtFDva8KGf/jB++mc+fD5DdBzHuahMTU9hamYa2QXLd0kr\nbgPn6YTNrBOzDvjPQwgHzewkgHsA7Jr7eTeANwP40lJ9/W//6/24/rr5YAy1Juw4jtNqdLR3zP5b\nsCY8Uynj4LFjifZflhM2sz8E8PeYXYLYDOD/AFAD8N/mmnwBwGfMbB+AQwAeBHAMwNeW6vvZx5/E\n4L4jZ7ff81F+A1YiRT4W+bZlKzvvqUkWLWoiekZGRAkBIS8ixOoxIUpF38VFs9mxsbh262238b6j\nI2TLNVggjAtWSqxStrqK8Mvy5JW4wTFHQDMmN6hINTkOFTEnxTTeV4l16rhxMkKADEGlskwWSaZQ\nwlZ8uBnRlxIqh4bHyRZPRwkAlSrf4yqaL44+Y7xfU0Sq6UyWK6wyl7BWn7osylckvVbxXSt17qtS\n57lPLkhfW6/z87QYy30T3gLgrwGsATAI4HsA3hJCGAKAEMLnzKwdwJcB9AJ4HMD7QgjJR+Q4jnMZ\nsVxh7hcStHkAwAMrHI/jOM5lheeOcBzHSRF3wo7jOCnSMqksG80qGs3K2e3REa5vtnljH9l27doV\n2d5/8Di1ufqaq8jW3s5RaXFxDeAUlQAwMSFSQcZEkMlJbnPwwH7ua5yFudtuv5lsh/byZ9jNmoou\ni26bqIWVy6roOG4nRbhMMoEtLowo0VOlymwqAS+hMFevs5gWl4pyOb7lVWZIEUglo6vqwjYjRNlc\njsXcPI2F5zQi0o4ODKraf3zvShlKiV3URAiVoqtMSBZVmDSNadwm5Tw9qWTNEo6NLGr84gu0hc9L\no+mpLB3HcS4J3Ak7juOkiDthx3GcFHEn7DiOkyItI8ztuOVG7Lz66rPb1QqLG888/STZfvu3fjuy\nbRkWQO779d8g29p1q8lWFRFGE+McnTQ8NES28nQ0Ki+b4ZX7A/tZXBsf46i3DFiYy6jUeEJMY2Fu\n6dpmi9pURJsQolS7uJbWVCk1RSSSjIRLmOJRp5Vc+j1DReSp85FVgqY4ZrajjY1CKoqny1SRZb29\nXWTr6e4km0pvqeraJYkkkyXsBKqruqgN2RTzUmlM4/kWZBpWaRP1BoVIK21KbK3H6xIm26+xcD9L\nnjvC34Qdx3FSxJ2w4zhOirgTdhzHSZGWWRMudXSgo6v77HY2x+udjz3+ONl6eldFto8f52CNPa/s\nJlu1up1sQ0OciWpqgteE20pFsuVjGccGT3DZosP7OVgDWe7r9GC8OIleL8yIcxRi63uyrJAsIaTW\ndVWQBJlQF8Z6I76+x2vaYhlTrr+p8apxqGxoSfqXH/snKb8DIJ/nR6ip+hNroKaMMYoFLq+VNAhD\nEcSJi+sGWbEoXK7y9VNZ66oZkblNXBcVvFIsRW35XDI9Q4V1qGAKdbblPR67R3TJLaVdzI9tbGwU\njz/Ovkjhb8KO4zgp4k7YcRwnRdwJO47jpIg7YcdxnBRpGWEuk4l+JH78ONdnGh7iEj+33h4tBVQX\nAtCRQwfI1mxUyNbV2UG29jYWRg4fPEi2vTHxryaCTfLiY/9TwywG7tv7KtlW9fBH+1lRfggxEaSh\nBDdV8kiKX6pckPpwnc95I1b+RQkZqn89jmQfvsdFSYDFIx2oIvoS440HVyzan1CAkoiGqn91jTMi\nSGexokRxmk3eNy4Qqp6KBZFlTwRJZDLKpajAF9Uqem+pYBAtzDEZGVgjBEJ1z4To4LSQLca2oK9K\nmf3GYvibsOM4Toq4E3Ycx0kRd8KO4zgp4k7YcRwnRVpGmDs9eBrd3SfObu/bt5cbBV7Nv/W2N0W2\nq2+CdHoAAA2eSURBVFUW3Hq6e8jW2cGZqA6KY7700otkGxjgiLZ4RFh7O2fS6hAllfr61pKtUOBo\noqbMiEUmNOtLR6olKS0DaEFCZetS2anigpgaqxL5ko5NiViqDFKcpBnklJCmjinHJqPtVHmn6L5K\nTMqKqDE1jqRkVJa6BKJeRpS1Uucon1fnKFmUW/wmaaqQyoTvjSoaMamoFxeMazURBSiz8833r567\nxfA3YcdxnBRxJ+w4jpMi7oQdx3FSxJ2w4zhOirSMMDdwcgCF/HyUyeHDh6hN76o1ZFu/bn1ke+Om\nTdRm94ssrr26Zw/ZhkTZorWrWdS7+YadZCuWSpHt9naOvivE2gBAJssinPrdqKLBkghbSSPQkqaQ\nVFFSzcbSol5SwS2pCKfL9Fw4pJCmIqdU2krVn8ityMdIJo5KcVEctSmOmaS/xFFpMgpQRaCdO+3j\novsKcS3pddflr5KJsvHTVqvyOSsUeL9icf5ZzueSu1Z/E3Ycx0kRd8KO4zgp4k7YcRwnRdwJO47j\npEjLCHNDQ6cj9bqOHeFUlj3d68hWLkcj5CoVjm556qmnyNZR4lRzt950NdnWr+OINiWmkU2lGzRh\nU5FqKhJORA8liXI7PxEuYTslWMVMaj+dGlJEwom56yi3pd8pkopOiYU/KbipKLelU2gGKaQlE5OU\nIKYjzsSesf5eC/FLnQ8WldU4RFpMcd1rdRWxlqy/uMiZL7CbVD0t9D3VmkfMOY7jXBK4E3Ycx0kR\nd8KO4zgp4k7YcRwnRVpGmHvsO99BqTSf/nFicoLavP3uHydbuTwT2Q4NFuauv3ob2TauZ8EtX+CI\ntqb6PZURUW7x2lpCnEmSzhBILsIpW1xMU+La+aSQVBFzWlAiUyJUX0qHupDCXOJIqvOoO6fC6OK3\niOorcx7jNSEEJxHdzke8TCrWrTTiUd5rMvou2b4mo1PjbRgpGi6sB5hsSAD8TdhxHCdVlu2EzWyT\nmX3FzE6b2bSZvWBmt8fafNbM+ud+/oiZcbIFx3EcZ3lO2Mx6ATwBoALgvQCuB/DrAEYWtLkfwL0A\nPgHgTgBTAB42s+Q1oB3HcS4Tlrsm/JsAjoQQPr7AdjjW5j4AD4YQvgEAZvZRAAMAPgjgqysdqOM4\nzuuR5TrhnwTwTTP7KoC7ARwH8FAI4U8BwMx2ANgA4NtndgghjJvZ0wDuwjmccH//8Ygwkcvzi/P+\n/fvIdv3x6yLbY8Onqc32rVvJFlSNKCFkqGgcUwJQgnSASaPSEtd7E/vWY5FCSftXyIg5lcpSCB6I\niSWyJtxK1TsslkZxaZKLTsn2lWKavGeWFqzUyDIqNaRsx6h7vAklrC59PyQV3C70vsn6TyrmqntQ\niIsxm3IVWVEPMDLPZeiOy10TvhLArwLYA+A9AP4EwBfN7Jfmfr5h7vDxSpgDcz9zHMdxFrDcN+EM\ngGdCCL8zt/2Cmd0E4JMAvnI+A6nV65HfjrV6HblcHvm8SnruOI7TGhw9ehRHjx2NvPyqCs2LsVwn\nfALA7phtN4Cfnvv/k5j9q6oP0bfhPgDPnavjfC635HKE4zhOq7F161Zs3bo1shwxMjqK73z3O4n2\nX64TfgLAtTHbtZgT50IIB83sJIB7AOwCADPrBvBmAF86V8elUhG53PyabF2sPZ7oP0q2xx59NLLd\n28lT6urkUkMqy1kmK05HwqCL+LpXfG0WWKQ8jlgvU/uqZde6CExp1GNlhWTJnGTZ0fSabdLSN9Ht\nINYil/VFe4yVfuyv1gDl9RTjzYp7Ien6fVatJyfIXtYUJX5MBCeo66xseu04XlYoWckmufCq+k8Y\n1JEE/eypY8qRiP7kQaKbScex1E6LsFwn/H8BeMLMPo1Zke3NAD4O4FcWtPkCgM+Y2T4AhwA8COAY\ngK8t81iO4zive5blhEMIPzCzDwH4fQC/A+AggPtCCP9tQZvPmVk7gC8D6AXwOID3hRCqF27YjuM4\nrw+WnTsihPA/APyPJdo8AOCBlQ3JcRzn8sFzRziO46RIy2RRy2YzyGXnxTIloNRrZbLVKtFsa+3r\nt1AbVY6IlCNAf5UtSBI4cX5lhYRI1lBlkJYOnNAZzlQ5IhVwwSYlZGSzLHLS2KRSsvIMYYpkok0y\nYWelwSCLoUSyRkwgVRnTglR4lBiYpJW+zhYLPEgsRF1AwS0p+pjJ2iUpqTRnXbL/Rc6uargk/ibs\nOI6TIu6EHcdxUsSdsOM4Toq0nBMuVypLN2phDh48lPYQzpv+/hNpD+G8OH78eNpDOC8OH+GgpEuN\nw0eOpD2E8+LosWOv2bFaRphbs3oV2tpKOHTkGPr61qG3t4farF3DJYm6u7si29mcCndWoohaRE+W\ncexc0XD7DxzA5s2b5Bq9FGcSlx8S/QnRLW5TIpxI6BURgE6cOIktmzbpyKlklXtgMWtdRSupylEJ\nI6JkKaO5fY+f6MfmLWcE2vjOKrJMceFK8sz2JrKtxdvMnZAjR49h+7bZklyWUCCU11mdyxWWGko6\n9zPtjhw+iitE9sJzEZ9D0uxrSnBTGdMUMkoRTRw7dgxXXHHmHkoWQRh59C5iFjXHcRznAuJO2HEc\nJ0XcCTuO46RIK6wJl4B5Qa7RaGJmpoxcjoeWE0EX8bydmZzKP5zs43aFWgprNNSa8GzDWrWG4eER\n+vnsKMQ4VGCGLHmvxrZ0AIf8OH+J78xr9TrGxsZFI+jS7QnWGRtJ1/dkpjJxTLkmPPufWq2G0bHR\nuZ25WRLUeqoiaXBJNrv0uuKZOdVqNQyPjJzpLNE45HVOuv5LAzmPQJW5/qu1GkZG9HOwGPEAraRr\nwrqKxsozvDWbAbVaDSMjo2d64/5FXwuHPzFxNoistNQY7GJHuCw5ALN/A+CvUh2E4zjOxeEXQwh/\nfa4GreCE12C2cvMhAByX7DiOc+lRArAdwMMhhKFzNUzdCTuO41zOuDDnOI6TIu6EHcdxUsSdsOM4\nToq4E3Ycx0mRlnHCZvZrZnbQzGbM7Ptm9qa0x7QYZvY2M/u6mR03s6aZ/ZRo81kz6zezaTN7xMx2\npjFWhZl92syeMbNxMxsws78zs2tEu5acg5l90sxeMLOxuX9PmtlPxNq05NgVZvabc/fR52P2lp2D\nmf3u3JgX/ns51qZlxw8AZrbJzL5iZqfnxviCmd0ea3PR59ASTtjMfg7AHwH4XQC3AXgBwMNmxhl7\nWoMOAM8D+BREOICZ3Q/gXgCfAHAngCnMzkdlF0qDtwH4z5itlv1uAHkA/2RmbWcatPgcjgK4H8Dt\nAO4A8CiAr5nZ9UDLjz3C3MvGJzB7zy+0XwpzeAlAH4ANc//eeuYHrT5+M+sF8ASACmY/kb0ewK8D\nGFnQ5rWZQwgh9X8Avg/gPy3YNgDHAPxG2mNLMPYmgJ+K2foB/McF290AZgB8JO3xLjKHtXPzeOsl\nPIchAP/uUho7gE4AewC8C8B3AHz+Ujn/mH1hevYcP2/18f8+gMeWaPOazCH1N2Ezy2P2bebbZ2xh\ndsbfAnBXWuNaKWa2A7NvBQvnMw7gabTufHox+0Y/DFxaczCzjJn9PIB2AE9eSmMH8CUAfx9CeHSh\n8RKaw9VzS3L7zewvzWwrcMmM/ycB/MDMvjq3JPesmX38zA9fyzmk7oQx+xaWBTAQsw9g9iRcamzA\nrEO7JOZjs0H2XwDwvRDCmTW9lp+Dmd1kZhOY/XPyIQAfCiHswSUwdgCY+8VxK4BPix9fCnP4PoBf\nxuyf8p8EsAPAP5tZBy6N8V8J4Fcx+5fIewD8CYAvmtkvzf38NZtDKyTwcdLlIQA3APhXaQ9kmbwC\n4BYAPQA+DOAvzOzt6Q4pGWa2BbO/+N4dQqgt1b4VCSE8vGDzJTN7BsBhAB/B7LVpdTIAngkh/M7c\n9gtmdhNmf6F85bUeSNqcxmxJi76YvQ/Aydd+OOfNScyuabf8fMzsjwG8H8A7QggLaxq1/BxCCPUQ\nwoEQwnMhhN/GrLB1Hy6BsWN2+W0dgGfNrGZmNQB3A7jPzKqYfdtq9TlECCGMAXgVwE5cGtfgBIDd\nMdtuAFfM/f9rNofUnfDcm8APAdxzxjb3J/I9AJ5Ma1wrJYRwELMXaeF8ujH7JULLzGfOAX8AwDtD\nCJGCYJfKHGJkABQvkbF/C8AbMLscccvcvx8A+EsAt4QQDqD15xDBzDox64D7L5Fr8ASAa2O2azH7\nNv/aPgNpq5RzquNHAEwD+CiA6wB8GbNq97q0x7bIeDsw++DcitmvCv7D3PbWuZ//xtz4fxKzD9t/\nB7AXQCHtsc+N7yHMforzNsz+Zj/zr7SgTcvOAcDvzY19G4CbAPyfAOoA3tXqYz/HnOJfR7T0HAD8\nIYC3z12DHwPwCGbf4NdcIuN/I2b1hE8DuArAvwEwAeDnX+trkPrJWDDhT2E2neUMgKcAvDHtMZ1j\nrHfPOd9G7N9/XdDmAcx+4jIN4GEAO9Me94KxqbE3AHw01q4l5wDgTwEcmLtXTgL4pzMOuNXHfo45\nPbrQCbf6HAD8DWY/I50BcATAXwPYcamMf2587wewa258PwLwMdHmos/BU1k6juOkSOprwo7jOJcz\n7oQdx3FSxJ2w4zhOirgTdhzHSRF3wo7jOCniTthxHCdF3Ak7juOkiDthx3GcFHEn7DiOkyLuhB3H\ncVLEnbDjOE6KuBN2HMdJkf8f4nxEByLfdAkAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7fd778317a90>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Example of a picture\n",
"index = 1\n",
"plt.imshow(train_x_orig[index])\n",
"print (\"y = \" + str(train_y[0,index]) + \". It's a \" + classes[train_y[0,index]].decode(\"utf-8\") + \" picture.\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of training examples: 209\n",
"Number of testing examples: 50\n",
"Each image is of size: (64, 64, 3)\n",
"train_x_orig shape: (209, 64, 64, 3)\n",
"train_y shape: (1, 209)\n",
"test_x_orig shape: (50, 64, 64, 3)\n",
"test_y shape: (1, 50)\n"
]
}
],
"source": [
"# Explore your dataset \n",
"m_train = train_x_orig.shape[0]\n",
"num_px = train_x_orig.shape[1]\n",
"m_test = test_x_orig.shape[0]\n",
"\n",
"print (\"Number of training examples: \" + str(m_train))\n",
"print (\"Number of testing examples: \" + str(m_test))\n",
"print (\"Each image is of size: (\" + str(num_px) + \", \" + str(num_px) + \", 3)\")\n",
"print (\"train_x_orig shape: \" + str(train_x_orig.shape))\n",
"print (\"train_y shape: \" + str(train_y.shape))\n",
"print (\"test_x_orig shape: \" + str(test_x_orig.shape))\n",
"print (\"test_y shape: \" + str(test_y.shape))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As usual, you reshape and standardize the images before feeding them to the network. The code is given in the cell below.\n",
"\n",
"<img src=\"images/imvectorkiank.png\" style=\"width:450px;height:300px;\">\n",
"\n",
"<caption><center> <u>Figure 1</u>: Image to vector conversion. <br> </center></caption>"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"train_x's shape: (12288, 209)\n",
"test_x's shape: (12288, 50)\n"
]
}
],
"source": [
"# Reshape the training and test examples \n",
"train_x_flatten = train_x_orig.reshape(train_x_orig.shape[0], -1).T # The \"-1\" makes reshape flatten the remaining dimensions\n",
"test_x_flatten = test_x_orig.reshape(test_x_orig.shape[0], -1).T\n",
"\n",
"# Standardize data to have feature values between 0 and 1.\n",
"train_x = train_x_flatten/255.\n",
"test_x = test_x_flatten/255.\n",
"\n",
"print (\"train_x's shape: \" + str(train_x.shape))\n",
"print (\"test_x's shape: \" + str(test_x.shape))\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"$12,288$ equals $64 \\times 64 \\times 3$ which is the size of one reshaped image vector."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3 - Architecture of your model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now that you are familiar with the dataset, it is time to build a deep neural network to distinguish cat images from non-cat images.\n",
"\n",
"You will build two different models:\n",
"- A 2-layer neural network\n",
"- An L-layer deep neural network\n",
"\n",
"You will then compare the performance of these models, and also try out different values for $L$. \n",
"\n",
"Let's look at the two architectures.\n",
"\n",
"### 3.1 - 2-layer neural network\n",
"\n",
"<img src=\"images/2layerNN_kiank.png\" style=\"width:650px;height:400px;\">\n",
"<caption><center> <u>Figure 2</u>: 2-layer neural network. <br> The model can be summarized as: ***INPUT -> LINEAR -> RELU -> LINEAR -> SIGMOID -> OUTPUT***. </center></caption>\n",
"\n",
"<u>Detailed Architecture of figure 2</u>:\n",
"- The input is a (64,64,3) image which is flattened to a vector of size $(12288,1)$. \n",
"- The corresponding vector: $[x_0,x_1,...,x_{12287}]^T$ is then multiplied by the weight matrix $W^{[1]}$ of size $(n^{[1]}, 12288)$.\n",
"- You then add a bias term and take its relu to get the following vector: $[a_0^{[1]}, a_1^{[1]},..., a_{n^{[1]}-1}^{[1]}]^T$.\n",
"- You then repeat the same process.\n",
"- You multiply the resulting vector by $W^{[2]}$ and add your intercept (bias). \n",
"- Finally, you take the sigmoid of the result. If it is greater than 0.5, you classify it to be a cat.\n",
"\n",
"### 3.2 - L-layer deep neural network\n",
"\n",
"It is hard to represent an L-layer deep neural network with the above representation. However, here is a simplified network representation:\n",
"\n",
"<img src=\"images/LlayerNN_kiank.png\" style=\"width:650px;height:400px;\">\n",
"<caption><center> <u>Figure 3</u>: L-layer neural network. <br> The model can be summarized as: ***[LINEAR -> RELU] $\\times$ (L-1) -> LINEAR -> SIGMOID***</center></caption>\n",
"\n",
"<u>Detailed Architecture of figure 3</u>:\n",
"- The input is a (64,64,3) image which is flattened to a vector of size (12288,1).\n",
"- The corresponding vector: $[x_0,x_1,...,x_{12287}]^T$ is then multiplied by the weight matrix $W^{[1]}$ and then you add the intercept $b^{[1]}$. The result is called the linear unit.\n",
"- Next, you take the relu of the linear unit. This process could be repeated several times for each $(W^{[l]}, b^{[l]})$ depending on the model architecture.\n",
"- Finally, you take the sigmoid of the final linear unit. If it is greater than 0.5, you classify it to be a cat.\n",
"\n",
"### 3.3 - General methodology\n",
"\n",
"As usual you will follow the Deep Learning methodology to build the model:\n",
" 1. Initialize parameters / Define hyperparameters\n",
" 2. Loop for num_iterations:\n",
" a. Forward propagation\n",
" b. Compute cost function\n",
" c. Backward propagation\n",
" d. Update parameters (using parameters, and grads from backprop) \n",
" 4. Use trained parameters to predict labels\n",
"\n",
"Let's now implement those two models!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 4 - Two-layer neural network\n",
"\n",
"**Question**: Use the helper functions you have implemented in the previous assignment to build a 2-layer neural network with the following structure: *LINEAR -> RELU -> LINEAR -> SIGMOID*. The functions you may need and their inputs are:\n",
"```python\n",
"def initialize_parameters(n_x, n_h, n_y):\n",
" ...\n",
" return parameters \n",
"def linear_activation_forward(A_prev, W, b, activation):\n",
" ...\n",
" return A, cache\n",
"def compute_cost(AL, Y):\n",
" ...\n",
" return cost\n",
"def linear_activation_backward(dA, cache, activation):\n",
" ...\n",
" return dA_prev, dW, db\n",
"def update_parameters(parameters, grads, learning_rate):\n",
" ...\n",
" return parameters\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"### CONSTANTS DEFINING THE MODEL ####\n",
"n_x = 12288 # num_px * num_px * 3\n",
"n_h = 7\n",
"n_y = 1\n",
"layers_dims = (n_x, n_h, n_y)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# GRADED FUNCTION: two_layer_model\n",
"def two_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False):\n",
" \"\"\"\n",
" Implements a two-layer neural network: LINEAR->RELU->LINEAR->SIGMOID.\n",
" \n",
" Arguments:\n",
" X -- input data, of shape (n_x, number of examples)\n",
" Y -- true \"label\" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples)\n",
" layers_dims -- dimensions of the layers (n_x, n_h, n_y)\n",
" num_iterations -- number of iterations of the optimization loop\n",
" learning_rate -- learning rate of the gradient descent update rule\n",
" print_cost -- If set to True, this will print the cost every 100 iterations \n",
" \n",
" Returns:\n",
" parameters -- a dictionary containing W1, W2, b1, and b2\n",
" \"\"\"\n",
" \n",
" np.random.seed(1)\n",
" grads = {}\n",
" costs = [] # to keep track of the cost\n",
" m = X.shape[1] # number of examples\n",
" (n_x, n_h, n_y) = layers_dims\n",
" \n",
" # Initialize parameters dictionary, by calling one of the functions you'd previously implemented\n",
" ### START CODE HERE ### (≈ 1 line of code)\n",
" parameters = initialize_parameters(n_x, n_h, n_y)\n",
" ### END CODE HERE ###\n",
" \n",
" # Get W1, b1, W2 and b2 from the dictionary parameters.\n",
" W1 = parameters[\"W1\"]\n",
" b1 = parameters[\"b1\"]\n",
" W2 = parameters[\"W2\"]\n",
" b2 = parameters[\"b2\"]\n",
" \n",
" # Loop (gradient descent)\n",
"\n",
" for i in range(0, num_iterations):\n",
"\n",
" # Forward propagation: LINEAR -> RELU -> LINEAR -> SIGMOID. Inputs: \"X, W1, b1, W2, b2\". \n",
" # Output: \"A1, cache1, A2, cache2\".\n",
" ### START CODE HERE ### (≈ 2 lines of code)\n",
" A1, cache1 = linear_activation_forward(X, W1, b1, 'relu')\n",
" A2, cache2 = linear_activation_forward(A1, W2, b2, 'sigmoid')\n",
" ### END CODE HERE ###\n",
" \n",
" # Compute cost\n",
" ### START CODE HERE ### (≈ 1 line of code)\n",
" cost = compute_cost(A2, Y)\n",
" ### END CODE HERE ###\n",
" \n",
" # Initializing backward propagation\n",
" dA2 = - (np.divide(Y, A2) - np.divide(1 - Y, 1 - A2))\n",
" \n",
" # Backward propagation. Inputs: \"dA2, cache2, cache1\". \n",
" #. Outputs: \"dA1, dW2, db2; also dA0 (not used), dW1, db1\".\n",
" ### START CODE HERE ### (≈ 2 lines of code)\n",
" dA1, dW2, db2 = linear_activation_backward(dA2, cache2, 'sigmoid')\n",
" dA0, dW1, db1 = linear_activation_backward(dA1, cache1, 'relu')\n",
" ### END CODE HERE ###\n",
" \n",
" # Set grads['dWl'] to dW1, grads['db1'] to db1, grads['dW2'] to dW2, grads['db2'] to db2\n",
" grads['dW1'] = dW1\n",
" grads['db1'] = db1\n",
" grads['dW2'] = dW2\n",
" grads['db2'] = db2\n",
" \n",
" # Update parameters.\n",
" ### START CODE HERE ### (approx. 1 line of code)\n",
" parameters = update_parameters(parameters, grads, learning_rate)\n",
" ### END CODE HERE ###\n",
"\n",
" # Retrieve W1, b1, W2, b2 from parameters\n",
" W1 = parameters[\"W1\"]\n",
" b1 = parameters[\"b1\"]\n",
" W2 = parameters[\"W2\"]\n",
" b2 = parameters[\"b2\"]\n",
" \n",
" # Print the cost every 100 training example\n",
" if print_cost and i % 100 == 0:\n",
" print(\"Cost after iteration {}: {}\".format(i, np.squeeze(cost)))\n",
" if print_cost and i % 100 == 0:\n",
" costs.append(cost)\n",
" \n",
" # plot the cost\n",
"\n",
" plt.plot(np.squeeze(costs))\n",
" plt.ylabel('cost')\n",
" plt.xlabel('iterations (per tens)')\n",
" plt.title(\"Learning rate =\" + str(learning_rate))\n",
" plt.show()\n",
" \n",
" return parameters"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Run the cell below to train your parameters. See if your model runs. The cost should be decreasing. It may take up to 5 minutes to run 2500 iterations. Check if the \"Cost after iteration 0\" matches the expected output below, if not click on the square (⬛) on the upper bar of the notebook to stop the cell and try to find your error."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Cost after iteration 0: 0.693049735659989\n",
"Cost after iteration 100: 0.6464320953428849\n",
"Cost after iteration 200: 0.6325140647912678\n",
"Cost after iteration 300: 0.6015024920354665\n",
"Cost after iteration 400: 0.5601966311605748\n",
"Cost after iteration 500: 0.515830477276473\n",
"Cost after iteration 600: 0.4754901313943325\n",
"Cost after iteration 700: 0.43391631512257495\n",
"Cost after iteration 800: 0.4007977536203886\n",
"Cost after iteration 900: 0.35807050113237987\n",
"Cost after iteration 1000: 0.3394281538366413\n",
"Cost after iteration 1100: 0.30527536361962654\n",
"Cost after iteration 1200: 0.2749137728213015\n",
"Cost after iteration 1300: 0.24681768210614827\n",
"Cost after iteration 1400: 0.1985073503746611\n",
"Cost after iteration 1500: 0.17448318112556593\n",
"Cost after iteration 1600: 0.1708076297809661\n",
"Cost after iteration 1700: 0.11306524562164737\n",
"Cost after iteration 1800: 0.09629426845937163\n",
"Cost after iteration 1900: 0.08342617959726878\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdAAAAGHCAYAAAAA1gNPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3Xl8VNX5x/HPww4CsQiC/kQRhaoVlUQRRFRAxB2tWowi\nCIqlro1LbastotZ9xbrghlI1ivsuAkJdEJUEKBXcwV0EF1xARXh+f5ybOgyTbbLcycz3/XrNi+TO\nvXeeTEi+Oeeee465OyIiIlI9jeIuQEREpCFSgIqIiKRBASoiIpIGBaiIiEgaFKAiIiJpUICKiIik\nQQEqIiKSBgWoiIhIGhSgIiIiaVCAiqTBzI41s7VmtnnctYhIPBSgEhszGxGFUH7ctaTBo0eDZGb7\nmdnYuOtIZGabmtlkM/vKzFaY2SNmtmU1jt/GzJ4xs2/N7Aszm2Rm7cvZ9zgzW2hmq8zsLTM7OcU+\nM6L/n6kePybtO7Oc/Z6q/jshDUWTuAuQnNdQQ2gSUOzuP8VdSJr2B04ExsVdCICZbQDMBNoAFwI/\nA6cDM81sJ3f/qpLj/w94AfgK+HN0nrOA7c2sl7v/nLDv74EbgfuBK4F+wHgza+nulyec9kLglqSX\n2gCYAExJ2u7Ah9FrW8L2Tyr+yqUhU4CKAGbWwt1/qOr+HlZhyJjwNLNW7r6yOofUWTHpOQnYCtjF\n3UsBzOwZ4L/AGcC5lRx/DtAS2MndP46Ofw2YChwL3Bpta0EIxsfdfWh07G1m1hj4m5nd7O4rANx9\nevKLmNnR0Yd3p6hhhbsXV+3LlWygLlzJeGbWzMzGmdnbZvaDmX1gZpeaWbOk/Uaa2XQzWxrt97qZ\njUlxviVm9piZ7WNmr5nZKuCE6Lm1ZjbezIaY2YLoPP81s8FJ51jvGmjCefua2StR9+C7ZnZMihp2\nMLN/m9lKM/vQzM6J6q/0uqqZ3RF1U3Y1s6fM7Bvgrui53aNu0PcT3qurouAoO34iofVZ9vWuNbM1\nCc+bmf0x+rpXmdlnZnaTmW1Y4TeqZg4DXisLTwB3fxOYDvyuCsf/FniiLDyj46cDbyUd3x9oB9yQ\ndPz1QGvggEpe52jgO+CxVE+aWeOoNS05QC1QyWhmZsDjwG6ErrM3gB5AEdCN8IuzzBhCi+VRQhfg\nQcANZmbufmPCfg5sA9wTnfNm4M2E5/tF570B+BY4FXjAzDZP6EpMdQ3Uo5ruB24D7gBGARPNbI67\nL4q+pk2BGcAa4B/ASuB4Qou2Kl3aTvjZnULotjwjOgfAEYSW2A3AF0Av4BTg/4CyFtdNwKbA3oRA\nSG6N3gwMB24HrgW2jM6xk5n1dfc1lCP6o6ZNFb4G3P2L6BgDdiC8Z8leBQaZ2Qbu/n05r7kpsDEw\np5zj90v4vGf0b0nSfiXA2uj5e8p5nfaE96zY3Vel2KU78D3QzMyWErp/z0/sPpYs4+566BHLAxhB\nCJH8CvYZBqwG+iRtPyE6tnfCtuYpjn8aeDtp2+Lo2L1T7L8WWAV0SdjWI9p+YoraN09x3t0StrWP\nzndZwrbxhIDvkbBtQ2B58jnLeU8mRvtdmOK5VO/B2dHrbZaw7TpgTYp9d4++1qFJ2wdF24+swvd0\nbRUeaxKO2Sjadk6K8/0h+lq7VfCaBdHxR6d47tLo+KYJX/dP5ZxnKXB3Ba9zcnSufVI8dwvwN+AQ\nwh8lD0c1Fcf5M6ZH3T7UApVMdziwCHjLzDZK2D6D0HLqD8wGcPf/jYw0s7ZAU+B5YB8za+Pu3yYc\nv9jdp5XzmlPdfUnZJ+6+IOom7VqFehe6+6yEY5eb2ZtJxw4GXnb3BQn7fW1mdxN+SVfVTckbkt6D\nVoTW6MuEyzU9gY8qOefhwNfA9KT3ey6h67I/cG8Fxz9DaKVVR8vo3x9TPPdD0j41OX519G95165/\nqOR1jgKWAev9v3H30Umb7jazCcDxZna1u79awXmlgVKASqbrRuhuXZbiOSd03QFgZn0Jo0p7A62S\n9ssjdMeWWVzBa36YYttXwK+qUO8HVTh2C2BWiv3eqcL5y/zs7uuFoZl1Bi4gdF8nvmbZe1CZboTW\n8Ocpnlvn/U7F3ZcSWnLVUdYd2jzFcy2S9qnp8auAZin2K9s35etYuJ2mNzDe3ddWUEuiK4HRhD8o\nFKBZSAEqma4RsIBwzTPVyNEPAcysK6FlsCja90NCS+MA4I+sP2Cuol/I5V3jq8rI1ZocWx3rtbbM\nrBHhPdgQuJhwXfd7wvXPO6naoMFGhAA8itQ1p/pDJrGGFlQtqMvCFuBLwtezSYrdyrZVdDvIp0n7\nJh//pbuvTti3sZm1d/flCXU3JXQll/c6RxP+gEh5fbQcZX+ItavGMdKAKEAl070L7ODuMyrZ7yBC\ny+IgTxiJaWYD67K4NL0PbJ1ie7canrdHdI5j3P1/t1mYWaou1fIGK70LDARmJXYHV8NQwjXayjjQ\nGMItQWa2ANg5xX67Au95OQOIouM/MbNl5RzfC5iX8Pk8wh8GOxO6m8vsQvjjIXHfRIXAu9Xsit0q\n+rfCPzqk4dJtLJLpJgObmVnyNSbMrEV0nQ9+afk1Sng+j3APYKaZAvQxsx3KNphZO0KrrybWew8i\nf2T9wPw+et22SdsnE/6w/nvyyaNbNCprXZZdA63sMSjpuAeAXSxhVioz+zUwIKopsY6uUY9DogeB\nAy1MqFC230DCyNjE458jtHj/kHT8HwjvyZPJX5CZ7QRsS+p7PzGzNsm3VEXOJbzvyZMuSJZQC1Ti\nZsBxZrZfiueuAf5FuI/vRjPrD7xEaLlsS7hlYx+gFHiWMEjkiWjwRhvCrSFLgU51/UVU02WE0cXT\nzOw6wi/u4wkt01+R/uxMbxBakFea2WbAN4T7K1Pdv1lCeO+vM7MphFGx97n789H79+coOMre1+6E\nAUanAg+VV0Ca10Ah3HYzGnjKzK4gjBouInS5XpW073OEEa6JIXpRVN9MM7uW8P0/E5hPuJ2orL4f\nzOxvwD/NbDIh3PYg/PHyV3f/OkVtw6i4+zYfKDazYsJ17JaE26D6ABPcvbxWrTR0cQ8D1iN3H/xy\nK0h5j02j/RoTfhn+h3C/43LCoIxzgNYJ5zuAMFr0e0KQnEFogSbfbvIe8Gg5Na0Brk2x/T3gthS1\nV3pewojh6UnbdiBMXbeSMPDoL4R7LdcAHSp53yYSZr1J9dyvCaGwghBkNwLbR+cdnrBfI8IfKJ8R\nwmpN0nmOi97j7wijcucRQqpjHf5/2BS4jzDoagXwCNA1xX6LCd2pydu3Jdy29C3hHtg7y3svo69v\nIeFa+FvAKeXsZ4Rrma9WUHcXwsjkd6P/e99G793xcf+M6VG3D4v+A4hIzMzsGkIrrLXrB1Mk42XM\nNVAzO8nMFkdTh802s10q2Hdi2fRjtu7KBwvKO0YkkyROrRd9vhGhq/AFhadIw5ARLVAzG0robjmB\n0PVRRLi+1d0Thpon7N+GdW94bkLo3rvW3S+o+4pFasbM5hK6cBcRrtGOItxyMcDdX4qxNBGpokwJ\n0NnAK+5+WvR52XWH8e5+WRWOP4Qwim9Ld091E7xIRjGzCwmDXjYjDFApAcZ55bfriEiGiD1AoxuY\nVwKHuftjCdvvAPLc/dAqnOMxoJm771tnhYqIiCTIhGug7QmjLJOHvlfp9gMz24Sw2kLywrciIiJ1\nJhvuAz2WMOz90Yp2igZpDAaW8MsE0yIikltaEG49muLRknrpyoQALVvCqWPS9o6Ee9QqMxKY5JWv\nuTeYcmYSERGRnHM01ZvbeD2xB6i7rzazEsL8m4/B/wYRDSSsm1guM9uLMN9kqoV4ky0BuOuuu9h2\n221rULHURFFREVdffXXcZeQsvf/x0/cgXosWLWLYsGEQZUJNxB6gkauAO6IgLbuNpRXRFFxmdjFh\nVpoRSccdRxi9u6gKr/EDwLbbbkt+fn5l+0odycvL0/sfI73/8dP3IGPU+FJeRgSou082s/bA+YSu\n23nAYHcvW8WgE9A58ZhoEuxDCXNzVtldd4H+74qISE1lRIACuPsNhAmlUz03MsW2b4DW1X2dq6+G\n3/wGjjuu+jWKiIiUyYTbWOrV4YfD6NEweXLl+4qIiJQnY1qg9eXss6FZMxg2DNq0gf1SLaIldaaw\nsDDuEnKa3v/46XuQPWKfiai+RAv1lpSUlNCjRz6HHQbTpsGUKdCvX9zViYhIfSgtLaWgoACgwN1L\na3KunOvCBWjaNHTh9u4NBx4IpTV6C0VEJBflZIACtGgBjz4K22wDgwfDoqrcCCMiIhLJ2QCFcA30\n6aehUycYNAiWLIm7IhERaShyOkAB2rWDZ5+F5s1h773h00/jrkhERBqCnA9QgE02CQOKVq2CffaB\nL7+MuyIREcl0CtDIllvC1KmhBbr//vDdd3FXJCIimUwBmmC77cJtLQsXwpAh8IMWPRMRkXIoQJMU\nFMATT8CsWXDkkbB6ddwViYhIJlKAprDHHvDgg/DkkzBqFKxdG3dFIiKSaRSg5dh//7Byy913w6mn\nQo5M2CQiIlWUc3PhVsfQofDNN3DCCZCXB//4R9wViYhIplCAVmL06BCiZ54ZQvRPf4q7IhERyQQK\n0Co44wz4+uuwksuGG4YWqYiI5DYFaBWdf34I0TFjoG3bMEJXRERylwK0iszg2mtDd+4xx8CKFSFE\n8/LirkxEROKgUbjV0KgR3HYb/O53oSXaoUMYrXvLLfD553FXJyIi9UkBWk1NmoRbWz74AK68Msyf\nO2ZMmE93jz3gmmvg/ffjrlJEROqaAjRNnTvDKafAjBnw2WehFZqXFwYadekC+flw4YXw+uu6h1RE\nJBspQGtBhw5hxqLHH4fly+G++6B7d7j0Uth++7Bo95//DK++qlmNRESyhQK0lrVpE66R3nsvLFsW\n5tXt1y9cO911V9h889Byfe45+PnnuKsVEZF0KUDrUIsWcMABcOutYZm0mTPh8MPh0Udh4EDo2BFG\njoRnnlE3r4hIQ6MArSdNmsCee/4yyGjOnDD46JVXYL/9QqtVC3mLiDQcCtAYmIVl0/7xj7D26P33\nw/TpsMMOoWtXREQynwI0Axx+OPznP/DrX4eu3bPOgh9/jLsqERGpiAI0Q2y2GUydCpdfHmY86t0b\nFi2KuyoRESmPAjSDNGoUVn155ZXQAs3Phxtu0AAjEZFMpADNQD17hkFGo0bBSSfBQQfB0qVxVyUi\nIokUoBmqVSu4/vowOcOrr4YBRk89FXdVIiJSRgGa4Q48EBYsgJ13DveUnnxymH9XRETipQBtADp2\nDDMaXX99mNGooADmzYu7KhGR3JYxAWpmJ5nZYjNbZWazzWyXSvZvZmb/MLMlZvaDmb1nZsfWU7n1\nzgxOPBFKSqB5c+jVC664QnPriojEJSMC1MyGAlcCY4GewHxgipm1r+Cw+4H+wEigO1AIvFnHpcZu\nu+1g9mw47bRwv+igQfDRR3FXJSKSezIiQIEiYIK7T3L3N4AxwEpgVKqdzWxfoB+wv7vPcPcP3P0V\nd3+5/kqOT/Pm4X7RadPgzTfDAKMHHoi7KhGR3BJ7gJpZU6AAmF62zd0dmAb0Keewg4A5wNlm9pGZ\nvWlml5tZizovOIMMHBhmMBowAI44Itz28u23cVclIpIbYg9QoD3QGEi+03Ep0KmcY7oSWqC/AQ4B\nTgMOB66voxozVrt2YS7d22+HyZPDPaQaYCQiUvcyIUDT0QhYCxzl7nPc/RngdGCEmTWPt7T6ZxaW\nRZs3D/LyYK+9YNasuKsSEcluTeIuAFgOrAE6Jm3vCHxWzjGfAh+7+3cJ2xYBBmwGvFveixUVFZGX\nl7fOtsLCQgoLC6tZdubZemuYMSPMXDRoUFh3dO+9465KRCQexcXFFBcXr7NtxYoVtXZ+8wyYaNXM\nZgOvuPtp0ecGfACMd/fLU+w/Grga2NjdV0bbhgAPAK3dfb21TMwsHygpKSkhPz+/7r6YDLByZVjh\nZfp0uO8+OOSQuCsSEckMpaWlFBQUABS4e2lNzpUpXbhXAaPNbLiZbQPcBLQC7gAws4vN7M6E/e8B\nvgAmmtm2ZrYHcBlwW6rwzDWtWsEjj8CQISFI77or7opERLJPJnTh4u6To3s+zyd03c4DBrv7smiX\nTkDnhP2/N7NBwHXAa4QwvQ/4W70WnsGaNYPiYhg9GoYPh+++gzFj4q5KRCR7ZESAArj7DcAN5Tw3\nMsW2t4DBdV1XQ9a4Mdx6K7RtC3/4A3zzDfzpT3FXJSKSHTImQKVuNGoEV18dRueefXYI0QsuCCN3\nRUQkfQrQHGAG48ZBmzZh+r9vvoFrrgnhKiIi6VGA5pAzzwzduWPGhBmLbrkFmuh/gIhIWvTrM8ec\ncEJoiR5zTAjRu+8Oc+uKiEj1qBMvBxUWwkMPhTVGhwwJ942KiEj1KEBz1MEHw5NPwosvwr77Qi1O\nziEikhMUoDls4MCwJNqCBeHj5cvjrkhEpOFQgOa43r1h5kz48EPYc0/45JO4KxIRaRgUoMKOO8Lz\nz4fbW/r1g8WL465IRCTzKUAFgF//OlwPbdQohOgbb8RdkYhIZlOAyv9ssQW88AL86lchREtrtE6B\niEh2U4DKOjp1gn//G7p2hf794aWX4q5IRCQzKUBlPe3ahdG5+fkweHDo2hURkXUpQCWlNm3CfaK9\nesF++8HLL8ddkYhIZlGASrlatYLHH/+lJfrKK3FXJCKSORSgUqENNggt0R12gH32gddei7siEZHM\noACVSrVuDU8/Db/5TQhRjc4VEVGAShW1aQPPPBPuF917b5g3L+6KRETipQCVKmvbNoToVluFEP3P\nf+KuSEQkPgpQqZYNN4Rnnw2TLgwcCP/9b9wViYjEQwEq1farX8HUqbDZZjBgACxcGHdFIiL1TwEq\naSmbbGGTTUKIau5cEck1ClBJ20YbhRDt0CGE6FtvxV2RiEj9UYBKjXToANOnh27d/v3hnXfirkhE\npH4oQKXGNt44hGibNiFE33037opEROqeAlRqRadO8Nxz0LJlCFEtyi0i2U4BKrVm001hxgxo1iyE\n6Pvvx12RiEjdUYBKrfq//wsh2rhxCNEPP4y7IhGRuqEAlVrXuXMIUfcQoh99FHdFIiK1TwEqdWLz\nzUOIrl4dbnH55JO4KxIRqV0KUKkzXbqEEF21KoToZ5/FXZGISO1RgEqd6to1hOi334YQ/fTTuCsS\nEakdClCpc1tvHUL0m2+gb1/dJyoi2UEBKvWie3d46SVo2jSE6Pz5cVckIlIzGROgZnaSmS02s1Vm\nNtvMdqlg3z3NbG3SY42ZbVyfNUv1bLEFvPhiuNVlzz3DxyIiDVVGBKiZDQWuBMYCPYH5wBQza1/B\nYQ50AzpFj03c/fO6rlVqpkOH0J3bsycMGgRPPhl3RSIi6cmIAAWKgAnuPsnd3wDGACuBUZUct8zd\nPy971HmVUivatoWnn4Z994UhQ+Cuu+KuSESk+mIPUDNrChQA08u2ubsD04A+FR0KzDOzT8zsWTPb\nrW4rldrUogXcfz+MGAHHHAPjx8ddkYhI9TSJuwCgPdAYWJq0fSnw63KO+RT4PTAHaA6MBmaaWS93\nn1dXhUrtatIEbr01rCt62mmwfDmMGwdmcVcmIlK5TAjQanP3t4DE5Ztnm9lWhK7gERUdW1RURF5e\n3jrbCgsLKSwsrPU6pXJmcNll0L49nH12CNHrrgtz6YqI1ERxcTHFxcXrbFuxYkWtnd9Cb2l8oi7c\nlcBh7v5YwvY7gDx3P7SK57kM6Ovufct5Ph8oKSkpIT8/v+aFS6277TY44QQ44giYNCms6iIiUptK\nS0spKCgAKHD30pqcK/ZroO6+GigBBpZtMzOLPp9VjVPtROjalQbquOPCddGHH4aDDoLvv4+7IhGR\n8sUeoJGrgNFmNtzMtgFuAloBdwCY2cVmdmfZzmZ2mpkdbGZbmdlvzOwaoD/wzxhql1r029+GEbqz\nZsHee8OXX8ZdkYhIahkRoO4+GTgTOB+YC+wADHb3ZdEunYDOCYc0I9w3+h9gJtADGOjuM+upZKlD\nAwaEe0XfeQf22AM+/jjuikRE1pcRAQrg7je4exd3b+nufdx9TsJzI919QMLnl7t7N3ffwN07uPtA\nd38+nsqlLuy8M7zwQpg/d/fd4e23465IRGRdGROgIsm22SbMn9uiRQjRuXPjrkhE5BcKUMlonTuH\nlugWW8Bee8Hz6mcQkQyhAJWM1749TJ8Ou+wCgwfDY49VfoyISF1TgEqD0KZNmHj+gAPCSN1Jk+Ku\nSERynQJUGozmzeG++2DUqDCH7jXXxF2RiOSyBjmVn+Suxo1hwgRo1w6KiuDbb+HcczV/rojUPwWo\nNDhmcMklYVm0c84JIXrppQpREalfClBpsP76V2jdOqzk8t138M9/QiNdlBCReqIAlQbt1FNDiB5/\nfJg797bbwjJpIiJ1Tb9qpMEbNQo22ACGDQshes89WslFROqeOrwkKwwdCg89BE88AUOGwMqVcVck\nItlOASpZ46CDwr2izz8P++8fBheJiNQVBahklYEDYepUmDdPy6GJSN1SgErW2W03eO45ePdd6N8f\nli6NuyIRyUYKUMlK+fmhK3fZsrCm6Icfxl2RiGQbBahkre22Cyu5/Pgj9OsXWqQiIrVFASpZbaut\n4MUXw5qi/frBwoVxVyQi2UIBKllvs81Cd26HDqE7t7Q07opEJBsoQCUnbLwxzJgBW28dBha99FLc\nFYlIQ6cAlZzRrl24xSU/H/bZB6ZNi7siEWnIFKCSU9q0gaeegj33DItzP/543BWJSEOlAJWc07Il\nPPJImLnot7+Fe++NuyIRaYgUoJKTmjULwXn00XDUUXDrrXFXJCINjVZjkZzVpAncfntYDm306DA6\n96qrwi0vIiKVUQtUclqjRnDddTBhQgjTvn014YKIVI0CVHKeGZxwAsyeDd98E0bpPvRQ3FWJSKZT\ngIpEdtoJ5swJt7gcdhgUFcFPP8VdlYhkKgWoSIK8PJg8GcaPh+uvDzMXffBB3FWJSCZSgIokMYNT\nTglz6H72GfTsGRbqFhFJpAAVKUevXmFkbt++cOCB8Oc/w88/x12ViGQKBahIBdq1g0cfhcsvhyuu\ngAED4OOP465KRDKBAlSkEmZw5pnw73/De++FLt2pU+OuSkTipgAVqaK+fWHu3HCby+DBMHYsrFkT\nd1UiEpeMCVAzO8nMFpvZKjObbWa7VPG4vma22sy0yqPUuQ4dwmT0F1wAF14YbnlZujTuqkQkDhkR\noGY2FLgSGAv0BOYDU8ysfSXH5QF3AlqYSupNo0ZwzjlhObTXXw/3j86cGXdVIlLfMiJAgSJggrtP\ncvc3gDHASmBUJcfdBNwNzK7j+kTW078/zJsH224LAwfCRRfB2rVxVyUi9SX2ADWzpkABML1sm7s7\noVXZp4LjRgJbAuPqukaR8nTqFAYUnXMOnHtuWGN0+fK4qxKR+hB7gALtgcZA8pWkpUCnVAeYWTfg\nIuBod9ff/BKrxo3h/PPh6afDVIA9e8L8+XFXJSJ1rcEtZ2ZmjQjdtmPdvWzdDKvq8UVFReTl5a2z\nrbCwkMLCwtorUnLS4MFhlO4hh4Tu3alToaAg7qpEcldxcTHFxcXrbFuxYkWtnd9Cb2l8oi7clcBh\n7v5YwvY7gDx3PzRp/zzgK+BnfgnORtHHPwP7uPvMFK+TD5SUlJSQn59fB1+JSPD117DffrBoEUyZ\nArvuGndFIlKmtLSUgvCXbYG71+jujdi7cN19NVACDCzbZmYWfT4rxSHfANsDOwE7Ro+bgDeij1+p\n45JFKrThhiE4e/SAQYPgpZfirkhE6kLsARq5ChhtZsPNbBtCILYC7gAws4vN7E4IA4zcfWHiA/gc\n+MHdF7n7qpi+BpH/ads2XBMtKAhdu//+d9wViUhty4gAdffJwJnA+cBcYAdgsLsvi3bpBHSOqTyR\ntLRuHVZx6dMndOlOn175MSLScGREgAK4+w3u3sXdW7p7H3efk/DcSHcfUMGx49xdFzYl47RqBY8/\nDnvtFVZ0eeaZuCsSkdqSMQEqkq1atICHHw7XQ4cMgSeeiLsiEakNClCRetC8OTzwQGiF/va3IVBF\npGFTgIrUk2bN4N574bDD4IgjYPLkuCsSkZpocBMpiDRkTZvCv/4V/i0shNWr4eij465KRNKRVgs0\nut2keYrtzcxseM3LEsleTZrAxIlw7LFwzDFwxx1xVyQi6Ui3BToReIZw/2WiNtFzk2pSlEi2a9wY\nbrkltERHjoSffoITToi7KhGpjnQD1IBUcwBuBtTeRIMiWaxRI7jxxnBt9Pe/D925J50Ud1UiUlXV\nClAzm0sITgemm9nPCU83JiwvpjvdRKrIDK69NrRETz45tESLiuKuSkSqorot0Eeif3cCpgDfJTz3\nE7AEeLDmZYnkDjO44orQEj399NAS/dOf4q5KRCpTrQB193EAZrYEuNfdf6yLokRyjRlcdFEI0bPP\nDi3Rc8+NuyoRqUi610CfAzoAHwGYWS/gKGChu99cS7WJ5BQzGDcuhOi554YQHTcubBeRzJNugN4D\n3Az8y8w6AdOA/wJHm1kndz+/tgoUyTXnnBNC9E9/Ct25F12kEBXJROnORLQ98Gr08e+ABe6+G3A0\ncGwt1CWS0846C665Bi65JEy4MHdu3BWJSLJ0A7QpUHb9c2/gsejjN4BNalqUiMBpp8Gdd8KsWZCf\nD7vvDvfdF1qlIhK/dAP0dWCMmfUDBvHLrSubAl/URmEiAsOHw3vvhYnomzSBI4+ELl3gggtg6dK4\nqxPJbekG6NnA74GZQLG7z4+2H8wvXbsiUguaNAkT0M+cCfPnwwEHwMUXw+abh4B97bW4KxTJTWkF\nqLvPBNoD7d19VMJTNwNjaqEuEUlhhx3g5pvho4/gH/+AF16AXr2gd2+4++4wcldE6kfay5m5+xqg\niZntHj06uPsSd0+eH1dEalm7dnDmmfDOO/Doo9CmDQwbFlqlY8fCJ5/EXaFI9kt3NZYNzOx24FPg\n+ejxiZndZmatarNAESlf48Zw8MEwdSosXBi6eq+8ErbYIozenTULPNWs1SJSY+m2QK8C9gQOAjaM\nHkOibVemqnyqAAAeAklEQVTWTmkiUh3bbgvXXw8ffxymBpwzB/r2hZ13Dkum/fBD3BWKZJd0A/Qw\n4Dh3f9rdv4keTwGjgcNrrzwRqa68vHALzJtvwlNPQceOYcm0zp3h739XkIrUlnQDtBWQahD959Fz\nIhKzRo1gv/1CiL71Fhx9NFx2Wbif9P33465OpOFLN0BfBsaZWYuyDWbWEhgbPSciGaRbtzCz0axZ\n8MUXYWKGZ5+NuyqRhi3dAP0j0Bf4yMymm9l04MNo22m1VZyI1K78/HBttFcv2HffcCvM2rVxVyXS\nMKV7H+gCoBvwF2Be9PgzsLW7v1575YlIbdtoI3jiiXA99Nxz4ZBD4Ouv465KpOFJazUWM/sL8Jm7\n35K0fVR0P+iltVKdiNSJxo3hvPNgl13C/aM77wwPPRQmahCRqkm3C/f3wMIU219HMxGJNBgHHAAl\nJdC6dZjN6K674q5IpOFIN0A7EUbcJluGVmMRaVC6dg2Di373OzjmGDjlFE0JKFIV6QZo2YChZH0B\nTSIm0sC0agUTJ8JNN8GECbDXXmFCBhEpX7oBegtwjZmNNLMtosco4OroORFpYMzg978PE9R/+GEY\nsTtzZtxViWSudAP0cuA24AbgvehxHTDe3S+updpEJAa77hqui26/Pey9d5gWUPPpiqwv3dtY3N3P\nBjoAvYEdgXbufn5tFici8dh4Y5gyBc46KzyOOAK+/TbuqkQyS9rLmQG4+3fu/pq7/9fdf6ytokQk\nfk2ahIW7H3oozFrUqxcsWhR3VSKZo0YBWpvM7CQzW2xmq8xstpntUsG+fc3sRTNbbmYrzWyRmf2x\nPusVyRWHHhpmL2rcONw3Only3BWJZIaMCFAzG0pYBm0s0BOYD0wxs/blHPI94ZprP2Ab4ALgQjM7\nvh7KFck53bvD7Nlw0EEwdCiccQasXh13VSLxyogABYqACe4+yd3fIEzGsBIYlWpnd5/n7ve5+yJ3\n/8Dd7wGmEAJVROpA69Zwzz1w7bUwfnwYYPTpp3FXJRKf2APUzJoCBcD0sm3u7sA0oE8Vz9Ez2ndm\nHZQoIhEzOPVUmDED3n4bevSABx+MuyqReMQeoEB7oDHrry+6lDDjUbnM7EMz+wF4Fbje3SfWTYki\nkmj33eE//4E994TDD4fhw2HFirirEqlfmRCgNbE7ofU6BiiKrqWKSD1o3x4eeADuvBMeeSRMRK+J\nFySXpLUaSy1bDqwBOiZt7wh8VtGB7v5+9OHrZtYJOA+4r6JjioqKyMvLW2dbYWEhhYWF1ShZRCB0\n6Q4fHlqiI0bAgAFQVBTWGW3RIu7qJNcVFxdTXFy8zrYVtdhVYp4BU4yY2WzgFXc/LfrcgA8IMxtd\nXsVz/B041t27lvN8PlBSUlJCfn5+LVUuImXWroWrr4a//hW6dQsru+y0U9xViayrtLSUgoICgAJ3\nL63JuTKlC/cqYLSZDTezbYCbgFbAHQBmdrGZ3Vm2s5mdaGYHmtnW0eM44AzgXzHULiJAo0bh9pY5\nc8IkDL16waWXwpo1cVcmUjcyoQsXd58c3fN5PqHrdh4w2N2XRbt0AjonHNIIuBjoAvwMvAuc5e43\n11vRIpJSjx7wyiswdiz85S/wxBPhOmnXlH1DIg1XprRAcfcb3L2Lu7d09z7uPifhuZHuPiDh83+6\new93b+Puv3L3nRWeIpmjeXO45BL497/ho49gxx3htts0Kb1kl4wJUBHJPv36wfz5YbHu44+HQw6B\nzz+PuyqR2qEAFZE61bZtaH0+8gi8/HJYJu2xx+KuSqTmFKAiUi+GDIEFC6B37/Dx8cdriTRp2BSg\nIlJvOnaERx+FW26Be+8N10ZffDHuqkTSowAVkXplFlqf8+fDJpvAHnuE0bo//RR3ZSLVowAVkVhs\ntRU8/3yYteiKK8Jao3PmVH6cSKZQgIpIbBo3Dq3PV18NEzHsuiuceSZ8/33clYlUTgEqIrHr2TOE\n6EUXwfXXh8kYpk2LuyqRiilARSQjNG0KZ58dlknbYgsYNAhGjoQvv4y7MpHUFKAiklG6dYPnngsj\ndR9+GLbdFu67T7MYSeZRgIpIxikbqbtoUZjN6Mgjw72jH30Ud2Uiv1CAikjG2mSTsGj3Qw+FEbrb\nbQc33hiWThOJmwJURDLeoYfCwoWhJXriieHe0TfeiLsqyXUKUBFpEDbcEG6+GWbMCBPS77gjXHih\nJmCQ+ChARaRB2WuvMIvR6afDeedBQUFYf1SkvilARaTBadkSLr44XBdt1gz69IGiIvjuu7grk1yi\nABWRBmunnULr87LLYMKEsFTalClxVyW5QgEqIg1akyZh+r8FC8L8uvvuC8OHw8qVcVcm2U4BKiJZ\nYautwvR/t98ODz4IQ4fCzz/HXZVkMwWoiGQNszD934MPwjPPwAknaAYjqTsKUBHJOvvuCxMnhsc5\n58RdjWSrJnEXICJSF4YNC/eLnnEGdOoEp54ad0WSbRSgIpK1Tj8dPv0U/vhH2HjjMJORSG1RgIpI\nVrv0Uli6NIzMbd8e9t477ookW+gaqIhktUaN4LbbQnAeeiiUlMRdkWQLBaiIZL2mTeH++8NqLvvt\nB2+/HXdFkg0UoCKSEzbYAJ58Etq1g8GD4bPP4q5IGjoFqIjkjPbtw1R/P/4YbnVZsSLuiqQhU4CK\nSE7ZYoswycKSJXDIIfDDD3FXJA2VAlREck6PHvD44/Dyy3DMMbBmTdwVSUOkABWRnNSvH9x7Lzz0\nEJx2mqb8k+pTgIpIzjrkELjpJrj+evjHP+KuRhoaTaQgIjlt9Ogw0cLf/gYdO4bPRaoiY1qgZnaS\nmS02s1VmNtvMdqlg30PN7Fkz+9zMVpjZLDPbpz7rFZHscc45cNJJMGYMPPJI3NVIQ5ERAWpmQ4Er\ngbFAT2A+MMXM2pdzyB7As8B+QD4wA3jczHash3JFJMuYwbXXwmGHhflyn38+7oqkIciIAAWKgAnu\nPsnd3wDGACuBUal2dvcid7/C3Uvc/V13Pwd4Gzio/koWkWzSuDH861+w225w8MGwYEHcFUmmiz1A\nzawpUABML9vm7g5MA/pU8RwGtAG+rIsaRSQ3NG8ODz8MW24ZZitasiTuiiSTxR6gQHugMbA0aftS\noFMVz3EWsAEwuRbrEpEclJcHTz8NLVqEEF2+PO6KJFNlQoDWiJkdBfwNOMLd9V9dRGqsUyd49ln4\n6is44AD4/vu4K5JMlAm3sSwH1gAdk7Z3BCqc7tnMjgRuBg539xlVebGioiLy8vLW2VZYWEhhYWGV\nCxaR7Lf11qElutdekJ8Pl1wS7hs1i7syqari4mKKi4vX2baiFidANs+A6TfMbDbwirufFn1uwAfA\neHe/vJxjCoFbgaHu/kQVXiMfKCkpKSE/P7/2iheRrLZgAZxxBkydCrvvDpdfDr17x12VpKu0tJSC\nggKAAncvrcm5MqUL9ypgtJkNN7NtgJuAVsAdAGZ2sZndWbZz1G17J3AG8JqZdYwebeu/dBHJZj16\nhO7cZ54Jq7f06QNHHAHvvBN3ZRK3jAhQd58MnAmcD8wFdgAGu/uyaJdOQOeEQ0YTBh5dD3yS8Lim\nvmoWkdwyeDDMnQsTJ4ZJ6LfbLsyhq0FGuSsjAhTA3W9w9y7u3tLd+7j7nITnRrr7gITP+7t74xSP\nlPeNiojUhsaN4dhj4e23Ydy4EKZbbRWuj65aFXd1Ut8yJkBFRBqKli3hL3+Bd9+FESPCPLrdu8Od\nd2pptFyiABURSVOHDjB+PCxcGAYWHXssFBSEAUeS/RSgIiI11K0b3H8/zJoFrVvDPvuEa6bz58dd\nmdQlBaiISC3p0wdeeCEs0r1kCfTsGVqlH30Ud2VSFxSgIiK1yAwOPRT++1/45z/hqadCC/Wvfw23\nwUj2yISZiEREsk7TpnDiiTBsWJh84cor4ZZb4OSToWvXcP10443Dvx06hLl3pWFRgIqI1KG2beGC\nC+APf4C//z0E6bffrr9fmza/BGryv6m2NWtW/1+LrEsBKiJSDzbdFG69NTx++AGWLYPPPy//3wUL\nfvk81WT2eXnwf/8HN98MffvW/9cjClARkXrXogV07hweVbFyZeqgvf/+MK3g3LnQMXk5DqlzClAR\nkQzXqhVssUV4JBo2DHbaCY4+GqZMCTMlSf3RKFwRkQZqk02guBieew4uvDDuanKPAlREpAEbMCDM\nyztuHEybFnc1uUUBKiLSwJ1zDgwaBEcdBZ98Enc1uUMBKiLSwDVqBHfdFW5tOfJI+PnnuCvKDQpQ\nEZEs0KED3HtvmI/3b3+Lu5rcoAAVEckSu+8OF18c1id98sm4q8l+ClARkSxyxhlw0EFwzDHw/vtx\nV5PdFKAiIlmkUSO4444wheDQofDTT3FXlL0UoCIiWaZdO5g8GUpL4eyz464meylARUSyUK9eYeL6\na64J65NK7VOAiohkqZNPhsMPh5Ej4d13464m+yhARUSylFlY/aVDhzDp/A8/xF1RdlGAiohksby8\nsGrLwoVQVBR3NdlFASoikuV69oTx4+Gmm+Cee+KuJnsoQEVEcsDo0WHZsxNOgDfeiLua7KAAFRHJ\nAWahBdq5cxhYtHJl3BU1fApQEZEc0bo1PPAAvPcenHRS3NU0fApQEZEc8pvfwI03htmKJk6Mu5qG\nTQEqIpJjRoyA446DE0+EBQvirqbhUoCKiOSg666D7t3D/aHffht3NQ2TAlREJAe1bBnuD/344zAy\n1z3uihoeBaiISI7q3j3MVHTvvTBhQtzVNDwKUBGRHDZ0aBiRe9ppMHt23NU0LApQEZEcd+WVsOOO\n0KcPDBgAd92l+0SrImMC1MxOMrPFZrbKzGab2S4V7NvJzO42szfNbI2ZXVWftYqIZJPmzWHmTJg0\nCdauhWOOgU02gTFj4LXXdH20PBkRoGY2FLgSGAv0BOYDU8ysfTmHNAc+By4A5tVLkSIiWaxVqxCc\nM2fC22/DKafAE0+EdUV32AGuvhqWLYu7ysySEQEKFAET3H2Su78BjAFWAqNS7ezu77t7kbvfBXxT\nj3WKiGS9rbeGCy+E99+Hp5+GbbeFs8+GTTeFww6DJ5+En3+Ou8r4xR6gZtYUKACml21zdwemAX3i\nqktEJNc1bgz77guTJ8Mnn4Rrpe+8AwceCJtvDn/5C7z1VtxVxif2AAXaA42BpUnblwKd6r8cERFJ\n1r49nHoqzJsHc+bAoYeGKQF//WvYY48wNeB338VdZf1qEncB9a2oqIi8vLx1thUWFlJYWBhTRSIi\nDYcZFBSExxVXwCOPwO23w8iR4brp0KEwalQY0WsWb63FxcUUFxevs23FihW1dn7zmIdXRV24K4HD\n3P2xhO13AHnufmglx88A5rr76ZXslw+UlJSUkJ+fX/PCRUTkf5Ys+WWC+g8+gG7dYMgQOOAA6NsX\nmjaNu8KgtLSUgoICgAJ3L63JuWLvwnX31UAJMLBsm5lZ9PmsuOoSEZGq69IFzjsPFi+GqVNh993h\nX/+C/v2hQ4fQMp00KbtG8mZKF+5VwB1mVgK8ShiV2wq4A8DMLgY2dfcRZQeY2Y6AAa2BDtHnP7n7\nonquXUREIo0awd57h8fatVBSEkbtPvlkWAXGDHbdNbRMDzwwTOAQd1dvumJvgQK4+2TgTOB8YC6w\nAzDY3cv+VukEdE46bC6h5ZoPHAWUAk/WS8EiIlKpRo1gl11Cy/S118JI3ltvDbfDXHop9OwJnTuH\nyewffRS+/z7uiqsn9mug9UXXQEVEMsePP8ILL4SW6RNPhNtjmjeHvfYKrdMDDoCuXWv/dbPqGqiI\niOSe5s1DN+/VV4eZj958Ey6+OEzQcPrpsNVWsN12cNZZYXak1avjrnh9ClAREYld9+5QVATTpsEX\nX8ADD0Dv3mHgUf/+cPnlcVe4vkwZRCQiIgJA27ZhysDDDvtlIFKnDJxWRwEqIiIZq2wgUiZSF66I\niEgaFKAiIiJpUICKiIikQQEqIiKSBgWoiIhIGhSgIiIiaVCAioiIpEEBKiIikgYFqIiISBoUoCIi\nImlQgIqIiKRBASoiIpIGBaiIiEgaFKAiIiJpUICKiIikQQEqIiKSBgWoiIhIGhSgIiIiaVCAioiI\npEEBKiIikgYFqIiISBoUoCIiImlQgIqIiKRBASoiIpIGBaiIiEgaFKAiIiJpUICKiIikQQEqIiKS\nBgWoiIhIGjImQM3sJDNbbGarzGy2me1Syf57mVmJmf1gZm+Z2Yj6qlXSV1xcHHcJOU3vf/z0Pcge\nGRGgZjYUuBIYC/QE5gNTzKx9Oft3AZ4ApgM7AtcCt5rZoPqoV9KnXx7x0vsfP30PskdGBChQBExw\n90nu/gYwBlgJjCpn/z8A77n7n9z9TXe/HnggOo+IiEidiz1AzawpUEBoTQLg7g5MA/qUc1jv6PlE\nUyrYX0REpFbFHqBAe6AxsDRp+1KgUznHdCpn/7Zm1rx2yxMREVlfk7gLqEctABYtWhR3HTltxYoV\nlJaWxl1GztL7Hz99D+KVkAEtanquTAjQ5cAaoGPS9o7AZ+Uc81k5+3/j7j+Wc0wXgGHDhqVXpdSa\ngoKCuEvIaXr/46fvQUboAsyqyQliD1B3X21mJcBA4DEAM7Po8/HlHPYysF/Stn2i7eWZAhwNLAF+\nqEHJIiLScLUghOeUmp7IwnideJnZ74A7CKNvXyWMpj0c2Mbdl5nZxcCm7j4i2r8LsAC4AbidELbX\nAPu7e/LgIhERkVoXewsUwN0nR/d8nk/oip0HDHb3ZdEunYDOCfsvMbMDgKuBU4GPgOMUniIiUl8y\nogUqIiLS0GTCbSwiIiINjgJUREQkDTkRoNWdqF5qj5mNNbO1SY+FcdeVzcysn5k9ZmYfR+/3wSn2\nOd/MPjGzlWY21cy2jqPWbFXZ98DMJqb4uXgqrnqzjZn9xcxeNbNvzGypmT1sZt1T7Fejn4OsD9Dq\nTlQvdeK/hMFhnaLH7vGWk/U2IAzEOxFYb5CDmZ0NnAycAPQCvif8TDSrzyKzXIXfg8jTrPtzUVg/\npeWEfsB1wK7A3kBT4Fkza1m2Q238HGT9ICIzmw284u6nRZ8b8CEw3t0vi7W4HGBmY4Eh7p4fdy25\nyMzWAoe4+2MJ2z4BLnf3q6PP2xKmwhzh7pPjqTR7lfM9mAjkuftv46ssd0QNps+BPdz9xWhbjX8O\nsroFmuZE9VL7ukVdWe+a2V1m1rnyQ6QumNmWhNZO4s/EN8Ar6Geivu0VdS++YWY3mFm7uAvKYhsS\negK+hNr7OcjqACW9ieqlds0GjgUGEybK2BJ43sw2iLOoHNaJ8ItEPxPxehoYDgwA/gTsCTwV9ZBJ\nLYre02uAF929bPxFrfwcZMRECpK93D1xuqz/mtmrwPvA74CJ8VQlEq+kLsLXzWwB8C6wFzAjlqKy\n1w3AdkDf2j5xtrdA05moXuqQu68A3gI06jMenwGGfiYyirsvJvy+0s9FLTKzfwL7A3u5+6cJT9XK\nz0FWB6i7rwbKJqoH1pmovkaz8Et6zKw14ZfEp5XtK7Uv+kX9Gev+TLQljFbUz0RMzGwzYCP0c1Fr\novAcAvR39w8Sn6utn4Nc6MK9CrgjWvGlbKL6VoTJ66WOmdnlwOOEbtv/A8YBq4HiOOvKZtH15a0J\nf2EDdDWzHYEv3f1DwvWgc83sHcLqRBcQ5pN+NIZys1JF34PoMRZ4kPBLfGvgUkLPTI1XCBEwsxsI\ntwUdDHxvZmUtzRXuXrYaV41/DrL+NhYAMzuRcKG+bKL6U9x9TrxV5QYzKybck7URsAx4ETgn+gtQ\n6oCZ7Um4jpb8w32nu4+K9jmPcP/bhsALwEnu/k591pnNKvoeEO4NfQTYifD+f0IIzr8nLKAhNRDd\nOpQq3Ea6+6SE/c6jBj8HORGgIiIitS2rr4GKiIjUFQWoiIhIGhSgIiIiaVCAioiIpEEBKiIikgYF\nqIiISBoUoCIiImlQgIqIiKRBASpZzcxmmNlVcdeRzMzWmtnBGVDHJDP7c9x11Ccz+72ZPVb5niIV\n00xEktXMbENgtbt/H32+GLja3cfX0+uPBQ5x955J2zcGvooWPIhFNDfrNGBzd18Vw+uPAK5x91/V\n8+s2BRYDQ939pfp8bckuaoFKVnP3r8vCszZFv4SrXMZ6G9w/jzM8IycD99d1eFbwXhmp5yutU9H7\nfg9wWn2/tmQXBahktcQuXDObAWwBXB11oa5J2G93M3vezFaa2ftmdq2ZtUp4frGZnWtmd5rZCmBC\ntP0SM3vTzL43s3fN7Hwzaxw9N4Kw6saOZa9nZsOj59bpwjWz7c1sevT6y81sQrSiR9nzE83sYTM7\nw8w+ifb5Z9lrRfucaGZvmdkqM/vMzBIXbU5+XxoBhxNWykncXvZ13mNm35nZR9FiDIn75JnZrWb2\nuZmtMLNpZrZDwvNjzWyumR1nZu8B6wV0NNn67UBewnvz9+i5ZmZ2RfTa35nZy9H+ZceOMLOvzGwf\nM1toZt+a2dMJK25gZnuZ2SvR8V+Z2Qtm1jmhhMeBg8yseXnvkUhlFKCSS35LWK7ob0AnYBMAM9sK\neBq4H9geGEpYvf66pOPPIKzmsxNh6SOAb4DhwLbAqcDxhCXzAO4DrgReJ6wEtEm0bR1RUE8BvgAK\nCMG2d4rX7w90BfaKXvPY6IGZ7QxcC5wLdAcGA89X8F7sALQFUq1KdCYwN/o6LwGuNbOBCc8/QFhd\nZzCQD5QC06Lu8jJbE97vQ6PzJHsJ+CPh/St7b66InruesC7j74AehO/L09H3qUwrwvfjaMJqP5uX\nHR/9UfEwYTWU7YHewM2s29qdAzSNXkckPe6uhx5Z+yD8Er0q4fPFwKlJ+9wC3Ji0bXfgZ6BZwnEP\nVOH1zgBeTfh8LFCaYr+1wMHRx6OB5UCLhOf3i16/Q/T5ROA9onEL0bb7gHuijw8FvgI2qOL7MgT4\nKcX2xcCTSduKgScS3pevgKZJ+7wNHJ/wNf8AtKukhhGENUoTt3UmrBfbKWn7VODChOPWAF0Snv8D\n8En08a+i5/tV8vpfAMfE/X9Uj4b7yIUFtUUqsyPQw8yGJWwrWwh5S+DN6OOS5APNbChwCrAV0Jqw\nSP2Kar7+NsB8/2WhXwgttEbArwnrqAK87u6JrahPCS0sCAHzPrDYzJ4BngEe9vKvb7YEfiznuZdT\nfF52vXAHoA3wpZkl7tOC8B6Ued/dvyzn/BXpATQG3rJ1X6AZ4Y+MMivdfUnC558CGwO4+1dmdifw\nrJlNJQyUmuzunyW91ipCS1YkLQpQkRB8EwhdoJb03AcJH68zGMnMegN3EbqEnyUEZyFweh3VmTzo\nyIkuw7j7d2aWT+je3QcYB5xnZju7+zcpzrUcaGVmTdz952rU0JqwAPSerP9efZ3wcboDt1oTWt75\nhFZ6ou8SPk71XvyvHncfZWbXAvsSuuQvMLNB7v5qwjHt+OWPE5FqU4BKrvmJ0MJJVAps5+6Lq3mu\n3YAl7n5J2QYz61KF10u2CBhhZi0TWoy7E7oh3yz/sHW5+1rgOeA5MzufEGgDgEdS7D4v+nc74D9J\nz/VO8fmi6ONSwvXjNe7+ATWT6r2ZG23r6DW8xcTd5wPzgUvNbBZwFPAqgJl1BZpHryeSFg0iklyz\nBNjDzDY1s42ibZcCu5nZdWa2o5ltbWZDzCx5EE+yt4HNzWyomXU1s1OBQ1K83pbReTcys2YpznM3\n4ZrhnWb2GzPrD4wHJrl7lVpIZnaAmZ0Svc7mhOuERjkB7O7LCeGxe4qn+5rZmWbWzcxOIgxquiY6\nbhqhS/cRMxtkZluY2W5mdmHUAq6OJUBrMxsQvTct3f1twi0mk8zsUDPrYma9zOzPZrZfVU4aHXOR\nmfU2s83NbB+gG7AwYbd+wHtp/NEk8j8KUMl2yfcZ/h3oArwLfA7g7gsIXZLdCCNXS4HzgI8rOA/u\n/jhwNWG07FxCS+38pN0eJFyPnBG93pHJ54tanYMJXYqvApMJ1zRPqfqXydeEUa/TCUFxAnCkuy+q\n4JhbgWEptl8J7Bx9TX8FiqLgLLM/4X26nRDQ9xBGwS6tRr24+8vATYTBUJ8DZ0VPHQtMIoyqfQN4\nKKqnqi3elYTryg9E9d0EXOfuNyfsU0gYmSuSNs1EJJKjzKwFIaCGuvsr0bZ6nakpDma2HeEPje7u\n/m3c9UjDpRaoSI6KRv0OB9rHXUs92wQYrvCUmtIgIpEc5u7Jky1kfZeUu0+PuwbJDurCFRERSYO6\ncEVERNKgABUREUmDAlRERCQNClAREZE0KEBFRETSoAAVERFJgwJUREQkDQpQERGRNChARURE0vD/\nCgsb3IfARAsAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7fd73f9ca668>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"parameters = two_layer_model(train_x, train_y, layers_dims = (n_x, n_h, n_y), num_iterations = 2000, print_cost=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Expected Output**:\n",
"<table> \n",
" <tr>\n",
" <td> **Cost after iteration 0**</td>\n",
" <td> 0.6930497356599888 </td>\n",
" </tr>\n",
" <tr>\n",
" <td> **Cost after iteration 100**</td>\n",
" <td> 0.6464320953428849 </td>\n",
" </tr>\n",
" <tr>\n",
" <td> **...**</td>\n",
" <td> ... </td>\n",
" </tr>\n",
" <tr>\n",
" <td> **Cost after iteration 2400**</td>\n",
" <td> 0.048554785628770206 </td>\n",
" </tr>\n",
"</table>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Good thing you built a vectorized implementation! Otherwise it might have taken 10 times longer to train this.\n",
"\n",
"Now, you can use the trained parameters to classify images from the dataset. To see your predictions on the training and test sets, run the cell below."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Accuracy: 0.985645933014\n"
]
}
],
"source": [
"predictions_train = predict(train_x, train_y, parameters)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Expected Output**:\n",
"<table> \n",
" <tr>\n",
" <td> **Accuracy**</td>\n",
" <td> 1.0 </td>\n",
" </tr>\n",
"</table>"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Accuracy: 0.72\n"
]
}
],
"source": [
"predictions_test = predict(test_x, test_y, parameters)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Expected Output**:\n",
"\n",
"<table> \n",
" <tr>\n",
" <td> **Accuracy**</td>\n",
" <td> 0.72 </td>\n",
" </tr>\n",
"</table>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Note**: You may notice that running the model on fewer iterations (say 1500) gives better accuracy on the test set. This is called \"early stopping\" and we will talk about it in the next course. Early stopping is a way to prevent overfitting. \n",
"\n",
"Congratulations! It seems that your 2-layer neural network has better performance (72%) than the logistic regression implementation (70%, assignment week 2). Let's see if you can do even better with an $L$-layer model."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 5 - L-layer Neural Network\n",
"\n",
"**Question**: Use the helper functions you have implemented previously to build an $L$-layer neural network with the following structure: *[LINEAR -> RELU]$\\times$(L-1) -> LINEAR -> SIGMOID*. The functions you may need and their inputs are:\n",
"```python\n",
"def initialize_parameters_deep(layers_dims):\n",
" ...\n",
" return parameters \n",
"def L_model_forward(X, parameters):\n",
" ...\n",
" return AL, caches\n",
"def compute_cost(AL, Y):\n",
" ...\n",
" return cost\n",
"def L_model_backward(AL, Y, caches):\n",
" ...\n",
" return grads\n",
"def update_parameters(parameters, grads, learning_rate):\n",
" ...\n",
" return parameters\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"### CONSTANTS ###\n",
"layers_dims = [12288, 20, 7, 5, 1] # 4-layer model"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# GRADED FUNCTION: L_layer_model\n",
"def L_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False):#lr was 0.009\n",
" \"\"\"\n",
" Implements a L-layer neural network: [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID.\n",
" \n",
" Arguments:\n",
" X -- data, numpy array of shape (number of examples, num_px * num_px * 3)\n",
" Y -- true \"label\" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples)\n",
" layers_dims -- list containing the input size and each layer size, of length (number of layers + 1).\n",
" learning_rate -- learning rate of the gradient descent update rule\n",
" num_iterations -- number of iterations of the optimization loop\n",
" print_cost -- if True, it prints the cost every 100 steps\n",
" \n",
" Returns:\n",
" parameters -- parameters learnt by the model. They can then be used to predict.\n",
" \"\"\"\n",
"\n",
" np.random.seed(1)\n",
" costs = [] # keep track of cost\n",
" \n",
" # Parameters initialization. (≈ 1 line of code)\n",
" ### START CODE HERE ###\n",
" parameters = initialize_parameters_deep(layers_dims)\n",
" ### END CODE HERE ###\n",
" \n",
" # Loop (gradient descent)\n",
" for i in range(0, num_iterations):\n",
"\n",
" # Forward propagation: [LINEAR -> RELU]*(L-1) -> LINEAR -> SIGMOID.\n",
" ### START CODE HERE ### (≈ 1 line of code)\n",
" AL, caches = L_model_forward(X, parameters)\n",
" ### END CODE HERE ###\n",
" \n",
" # Compute cost.\n",
" ### START CODE HERE ### (≈ 1 line of code)\n",
" cost = compute_cost(AL, Y)\n",
" ### END CODE HERE ###\n",
" \n",
" # Backward propagation.\n",
" ### START CODE HERE ### (≈ 1 line of code)\n",
" grads = L_model_backward(AL, Y, caches)\n",
" ### END CODE HERE ###\n",
" \n",
" # Update parameters.\n",
" ### START CODE HERE ### (≈ 1 line of code)\n",
" parameters = update_parameters(parameters, grads, learning_rate)\n",
" ### END CODE HERE ###\n",
" \n",
" # Print the cost every 100 training example\n",
" if print_cost and i % 100 == 0:\n",
" print (\"Cost after iteration %i: %f\" %(i, cost))\n",
" if print_cost and i % 100 == 0:\n",
" costs.append(cost)\n",
" \n",
" # plot the cost\n",
" plt.plot(np.squeeze(costs))\n",
" plt.ylabel('cost')\n",
" plt.xlabel('iterations (per tens)')\n",
" plt.title(\"Learning rate =\" + str(learning_rate))\n",
" plt.show()\n",
" \n",
" return parameters"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You will now train the model as a 4-layer neural network. \n",
"\n",
"Run the cell below to train your model. The cost should decrease on every iteration. It may take up to 5 minutes to run 2500 iterations. Check if the \"Cost after iteration 0\" matches the expected output below, if not click on the square (⬛) on the upper bar of the notebook to stop the cell and try to find your error."
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false,
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Cost after iteration 0: 0.771749\n",
"Cost after iteration 100: 0.672053\n",
"Cost after iteration 200: 0.648263\n",
"Cost after iteration 300: 0.611507\n",
"Cost after iteration 400: 0.567047\n",
"Cost after iteration 500: 0.540138\n",
"Cost after iteration 600: 0.527930\n",
"Cost after iteration 700: 0.465477\n",
"Cost after iteration 800: 0.369126\n",
"Cost after iteration 900: 0.391747\n",
"Cost after iteration 1000: 0.315187\n",
"Cost after iteration 1100: 0.272700\n",
"Cost after iteration 1200: 0.237419\n",
"Cost after iteration 1300: 0.199601\n",
"Cost after iteration 1400: 0.189263\n",
"Cost after iteration 1500: 0.161189\n",
"Cost after iteration 1600: 0.148214\n",
"Cost after iteration 1700: 0.137775\n",
"Cost after iteration 1800: 0.129740\n",
"Cost after iteration 1900: 0.121225\n",
"Cost after iteration 2000: 0.113821\n",
"Cost after iteration 2100: 0.107839\n",
"Cost after iteration 2200: 0.102855\n",
"Cost after iteration 2300: 0.100897\n",
"Cost after iteration 2400: 0.092878\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdAAAAGHCAYAAAAA1gNPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3Xu8VXP+x/HXp5suclB0IUIo45JzYkRuRTHul5EzKOUS\nZeSMmcG4G7dhhBC5jGpwyOVnMEOjYhjkco4IuZcQKZdTVKQ+vz++a0+73T63fS5r77Pfz8djPc7Z\n3/Vda3/Oap8+5/td3+93mbsjIiIitdMs7gBERERykRKoiIhIBpRARUREMqAEKiIikgElUBERkQwo\ngYqIiGRACVRERCQDSqAiIiIZUAIVERHJgBKoSAbM7EQzW2Vmm8Udi4jEQwlUYmNmQ6MkVBh3LBnw\naMtJZnagmV0cdxzJzKyrmU02s2/NrMLMHjWzLWpxfE8ze8rMlpjZ12Y2ycw6VlL3JDN7x8yWmdn7\nZnZGmjrPRJ/PdNuPKXWfraTev2p/JSRXtIg7AMl7uZqEJgGl7v5T3IFk6FfASODSuAMBMLN2wLNA\ne+By4Gfgd8CzZtbb3b+t5vhNgOeBb4Fzo/P8AdjezHZ195+T6o4AbgUeBK4D9gTGmlkbd7826bSX\nA3ekvFU7YDwwJaXcgU+j97ak8vlV/+SSy5RARQAza+3uy2ta38NTGLImeZpZW3dfWptDGiyYzIwC\ntgJ2cfdyADN7CngLOBu4oJrjzwfaAL3d/fPo+FeBp4ETgTujstaExPi4uw+Ojr3LzJoDF5rZ7e5e\nAeDu01LfxMyOi769N00MFe5eWrMfV5oCdeFK1jOzVmZ2qZl9YGbLzWyemf3FzFql1BtmZtPMbEFU\n720zOy3N+eaa2WNmNtDMXjWzZcCp0b5VZjbWzA4zs1nRed4ys0Ep51jrHmjSefcws5ej7sGPzOyE\nNDHsaGb/MbOlZvapmZ0fxV/tfVUzmxB1U25pZv8ys8XAPdG+flE36CdJ12pMlDgSx99NaH0mft5V\nZrYyab+Z2VnRz73MzL40s9vMbP0q/6Hq5ijg1UTyBHD394BpwDE1OP5I4IlE8oyOnwa8n3L8vsCG\nwLiU428B1gUOquZ9jgO+Bx5Lt9PMmketackDaoFKVjMzAx4Hdid0nb0L7ACUAFsT/uNMOI3QYvkH\noQvwEGCcmZm735pUz4GewH3ROW8H3kvav2d03nHAEuBM4CEz2yypKzHdPVCPYnoQuAuYAAwH7jaz\n19x9dvQzdQWeAVYCVwBLgZMJLdqadGk74Xd3CqHb8uzoHAC/JrTExgFfA7sCvwU2ARItrtuArsB+\nhISQ2hq9HRgC/A24EdgiOkdvM9vD3VdSieiPmvY1+Blw96+jYwzYkXDNUr0C7G9m7dz9h0resyuw\nMfBaJccfmPR65+hrWUq9MmBVtP++St6nI+Galbr7sjRVtgF+AFqZ2QJC9+9lyd3H0sS4uzZtsWzA\nUEISKayizvHACqBvSvmp0bG7JZWtk+b4J4EPUsrmRMful6b+KmAZ0D2pbIeofGSa2DdLc97dk8o6\nRue7JqlsLCHB75BUtj6wKPWclVyTu6N6l6fZl+4anBO936ZJZTcBK9PU7Rf9rINTyvePyo+twb/p\nqhpsK5OO6RCVnZ/mfKdHP+vWVbxnUXT8cWn2/SU6vmXSz/1TJedZANxbxfucEZ1rYJp9dwAXAocT\n/ij5vyim0jh/x7Q17KYWqGS7o4HZwPtm1iGp/BlCy2lfYAaAu/9vZKSZrQe0BJ4DBppZe3dfknT8\nHHefWsl7Pu3ucxMv3H1W1E26ZQ3ifcfdX0w6dpGZvZdy7CDgJXeflVTvOzO7l/CfdE3dllqQcg3a\nElqjLxFu1+wMfFbNOY8GvgOmpVzv1wldl/sC91dx/FOEVlpttIm+/phm3/KUOnU5fkX0tbJ718ur\neZ/fAAuBtT437n5KStG9ZjYeONnMrnf3V6o4r+QoJVDJdlsTulsXptnnhK47AMxsD8Ko0t2Atin1\nCgjdsQlzqnjPT9OUfQtsUIN459Xg2M2BF9PU+7AG50/42d3XSoZm1g34M6H7Ovk9E9egOlsTWsNf\npdm3xvVOx90XEFpytZHoDl0nzb7WKXXqevwyoFWaeom6ad/HwnSa3YCx7r6qiliSXQecQviDQgm0\nCVIClWzXDJhFuOeZbuTopwBmtiWhZTA7qvspoaVxEHAWaw+Yq+o/5Mru8dVk5Gpdjq2NtVpbZtaM\ncA3WB64i3Nf9gXD/cyI1GzTYjJAAf0P6mNP9IZMcQ2tqlqgTyRbgG8LP0yVNtURZVdNBvkipm3r8\nN+6+IqluczPr6O6LkuJuSehKrux9jiP8AZH2/mglEn+IbViLYySHKIFKtvsI2NHdn6mm3iGElsUh\nnjQS08wGNGRwGfoE6JGmfOs6nneH6BwnuPv/plmYWbou1coGK30EDABeTO4OroXBhHu01XGgOYQp\nQWY2C+iTpt4vgY+9kgFE0fHzzWxhJcfvCsxMej2T8IdBH0J3c8IuhD8ekusmKwY+qmVX7FbR1yr/\n6JDcpWksku0mA5uaWeo9JsysdXSfD1a3/Jol7S8gzAHMNlOAvma2Y6LAzDYktPrqYq1rEDmLtRPm\nD9H7rpdSPpnwh/VFqSePpmhU17pM3AOtbts/5biHgF0saVUqM9sW6B/FlBzHllGPQ7KHgYMtLKiQ\nqDeAMDI2+fjphBbv6SnHn064Jv9M/YHMrDfQi/RzPzGz9qlTqiIXEK576qIL0kSoBSpxM+AkMzsw\nzb4bgL8T5vHdamb7Ai8QWi69CFM2BgLlwL8Jg0SeiAZvtCdMDVkAdG7oH6KWriGMLp5qZjcR/uM+\nmdAy3YDMV2d6l9CCvM7MNgUWE+ZXppu/WUa49jeZ2RTCqNgH3P256PqdGyWOxHXdhjDA6EzgkcoC\nyPAeKIRpN6cA/zKzvxJGDZcQulzHpNSdThjhmpxEr4zie9bMbiT8+/8eeIMwnSgR33IzuxC42cwm\nE5LbXoQ/Xv7k7t+lie14qu6+LQRKzayUcB+7DWEaVF9gvLtX1qqVXBf3MGBt+buxeipIZVvXqF5z\nwn+GbxLmOy4iDMo4H1g36XwHEUaL/kBIJGcTWqCp000+Bv5RSUwrgRvTlH8M3JUm9mrPSxgxPC2l\nbEfC0nVLCQOPziPMtVwJbFTNdbubsOpNun3bEpJCBSGR3QpsH513SFK9ZoQ/UL4kJKuVKec5KbrG\n3xNG5c4kJKlODfh56Ao8QBh0VQE8CmyZpt4cQndqankvwrSlJYQ5sBMru5bRz/cO4V74+8BvK6ln\nhHuZr1QRd3fCyOSPos/ekujanRz375i2ht0s+gCISMzM7AZCK2xd1y+mSNbLmnugZjbKzOZES4fN\nMLNdqql/nJnNNLMfzGy+md0V3UcSyXrJS+tFrzsQugqfV/IUyQ1Z0QI1s8GE7pZTCV0fJYT7W9t4\n0lDzpPp7AP8BRgNPEIbpjwfec/ejGytukUyZ2euELtzZhHu0wwlTLvq7+wsxhiYiNZQtCXQG8LK7\nj45eJ+47jHX3a9LUPxs4zd23Tio7A/iju+sBx5L1zOxywqCXTQkDVMqAS7366ToikiViT6DRBOal\nwFHu/lhS+QSgwN2PSHPM7oSReEe4+5Nm1okwVP0dd08dni4iIlLvsuEeaEfCKMvUoe+VTj/wsNbo\n8cADZvYTYaj7t9RuHVEREZGM5eQ8UDPbjvCYpUsI89S6AH8l3Ac9uZJjOhAW8Z7L6gWmRUQkv7Qm\nTD2a4tEj9TKVDQk08QinTinlnQhz1NI5F3jB3RMTrN8ys5HA82Z2vq9eYzPZICpZSURERPLOcdRu\nbeO1xJ5A3X2FmZUR1t98DP43iGgA4bmJ6bRl7UcSrSIMxqhs0e65APfccw+9evWqY9T5o6SkhOuv\nvz7uMHKOrlvt6ZplRtetdmbPns3xxx8PUU6oi9gTaGQMMCFKpIlpLG2JluAys6sIq9IMjeo/Dtxu\nZqcRVl3pClxPGMlbWat1OUCvXr0oLCyspIqkKigo0PXKgK5b7emaZUbXLWN1vpWXFQnU3SebWUfg\nMkLX7UxgkLsnnmLQGeiWVH+ima0LjCLc+/wOmEbo2hUREWlwWZFAAdx9HGFB6XT7hqUpuwW4paHj\nEhERSScbprGIiIjkHCVQqVJxcXHcIeQkXbfa0zXLjK5bfGJfiaixRA/qLSsrK9MNdxGRPFVeXk5R\nURFAkbuX1+VcaoGKiIhkQAlUREQkA0qgIiIiGVACFRERyUDeJdDZs+OOQEREmoK8S6CPPBJ3BCIi\n0hTkXQJ98klYsiTuKEREJNflXQJdvhzuq9MDbERERPIwgfbrB7ffHncUIiKS6/IugR55JJSXw2uv\nxR2JiIjksrxLoHvsAd26wfjxcUciIiK5LO8SaPPmcPLJUFoKixfHHY2IiOSqvEugAMOHw7JlGkwk\nIiKZy8sEuummcPDBoRs3Tx5GIyIi9SwvEyjAiBEwcya8+mrckYiISC7K2wQ6aBBstpmmtIiISGby\nNoEmDyaqqIg7GhERyTV5m0ABTjoJfvwR7r037khERCTX5HUC7doVDjlEg4lERKT28jqBApx6Krz5\nJrzyStyRiIhILsn7BDpwIGy+uVYmEhGR2sn7BNq8OZxyCtx/P3z3XdzRiIhIrsj7BAowbBj89BPc\nc0/ckYiISK5QAiUMJjr00DAnVIOJRESkJpRAIyNGwKxZMGNG3JGIiEguyJoEamajzGyOmS0zsxlm\ntksVde82s1VmtjL6mthmZfr+++8P3btrMJGIiNRMViRQMxsMXAdcDOwMvAFMMbOOlRxyJtAZ6BJ9\n3RT4BpicaQzNmoXBRA88AN9+m+lZREQkX2RFAgVKgPHuPsnd3wVOA5YCw9NVdvcl7v5VYgN2BdYH\nJtQliOHD4eefNZhIRESqF3sCNbOWQBEwLVHm7g5MBfrW8DTDganu/mldYuncGQ47TCsTiYhI9WJP\noEBHoDmwIKV8AaF7tkpm1gU4ELijPoI59VR4+2148cX6OJuIiDRVLeIOoB6cCHwL/KMmlUtKSigo\nKFijrLi4mOLiYgD22w+23DJMadljj3qOVEREGk1paSmlpaVrlFXU4+O3zGPuq4y6cJcCR7n7Y0nl\nE4ACdz+imuPfBx5z999XU68QKCsrK6OwsLDKmK6+Gi69FObPhw02qOEPIiIiWa+8vJyioiKAIncv\nr8u5Yu/CdfcVQBkwIFFmZha9rrIj1cz2AbYC7qrPmIYNC4OJJk2qz7OKiEhTEnsCjYwBTjGzIWbW\nE7gNaEs0qtbMrjKziWmOOwl42d1n12cwnTrB4YdrZSIREalcViRQd58M/B64DHgd2BEY5O4Loyqd\ngW7Jx5jZesARwJ0NEdOIEfDOO/DCCw1xdhERyXVZM4jI3ccB4yrZNyxN2WJg3YaKp39/2GqrMKWl\nX7+GehcREclVWdECzUaJlYkefBC+/jruaEREJNsogVZh2DBYtQr+/ve4IxERkWyjBFqFjTeGI47Q\nykQiIrI2JdBqjBgB774Lzz8fdyQiIpJNlECrsc8+0KNHWFxh6dK4oxERkWyhBFqNZs3gz3+GadOg\nVy945BF154qIiBJojRx7bFhgfvvt4aij4IAD4L334o5KRETipARaQz16wBNPwGOPwQcfwA47wDnn\nwJIlcUcmIiJxUAKtBTM45JCwQtGFF8LYsdCzJ9x/v7p1RUTyjRJoBlq3Dgl09mz45S+huBj23Rfe\neivuyEREpLEogdZB9+5hUNFTT8EXX0Dv3nDWWfDdd3FHJiIiDU0JtB4MGgSzZsEVV8Cdd8K228LE\niWEVIxERaZqUQOtJq1ZhUNG774bu3BNPDIvQl9fpca0iIpKtlEDr2aabhkFF06fD4sXQpw+cfrpG\n64qINDVKoA1k333h9ddhzBi4557weLSFC6s/TkREcoMSaANq2TIMKnruOZg3D/bcM3wVEZHcpwTa\nCHbeGf77X/jxR9hjjzD9RUREcpsSaCPZemt44QVYf/0wuOjll+OOSERE6kIJtBF17Rq6c3v2hAED\n4Omn445IREQypQTayDbYICTOvfeGgw6CyZPjjkhERDKhBBqDtm3h0Udh8ODwpJdbb407IhERqa0W\ncQeQr1q2DKsVdegAI0eGKS4XXhgWrBcRkeynBBqjZs3g+utho43gggtg0SK44YZQLiIi2U0JNGZm\ncP75q1uiX38Nd98dlgYUEZHspQSaJU47LSTR446Db76Bhx6Cdu3ijkpERCqjzsIs8utfw7/+Bc8/\nD/vvHxKpiIhkJyXQLLPffvDMM/D++7DXXvD553FHJCIi6WRNAjWzUWY2x8yWmdkMM9ulmvqtzOwK\nM5trZsvN7GMzO7GRwm1Qu+wSlv6rqAhL/33wQdwRiYhIqqxIoGY2GLgOuBjYGXgDmGJmHas47EFg\nX2AYsA1QDLzXwKE2mp494cUXoU2bsOjC3LlxRyQiIsmyIoECJcB4d5/k7u8CpwFLgeHpKpvZAcCe\nwK/c/Rl3n+fuL7v7S40XcsPr1g2efTYk0QMOCNNcREQkO8SeQM2sJVAETEuUubsDU4G+lRx2CPAa\ncI6ZfWZm75nZtWbWusEDbmSdOsGUKWFA0cEHww8/xB2RiIhAFiRQoCPQHFiQUr4A6FzJMVsSWqC/\nAA4HRgNHA7c0UIyx6tEjjM59662w/N+KFXFHJCIi2ZBAM9EMWAX8xt1fc/engN8BQ81snXhDaxh9\n+sAjj4TW6IgR4B53RCIi+S0bFlJYBKwEOqWUdwK+rOSYL4DP3f37pLLZgAGbAh9V9mYlJSUUFBSs\nUVZcXExxcXEtw258AweGVYpOOCE8Gu3yy+OOSEQke5WWllJaWrpGWUVFRb2d3zwLmjJmNgN42d1H\nR68NmAeMdfdr09Q/Bbge2Njdl0ZlhwEPAeu6+49pjikEysrKyigsLGy4H6YR/PWv8Ic/wE03wRln\nxB2NiEjuKC8vp6ioCKDI3cvrcq5s6cIdA5xiZkPMrCdwG9AWmABgZleZ2cSk+vcBXwN3m1kvM9sL\nuAa4K13ybGrOPhtKSuDMM8OSfyIi0viyoQsXd58czfm8jNB1OxMY5O4LoyqdgW5J9X8ws/2Bm4BX\nCcn0AeDCRg08JmahFfrll2Ht3I4dYZ994o5KRCS/ZEUCBXD3ccC4SvYNS1P2PjCooePKVs2awYQJ\n4Tmihx0W1s/dcce4oxIRyR/Z0oUrGWjVKozM7dEjLLTwySdxRyQikj+UQHNc+/ZhjmibNjBoUHie\nqIiINDwl0CYgdbWipUvjjkhEpOlTAm0iEqsVzZoVViv6+ee4IxIRadqUQJuQPn3g4Yfhqae0WpGI\nSENTAm1iBg0KqxX97W9w0UVxRyMi0nRlzTQWqT/HHx/miP7hD9ClC4wcGXdEIiJNjxJoE3X22TB/\nfljq79tv4ZxzoIX+tUVE6o26cJuoxGpFf/pT6Mrt2xfeeSfuqEREmg4l0CasWbPwxJaXXgoP4t55\nZ7jmGli5Mu7IRERynxJoHth1Vygvh9Gj4dxzoV8/eO+9uKMSEcltSqB5onXr0Pr873/DakW9e8P1\n16s1KiKSKSXQPLP77jBzJpx2WhhotM8+8OGHcUclIpJ7lEDzUNu2ofX57LNhpO6OO4aHc69aFXdk\nIiK5Qwk0j+21F7z5Jpx0Ung494ABMGdO3FGJiOQGJdA8165daH1OmxaS5w47wG23aRlAEZHqKIEK\nAP37h4Xojz8eTj8dBg6EefPijkpEJHspgcr/tG8fWp9TpsC778L224fFGJRIRUTWpgQqaxk4EN56\nC445Bs47DzbfPCzCcMklYT6pundFRJRApRIFBXDnnbBoEdx/P2y3Hdx4IxQVQbduYYH6p56CH3+M\nO1IRkXgogUqVCgrCA7rvvRe++gqmT4ejjw7J88ADoWPH8HrSpJBsRUTyhRKo1FjLlrDvvnDDDfDR\nR2HQ0XnnwWefwdCh0KkT7L03XHcdfPBB3NGKiDQsJVDJiFkYZPSnP8GMGWFBhvHjQ4v1ggtgm21C\nt++sWXFHKiLSMJRApV506QInnwyPPRbW2v3HP0L50KHw88/xxiYi0hCUQKXetW0Lhx4KEyfCG2+E\nZQNFRJoaJVBpMLvsAmedFR7orQXrRaSpUQKVBnXZZdC5M4wYofmjItK0KIFKg2rXLgwumj4dJkyI\nOxoRkfqTNQnUzEaZ2RwzW2ZmM8xslyrq7m1mq1K2lWa2cWPGLDUzcCAMGRKeP/rll3FHIyJSP7Ii\ngZrZYOA64GJgZ+ANYIqZdaziMAe2BjpHWxd3/6qhY5XMjBkDLVrA6NFxRyIiUj+yIoECJcB4d5/k\n7u8CpwFLgeHVHLfQ3b9KbA0epWSsQ4ewFODkyWGqi4hIros9gZpZS6AImJYoc3cHpgJ9qzoUmGlm\n883s32a2e8NGKnV17LHwq1+FdXQXL447GhGRuok9gQIdgebAgpTyBYSu2XS+AEYARwFHAp8Cz5pZ\n74YKUurODG69Fb77LiwBKCKSy7Ihgdaau7/v7ne4++vuPsPdTwJeJHQFSxbbbDO48koYNw5eeCHu\naEREMtci7gCARcBKoFNKeSegNmM2XwH2qK5SSUkJBQUFa5QVFxdTXFxci7eSuhg1Cu67Lyz9N3Mm\nrLNO3BGJSFNUWlpKaWnpGmUVFRX1dn7zLJjdbmYzgJfdfXT02oB5wFh3v7aG5/g3sNjdj65kfyFQ\nVlZWRmFhYT1FLpl6663wkO7zzw8P6hYRaQzl5eUUFRUBFLl7eV3OlS1duGOAU8xsiJn1BG4D2gIT\nAMzsKjObmKhsZqPN7FAz28rMfmFmNwD7AjfHELtkYPvtw33QK6+Et9+OOxoRkdrLigTq7pOB3wOX\nAa8DOwKD3H1hVKUz0C3pkFaEeaNvAs8COwAD3P3ZRgpZ6sH558NWW4Wu3JUr445GRKR2siKBArj7\nOHfv7u5t3L2vu7+WtG+Yu/dPen2tu2/t7u3cfSN3H+Duz8UTuWRqnXXgjjvC80RvvTXuaEREaidr\nEqjkp3794PTTQ3fuvHlxRyMiUnNKoBK7q66CgoKQSLNgTJuISI0ogUrsCgrCvNB//QseeCDuaERE\nakYJVLLCoYfCr38NZ54JX38ddzQiItVTApWsMXYsrFgRHnsmIpLtlEAla3TuDNddBxMnwtNPxx2N\niEjVlEAlqwwbBv37w4gR8MMPcUcjIlI5JVDJKmYwfjx88YWW+BOR7KYEKlmnRw8491y4+Wb45pu4\noxERSU8JVLLS6aeH5f0mTIg7EhGR9JRAJSttvHGY1nLrrbBqVdzRiIisTQlUstaoUfDhhxqRKyLZ\nSQlUslbfvrDTTmGVIhGRbKMEKlnLDEaOhCeegE8+iTsaEZE1KYFKVvvNb2DddeH22+OORERkTUqg\nktXWXRdOPDE8N/THH+OORkRkNSVQyXqnnw4LF8LDD8cdiYjIakqgkvV69gzL+2kwkYhkEyVQyQkj\nR8ILL8Abb8QdiYhIoAQqOeGww6BrV7VCRSR7KIFKTmjRIjyh5Z57oKIi7mhERDJMoGY2xMzWSVPe\nysyG1D0skbWdcgr89BNMmhR3JCIimbdA7wYK0pS3j/aJ1LsuXeDII0M3rnvc0YhIvss0gRqQ7r+w\nTQF1sEmDGTkS3n0Xnnkm7khEJN+1qE1lM3udkDgdmGZmPyftbg5sATxVf+GJrGmvvWC77UIrtH//\nuKMRkXxWqwQKPBp97Q1MAb5P2vcTMBfQdHdpMIn1cUePhs8/h002iTsiEclXtUqg7n4pgJnNBe53\ndy2uJo3uhBPg3HPD+riXXhp3NCKSrzK9Bzod2Cjxwsx2NbMbzOzU+glLpHLrrReS6O23w4oVcUcj\nIvkq0wR6H7AvgJl1BqYCuwJXmNlFmZzQzEaZ2RwzW2ZmM8xslxoet4eZrTCz8kzeV3LT6afDl1/C\no49WX1dEpCFkmkC3B16Jvj8GmOXuuwPHASfW9mRmNhi4DrgY2Bl4A5hiZh2rOa4AmEhI4JJHdtgB\n9txTKxOJSHwyTaAtgcT9z/2Ax6Lv3wW6ZHC+EmC8u09y93eB04ClwPBqjrsNuBeYkcF7So4bNQqe\nfRbefjvuSEQkH2WaQN8GTjOzPYH9WT11pSvwdW1OZGYtgSJgWqLM3Z3QquxbxXHDCNNmNIwkTx1x\nBHTqBLfeGnckIpKPMk2g5wAjgGeBUndPPCPjUFZ37dZUR8Ic0gUp5QuAzukOMLOtgSuB49x9VS3f\nT5qIVq3C8n6TJsGSJXFHIyL5JqME6u7PEhJfR3dP7ma9ndD92mDMrBmh2/Zid/8oUdyQ7ynZa8QI\nWLo0LDIvItKYaruQwv+4+0oza2Fm/aKi99x9bganWgSsBDqllHcCvkxTvz3QB+htZrdEZc0AM7Of\ngIFRgk+rpKSEgoI1l/EtLi6muLg4g9AlbptuCoceGgYTnXZaWGhBRASgtLSU0tLSNcoq6vFxTuYZ\nrMptZu2Am4AhrG7FrgQmAb9196W1PN8M4GV3Hx29NmAeMNbdr02pa0CvlFOMIkyrOQqY6+7L0rxH\nIVBWVlZGYWFhbcKTLDd1Kuy/Pzz3XBiZKyJSmfLycoqKigCK3L1O0x8zvQc6BtgbOARYP9oOi8qu\ny/B8p0SPSetJGF3bFpgAYGZXmdlECAOM3P2d5A34Clju7rPTJU9p2vr3h222qZ8pLeXl4XwDBsAq\n3V0XkSpkmkCPAk5y9yfdfXG0/Qs4BTi6tidz98nA74HLgNeBHYFB7r4wqtIZ6JZhrNLENWsW1sd9\n+OGwuEIm5s+HYcOgTx+YOxemT4dHHqnXMEWkick0gbZl7VGzEFqCbTM5obuPc/fu7t7G3fu6+2tJ\n+4a5e6XP3nD3S91d/bJ5bOhQaNEC7ryzdsctXQp//nNowT7+ONx8M7z/PgwaBBdeCD//XP05RCQ/\nZZpAXwIuNbPWiQIza0NYSeil+ghMpDbWXx+OOw7Gj69Z0lu1Kozc3XbbkEBPPx0+/DC0ZFu0gCuu\nCM8d1eheEalMpgn0LGAP4DMzm2Zm04BPo7LR9RWcSG2MGgWffQZPPFF1vRdegN12CwvS77orzJ4N\n114bknAZ7ZbQAAAe4ElEQVRCUREcdRRccgn8qGcOiUgamc4DnQVsDZwHzIy2c4Ee7q6F1SQWvXtD\n375wyy3p98+ZA4MHQ79+sHJlWAbw4Ydhq63S17/sMpg3r/bdwiKSHzKaB2pm5wFfuvsdKeXDzWwj\nd/9LvUQnUksjR4aW5Xvvhe5ZgMWL4cor4YYboEMHmDAh1GlWzZ+P220X6l1+eRhg1Daju/si0lRl\n2oU7AngnTfnbNPBKRCJVOfpo6NgRbrst3AsdPx569ICxY+Gcc8IAoaFDq0+eCZdcAl9/HQYXiYgk\nyzSBdiaMuE21kMyexiJSL1q3hpNPhrvvhp13DqsTHXBASJyXXgrt2tXufFtsEc539dVQjwuYiEgT\nkGkCTQwYSrUHMD/zcETqbsQIWL4cCgrglVfCYvObbpr5+S64AJYtg+syWSJERJqsTNfCvQO4IXoU\n2fSobABwDZmtRCRSb7p3hy++CKNq62Nt3K5d4be/heuvD1832qju5xSR3JdpC/Ra4C5gHPBxtN1E\nWLv2qnqKTSRjG2xQvwvLn3NOON/VV9ffOUUkt2U6jcXd/RxgI2A3YCdgQ3e/rD6DE8kWHTrA2WeH\nKTKffRZ3NCKSDTJtgQLg7t+7+6vu/pa7a7q5NGklJbDuumHlIhGROiVQkXyy3npw3nlw111h2T8R\nyW9KoCK1MHIkdOoU5oeKSH5TAhWphTZtwlNa7rsPZs2KOxoRiZMSqEgtDR8eFli48MK4IxGROCmB\nitRSq1ZhVaN//CMs1CAi+UkJVCQDxcVhsfnzz487EhGJixKoSAaaNw9PaZk6FaZPr76+iDQ9SqAi\nGTr8cOjTJ7RC3eOORkQamxKoSIbMwnNGZ8yAf/4z7mhEpLEpgYrUwX77wd57h1boqlVxRyMijUkJ\nVKQOzOCKK+DNN2Hy5LijEZHGpAQqUkd77AEHHQQXXQQ//xx3NCLSWJRARerB5ZfDBx/AxIlxRyIi\njUUJVKQe9O4NxxwTFlhYvjzuaESkMSiBitSTyy6Dzz+H8ePjjkREGoMSqEg92XZbOPHEMKjo++/j\njkZEGpoSqEg9uuiikDyPOw5WrIg7GhFpSFmTQM1slJnNMbNlZjbDzHapou4eZvZfM1tkZkvNbLaZ\nndWY8Yqks/nm8PDD8OSTMGyY5oaKNGUt4g4AwMwGA9cBpwKvACXAFDPbxt0XpTnkB+Am4M3o+37A\n7Wb2vbvf2Uhhi6R14IFw771w7LHQvj2MGxfmi4pI05IVCZSQMMe7+yQAMzsNOAgYDlyTWtndZwIz\nk4ruM7OjgD0BJVCJ3a9/DUuWwEknQUEBXH113BGJSH2LPYGaWUugCLgyUebubmZTgb41PMfOUV09\nXEqyxvDhsHgxlJSEJHreeXFHJCL1KfYECnQEmgMLUsoXANtWdaCZfQpsFB1/ibvf3SARimTorLOg\nogL+9CdYbz0YNSruiESkvmRDAq2LfsC6wG7AX8zsQ3d/oKoDSkpKKCgoWKOsuLiY4uLihotS8tpF\nF4UkesYZIYmecELcEYnkh9LSUkpLS9coq6ioqLfzm8f8IMOoC3cpcJS7P5ZUPgEocPcjanie84Hj\n3b1XJfsLgbKysjIKCwvrHrhILbjDKafAhAnw4INwRI0+1SJS38rLyykqKgIocvfyupwr9mks7r4C\nKAMGJMrMzKLXL9biVM2Bdeo3OpH6YRZWKDrqqDA69+mn445IROoq9gQaGQOcYmZDzKwncBvQFpgA\nYGZXmdn/luk2s5FmdrCZ9Yi2k4Czgb/HELtIjTRvDn//OwwYAIcfDi/W5s9DEck6WXEP1N0nm1lH\n4DKgE2GKyiB3XxhV6Qx0SzqkGXAV0B34GfgI+IO7395oQYtkoFUreOihMFf0V7+CZ58NC9GLSO7J\nigQK4O7jgHGV7BuW8vpm4ObGiEukvrVtC48/HlqiAwfC88+HdXRFJLdkSxeuSF5Zbz146inYaCPY\nbz/45JO4IxKR2lICFYlJhw5hMFGrViGJfvll3BGJSG0ogYrEqGtXmDoVli4N3bnffBN3RCJSU0qg\nIjHbYovQEp0/PwwsWrIk7ohEpCaUQEWywHbbwZQpMHs2HHwwfPdd3BGJSHWUQEWyRFFReI7orFnQ\nrx98+mncEYlIVZRARbLI7rvDCy/A99/DbrvBm2/GHZGIVEYJVCTL9OoFL70EnTqFlui0aXFHJCLp\nKIGKZKEuXeA//wkt0gMOCEsAikh2UQIVyVLt24cVi044AYYMgauuCk91EZHskDVL+YnI2lq2hLvu\ngs02Cw/l/uQTuPlmaKHfXJHY6ddQJMuZwSWXQLduMGIEfP453H8/tGsXd2Qi+U1duCI54qST4Ikn\n4JlnYN994auv4o5IJL8pgYrkkAMOgOeeg3nzoG9f+OCDuCMSyV9KoCI5prAQZswIi9D37Ru+F5HG\npwQqkoO6dw8LLvTqFbpzH3007ohE8o8SqEiO2nDDsAj9wQfDkUfCLbfEHZFIflECFclhrVvDAw/A\nWWfBGWfAH/8Iq1bFHZVIftA0FpEc16wZjBkT5or+7newcCHccYfmioo0NP2KiTQRZ50V1s894YSw\nGP2994aBRiLSMNSFK9KEFBfDI4+EJQAPOwyWLo07IpGmSwlUpIk59FD45z/h+efDvNHFi+OOSKRp\nUgIVaYIGDAgjdN98M3z/9ddxRyTS9CiBijRRffvCs8+GBej33hu++CLuiESaFiVQkSasd++w9F9F\nBey5J8ydG3dEIk2HEqhIE9ezZ7gfCiGJvvdevPGINBVKoCJ5oHv3kEQLCkISnTkz7ohEcl/WJFAz\nG2Vmc8xsmZnNMLNdqqh7hJn928y+MrMKM3vRzAY2ZrwiuaZLl3BPdLPNYJ994KWX4o5IJLdlRQI1\ns8HAdcDFwM7AG8AUM+tYySF7Af8GDgQKgWeAx81sp0YIVyRndewI06fDjjvC/vvDtGlxRySSu7Ii\ngQIlwHh3n+Tu7wKnAUuB4ekqu3uJu//V3cvc/SN3Px/4ADik8UIWyU3rrQdPPRW6cg86KCy6ICK1\nF3sCNbOWQBHwv7+F3d2BqUDfGp7DgPbANw0Ro0hT07ZteATawQfDEUdAaWncEYnkntgTKNARaA4s\nSClfAHSu4Tn+ALQDJtdjXCJN2jrrwP33w/HHw3HHwe23xx2RSG7J+cXkzew3wIXAoe6+KO54RHJJ\nixbwt79B+/YwYgS8/z4ccwwUFuppLiLVyYZfkUXASqBTSnkn4MuqDjSzY4HbgaPd/ZmavFlJSQkF\nBQVrlBUXF1NcXFzjgEWakmbNYOzYMMDo2mvhuuvCdJe994b+/cP2i1+EeiK5pLS0lNKU+xMVFRX1\ndn4LtxvjZWYzgJfdfXT02oB5wFh3v7aSY4qBO4HB7v5EDd6jECgrKyujsLCw/oIXaUJWrIBXXw0j\ndadPhxdfhB9/hI02Wp1M+/eHrbYCs7ijFam98vJyioqKAIrcvbwu58qGFijAGGCCmZUBrxBG5bYF\nJgCY2VVAV3cfGr3+TbTvTOBVM0u0Xpe5u549IZKhli1h993DdsEFsGxZSKKJhDpyJKxcCd26rZlQ\nN9007shFGl9WJFB3nxzN+byM0HU7Exjk7gujKp2BbkmHnEIYeHRLtCVMpJKpLyJSe23ahKe5DBgQ\nXi9eHFY0mj49zCGdODGUb7NNqPOHP8AWW8QXr0hjyoou3MagLlyR+rdoUVjdaPp0+Mc/YMkSuOkm\nGDJEXbySneqzC1fDAkQkYx07wtFHw7hxMHs2HHkknHhiGMmrZ5BKU6cEKiL1Yr31YMIEePDB0CLd\nYQf497/jjkqk4SiBiki9OvpoePNN2H57GDQIRo8Og5FEmholUBGpd5tsEtbbveEGGD8e+vTRI9Sk\n6VECFZEG0axZaH2WlYXpMbvuCtdcE6bBiDQFSqAi0qB+8Qt4+WUoKYFzzw3TXebNizsqkbpTAhWR\nBrfOOvCXv4TBRR9/HJ5Het99cUclUjdKoCLSaPbZJwwwOuig8ASY4mL49tu4oxLJjBKoiDSq9deH\ne+8NLdAnnwyt0enT445KpPaUQEUkFsXFMGsWbL11uC968slhVSMNMpJcoQQqIrHp1g2mToUxY2DK\nFNh3X+jSBU49NbxesSLuCEUqpwQqIrFq1iyM0P3kE5gxIywFOG0aHHAAbLwxDB0Kjz0Gy5fHHanI\nmpRARSQrNGsGv/xlmCv64Yfw+utwxhnh+aSHHRaeSXrssWGpwB9+iDtaESVQEclCZtC7N/z5z/DO\nO/D22/DHP8K774aF6jt2hCOOCIORKirijlbylRKoiGS97baDCy8MywF++CFceinMnw/HHx9apgcd\nFB6j9vbbkCdPaJQsoAQqIjllq61Ca/Tll8OKRtdeG7p0zz47LGDftWuYY/q3v4X7qiINpUXcAYiI\nZKpbt7De7ujRIYm+8EIYgDRtGpSWhtboVltB//5hqkz//qHFKlIflEBFpElo1w4GDgwbwDffhHml\n06eHhHrHHaF8xx1XJ9O994b27WMLWXKcEqiINEkbbghHHhk2gM8/X51MH3wQrr8emjcPT4nZe+/w\nyLWiIth88zCISaQ6SqAikhc22QROOCFs7mEwUqK7d9IkuPrqUK9Dh5BIEwm1T5/QVaykKqmUQEUk\n75iFJQS33hpOOy2UffFFeHZpWRm89loYhHTllWFfx45rJtSiIth0UyXVfKcEKiJCWELw4IPDljB/\n/uqEWlYGd94JV1wR9m288eqEussuYRGIjTeOJ3aJhxKoiEglunYN2yGHhNfuayfV224LCz5AuH/6\ny1+G+6q//CUUFkLbtvHFLw1LCVREpIbMwr3UTTaBQw8NZe5hPurLL8Mrr4SvF14Iy5aFQUo77LA6\noe66K/TqFcol9ymBiojUgVloeW6+eVhmEODnn+Gtt1Yn1BdfDNNo3GHddUO3byKpapBS7lICFRGp\nZy1ahLV8e/cOj2YDWLIkdPkmWqr33hsWzgfYYINQd6edwta7d1i+sFWr+H4GqZ4SqIhII2jfHvbZ\nJ2wJn38O5eXwxhthnd8nnoAbbgj7WrQISTQ5qe60UxgRLNlBCVREJCaJ+6mJQUoQWqqzZq1Oqm+8\nAQ8/DEuXrj4mOaH26gU9ekCbNvH8DPksaxKomY0Cfg90Bt4Afuvur1ZStzNwHdAH6AHc6O6/a6xY\nRUQaSvv2sPvuYUtYuTIs/PDGG6sT68SJoQWbsNlmsM02sO224Wti23xzDVpqKFmRQM1sMCEhngq8\nApQAU8xsG3dflOaQdYCvgD9HdUVEmqzmzUNi3Hbb1QOVAL7+Gt5/H957L3x9/334z3/CfNUffwx1\nWrUKLdTkpJpIshttpMFLdZEVCZSQBMe7+yQAMzsNOAgYDlyTWtndP4mOwcxOasQ4RUSyRocO0Ldv\n2JKtWgWffrp2cp08OTziLfHM1PbtoXv3yrcNNlCCrUrsCdTMWgJFwJWJMnd3M5sK9K30QBERSatZ\ns9VTa/bff819y5fDRx+FhPrhhyGhzp0bFtqfM2f1vVaoOsFutllIsPncPRx7AgU6As2BBSnlC4Bt\nGz8cEZGmq3Vr+MUvwpbKPXQLz5279jZ9evj6ww9rHtOmTZjb2r597b526RIGQrVr19A/ccPJhgQq\nIiJZwCxMk0ksnp8qOcHOmwcVFWHU8JIl8P33a35dvDgMckotT9ybhdBS7tlzzUX6cympZkMCXQSs\nBDqllHcCvqzvNyspKaGgoGCNsuLiYoqLi+v7rUREmpTqEmxNrFgRkuknn6z59JvJk0NybdYsTM0p\nKlq9ZZpUS0tLKS0tXaOsoqIis8DTME/cTY6Rmc0AXnb30dFrA+YBY9392mqOfQZ4vbppLGZWCJSV\nlZVRWFhYT5GLiEh9WLEC3n579SL9ZWVhys5PP62ZVJNbqpks1F9eXk5RURFAkbuX1yXmbGiBAowB\nJphZGaunsbQFJgCY2VVAV3cfmjjAzHYCDFgX2Ch6/ZO7z27k2EVEpI5atly9/OHJJ4eyn34KSTX5\n6Tf33x/KJ0+GX/863pizIoG6+2Qz6whcRui6nQkMcveFUZXOQLeUw14HEs3nQuA3wCfAlg0fsYiI\nNLRWrWDnncOWnFTfegu2zIL/6bMigQK4+zhgXCX7hqUpa9bgQYmISFZp1So8ZzUbKAmJiIhkQAlU\nREQkA0qgIiIiGVACFRERyYASqIiISAaUQEVERDKgBCoiIpIBJVAREZEMKIGKiIhkQAlUREQkA0qg\nIiIiGVACFRERyYASqIiISAaUQEVERDKgBCoiIpIBJVAREZEMKIGKiIhkQAlUREQkA0qgIiIiGVAC\nFRERyYASqIiISAaUQEVERDKgBCoiIpIBJVAREZEMKIGKiIhkQAlUREQkA0qgIiIiGVACFRERyUDW\nJFAzG2Vmc8xsmZnNMLNdqqm/j5mVmdlyM3vfzIY2Vqz5pLS0NO4QcpKuW+3pmmVG1y0+WZFAzWww\ncB1wMbAz8AYwxcw6VlK/O/AEMA3YCbgRuNPM9m+MePOJfjkzo+tWe7pmmdF1i09WJFCgBBjv7pPc\n/V3gNGApMLyS+qcDH7v7H939PXe/BXgoOo+IiEiDiz2BmllLoIjQmgTA3R2YCvSt5LDdov3JplRR\nX0REpF7FnkCBjkBzYEFK+QKgcyXHdK6k/npmtk79hiciIrK2FnEH0IhaA8yePTvuOHJKRUUF5eXl\ncYeRc3Tdak/XLDO6brWTlANa1/Vc2ZBAFwErgU4p5Z2ALys55stK6i929x8rOaY7wPHHH59ZlHms\nqKgo7hBykq5b7emaZUbXLSPdgRfrcoLYE6i7rzCzMmAA8BiAmVn0emwlh70EHJhSNjAqr8wU4Dhg\nLrC8DiGLiEjuak1InlPqeiIL43XiZWbHABMIo29fIYymPRro6e4LzewqoKu7D43qdwdmAeOAvxGS\n7Q3Ar9w9dXCRiIhIvYu9BQrg7pOjOZ+XEbpiZwKD3H1hVKUz0C2p/lwzOwi4HjgT+Aw4SclTREQa\nS1a0QEVERHJNNkxjERERyTlKoCIiIhnIiwRa24Xq852ZXWxmq1K2d+KOK5uY2Z5m9piZfR5dn0PT\n1LnMzOab2VIze9rMesQRazap7rqZ2d1pPnv/iivebGBm55nZK2a22MwWmNn/mdk2aerp8xapyTWr\nj89ak0+gtV2oXv7nLcKArs7R1i/ecLJOO8Jgt5HAWgMJzOwc4AzgVGBX4AfC565VYwaZhaq8bpEn\nWfOzV9w4oWWtPYGbgF8C+wEtgX+bWZtEBX3e1lLtNYvU6bPW5AcRmdkM4GV3Hx29NuBTYKy7XxNr\ncFnKzC4GDnP3wrhjyQVmtgo43N0fSyqbD1zr7tdHr9cjLDc51N0nxxNpdqnkut0NFLj7kfFFlt2i\nP/6/AvZy9/9GZfq8VaGSa1bnz1qTboFmuFC9BFtH3Wwfmdk9Ztat+kMEwMy2IPw1m/y5Wwy8jD53\nNbFP1O32rpmNM7MN4w4oy6xPaL1/A/q81dAa1yxJnT5rTTqBktlC9QIzgBOBQYTFLbYAnjOzdnEG\nlUM6E35Z9bmrvSeBIUB/4I/A3sC/op6jvBddhxuA/7p7YlyCPm9VqOSaQT181rJiIQXJLu6evMTV\nW2b2CvAJcAxwdzxRST5I6W5828xmAR8B+wDPxBJUdhkHbAfsEXcgOSTtNauPz1pTb4FmslC9pHD3\nCuB9IG9H9dXSl4Chz12dufscwu9x3n/2zOxm4FfAPu7+RdIufd4qUcU1W0smn7UmnUDdfQWQWKge\nWGOh+jqtwp9PzGxdwoeqyg+gBNEv4pes+blbjzAiUJ+7WjCzTYEO5PlnL0oEhwH7uvu85H36vKVX\n1TWrpH6tP2v50IU7BpgQPfElsVB9W8Li9ZKGmV0LPE7ott0EuBRYAZTGGVc2ie4H9yD85Q+wpZnt\nBHzj7p8S7rlcYGYfEp4A9GfCms3/iCHcrFHVdYu2i4GHCQmhB/AXQu9HnZ+ckavMbBxhesWhwA9m\nlmhpVrh74slS+rwlqe6aRZ/Dun/W3L3Jb4Q5Z3OBZYRHnvWJO6Zs3giJ8rPoes0D7gO2iDuubNoI\nAw5WEW4RJG9/S6pzCTAfWBr9UvaIO+64t6quG+ExU09F/6EtBz4GbgU2ijvumK9Zuuu1EhiSUk+f\ntxpes/r6rDX5eaAiIiINoUnfAxUREWkoSqAiIiIZUAIVERHJgBKoiIhIBpRARUREMqAEKiIikgEl\nUBERkQwogYqIiGRACVSaNDN7xszGxB1HKjNbZWaHZkEck8zs3LjjaExmNsLMHqu+pkjVtBKRNGlm\ntj6wwt1/iF7PAa5397GN9P4XA4e7+84p5RsD33p44EEsojVopwKbufuyGN5/KHCDu2/QyO/bEpgD\nDHb3FxrzvaVpUQtUmjR3/y6RPOtT9J9wjcNYq8D9qziTZ+QM4MGGTp5VXCsjzbVpaNF1vw8Y3djv\nLU2LEqg0aclduGb2DLA5cH3UhboyqV4/M3vOzJaa2SdmdqOZtU3aP8fMLjCziWZWAYyPyq82s/fM\n7Acz+8jMLjOz5tG+oYQnPuyUeD8zGxLtW6ML18y2N7Np0fsvMrPx0RMjEvvvNrP/M7OzzWx+VOfm\nxHtFdUaa2ftmtszMvjSz5AcGp16XZsDRhKfuJJcnfs77zOx7M/vMzEam1CkwszvN7CszqzCzqWa2\nY9L+i83sdTM7ycw+JjyUIPX99yYsIF+QdG0uiva1MrO/Ru/9vZm9FNVPHDvUzL41s4Fm9o6ZLTGz\nJ5OeuIGZ7WNmL0fHf2tmz5tZt6QQHgcOMbN1KrtGItVRApV8ciThKTMXAp2BLgBmthXwJPAgsD0w\nmPD0+ptSjj8bmAn0JjwuCmAxMAToBZwJnEx4ZB7AA8B1wNuEhxt3icrWECXqKcDXQBEhse2X5v33\nBbYE9one88Row8z6ADcCFwDbAIOA56q4FjsC6wGvpdn3e+D16Oe8GrjRzAYk7X+I8NzEQUAhUA5M\njbrLE3oQrvcR0XlSvQCcRbh+iWvz12jfLYRnWR4D7ED4d3ky+ndKaEv49zgO2BPYLHF89EfF/wHP\nEP49dwNuZ83W7mtAy+h9RDIT92NntGlryI3wn+iYpNdzgDNT6twB3JpS1g/4GWiVdNxDNXi/s4FX\nkl5fDJSnqbcKODT6/hRgEdA6af+B0ftvFL2+m/DIJUuq8wBwX/T9EcC3QLsaXpfDgJ/SlM8B/plS\nVgo8kXRdvgVaptT5ADg56WdeDmxYTQxDCc9PTS7rRnj2bOeU8qeBy5OOWwl0T9p/OjA/+n6DaP+e\n1bz/18AJcX9GteXulg8P1Bapzk7ADmZ2fFJZ4oHPWwDvRd+XpR5oZoOB3wJbAesSHlJfUcv37wm8\n4asfjgyhhdYM2BZYGJW97e7JragvCC0sCAnmE2COmT1FeNbh/3nl9zfbAD9Wsu+lNK8T9wt3BNoD\n35hZcp3WhGuQ8Im7f1PJ+auyA9AceN/WfINWhD8yEpa6+9yk118AGwO4+7dmNhH4t5k9TRgoNdnd\nv0x5r2WElqxIRpRARULiG0/oArWUffOSvl9jMJKZ7QbcQ+gS/jchcRYDv2ugOFMHHTnRbRh3/97M\nCgnduwOBS4FLzKyPuy9Oc65FQFsza+HuP9cihnUJD23em7Wv1XdJ32c6cGtdQsu7kNBKT/Z90vfp\nrsX/4nH34WZ2I3AAoUv+z2a2v7u/knTMhqz+40Sk1pRAJd/8RGjhJCsHtnP3ObU81+7AXHe/OlFg\nZt1r8H6pZgNDzaxNUouxH6Eb8r3KD1uTu68CpgPTzewyQkLrDzyapvrM6Ot2wJsp+3ZL83p29H05\n4f7xSnefR92kuzavR2WdvI5TTNz9DeAN4C9m9iLwG+AVADPbElgnej+RjGgQkeSbucBeZtbVzDpE\nZX8Bdjezm8xsJzPrYWaHmVnqIJ5UHwCbmdlgM9vSzM4EDk/zfltE5+1gZq3SnOdewj3DiWb2CzPb\nFxgLTHL3GrWQzOwgM/tt9D6bEe4TGpUkYHdfREge/dLs3sPMfm9mW5vZKMKgphui46YSunQfNbP9\nzWxzM9vdzC6PWsC1MRdY18z6R9emjbt/QJhiMsnMjjCz7ma2q5mda2YH1uSk0TFXmtluZraZmQ0E\ntgbeSaq2J/BxBn80ifyPEqg0danzDC8CugMfAV8BuPssQpfk1oSRq+XAJcDnVZwHd38cuJ4wWvZ1\nQkvtspRqDxPuRz4Tvd+xqeeLWp2DCF2KrwCTCfc0f1vzH5PvCKNepxESxanAse4+u4pj7gSOT1N+\nHdAn+pn+BJREiTPhV4Tr9DdCgr6PMAp2QS3ixd1fAm4jDIb6CvhDtOtEYBJhVO27wCNRPDVt8S4l\n3Fd+KIrvNuAmd789qU4xYWSuSMa0EpFInjKz1oQENdjdX47KGnWlpjiY2XaEPzS2cfclcccjuUst\nUJE8FY36HQJ0jDuWRtYFGKLkKXWlQUQieczdUxdbaPJdUu4+Le4YpGlQF66IiEgG1IUrIiKSASVQ\nERGRDCiBioiIZEAJVEREJANKoCIiIhlQAhUREcmAEqiIiEgGlEBFREQyoAQqIiKSgf8HuRibGrjO\n6lMAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7fd73f9c7b00>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"parameters = L_layer_model(train_x, train_y, layers_dims, num_iterations = 2500, print_cost = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Expected Output**:\n",
"<table> \n",
" <tr>\n",
" <td> **Cost after iteration 0**</td>\n",
" <td> 0.771749 </td>\n",
" </tr>\n",
" <tr>\n",
" <td> **Cost after iteration 100**</td>\n",
" <td> 0.672053 </td>\n",
" </tr>\n",
" <tr>\n",
" <td> **...**</td>\n",
" <td> ... </td>\n",
" </tr>\n",
" <tr>\n",
" <td> **Cost after iteration 2400**</td>\n",
" <td> 0.092878 </td>\n",
" </tr>\n",
"</table>"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Accuracy: 0.985645933014\n"
]
}
],
"source": [
"pred_train = predict(train_x, train_y, parameters)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<table>\n",
" <tr>\n",
" <td>\n",
" **Train Accuracy**\n",
" </td>\n",
" <td>\n",
" 0.985645933014\n",
" </td>\n",
" </tr>\n",
"</table>"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Accuracy: 0.8\n"
]
}
],
"source": [
"pred_test = predict(test_x, test_y, parameters)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Expected Output**:\n",
"\n",
"<table> \n",
" <tr>\n",
" <td> **Test Accuracy**</td>\n",
" <td> 0.8 </td>\n",
" </tr>\n",
"</table>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Congrats! It seems that your 4-layer neural network has better performance (80%) than your 2-layer neural network (72%) on the same test set. \n",
"\n",
"This is good performance for this task. Nice job! \n",
"\n",
"Though in the next course on \"Improving deep neural networks\" you will learn how to obtain even higher accuracy by systematically searching for better hyperparameters (learning_rate, layers_dims, num_iterations, and others you'll also learn in the next course). "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 6) Results Analysis\n",
"\n",
"First, let's take a look at some images the L-layer model labeled incorrectly. This will show a few mislabeled images. "
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false,
"scrolled": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAADEcAAAFYCAYAAAALXXMiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsvXm0bVld3/uduz397bvqG6Dog1hCgg+wwWRoeNEHOtKK\nxhgTTKIxyRtRiWLykmFiEmOMz5foExuMGnma2CGI0gglUoBAQVENt/q6dft7zz3t7tf7Y+/int93\n7tr7nGq4d+/z+Yyxxrm/veaaa7bf+ZtzrnVXKopCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAk0rp\nSicAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgmcDLEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMNHw\ncgQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEw0vBwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATDS9H\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADARMPLEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMNHwcgQA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEw0vBwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATDS9HAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAADARMPLETCSlNLrU0q9lNLrtvz2Cymlh57Fe3z74B43PFtxAsDu\nAI0CANgZ6CYAXK2gTwCwW0DvAAC2D5oJALsF9A4AdgNoHQDsBtA6ANgNoHUwCfByxFVMSunbBh38\nyWMzpXRfSum/pJQOfwmTUgyxezuNJKX0Aymlb3yK+P0eU8OIfANMNGgUPFegmzCtoJvTARoF0wj6\nBM8VaCZcbaB38FyB3sE0gmZOB+gTwHjQu+kAvQMYDVo3HaB1AKNB66YDtA5gNGjddIDWPffwcsTV\nTyHpX0j6W5L+gaQ7JL1V0p+klGauUJq+U9ILn8Z1PyhpWIf+JUmzRVE8+oxSdfXyVPkGmAbQKHgu\nQDdhmkE3Jx80CqYV9AmeC9BMuBpB7+C5AL2DaQXNnHzQJ4Dtgd5NPugdwHjQuskHrQMYD1o3+aB1\nAONB6yYftO45pnKlEwDb4j1FUfzZ4N/vSCldkPR96neO/zHsgpTSXFEUG89FYoqi6ErqPovxFZJa\nz1Z8APAlB40CANgZ6CYAXK2gTwCwW0DvAAC2D5oJALsF9A4AdgNoHQDsBtA6ANgNoHUAI+DLEZPJ\n+yUlSTdLUkrp2wefyHldSumnU0qnJT32ZOCU0jUppXeklE6llBoppc+llP62R5pSujal9L9SSmsp\npdMppR+XVB/ca2u4X0gpPWS/pZTS96aU7hp8qudMSun3U0qvHJzvSZqT9GRaeymld1j6b7A4v3uQ\n1kZK6URK6adSSnsszAcH93xRSukDKaX1lNLjKaX/c0j+rk8p3badAk4p1VNKPzL45NBmSumJlNJv\npJRu3hLmn6WU7kgpnUspbaSUPpFSerPF85T5Bphi0KjLYZ51jUopvX6Qnm9JKb0tpfTYIE9/mFK6\ndUj4bxno00ZK6WxK6Z0ppWuGlNnqoC7+1+DfZ1JK/z6llDzOp0gXugnw9EE3L4fBtwO4ukCfLofB\nr0MzYbpB7y6HQe/QO4BxoJmXwzCHBZhu0LvLYdA7gOkFrbscBq0DmF7Qusth0DqA6QWtuxwGrQO+\nHDGhPG/w9/zgbzH4+9OSzkj6l5LmJSmldFjSx9R/K+snJZ2T9PWSfi6ltFgUxU8Ows2oL5DXSfrP\nkk5K+lZJX7Ml/icphvz2DknfJun3JP2s+m3rtZL+vKQ/U/8TPj83SMvPDK554KniSyn9iKQflvQH\ng3zdJum7Jd2eUvrKwZtmT167X9LvS/pNSb8m6Zsl/duU0l1FUbx3S7TvlPQ6jXkpKKVUGuTjqyX9\nqqSfkLQo6eskvVTSkyL+PZJ+S9IvS6pJ+muSfj2l9MaiKH5/EGZUvgGmFTTqOdSoLXy/+uX27yXt\nkfTP1dejv7Alnd8+yPvHBuGPSPrHkl6TUvqyoihWtqSzJOm9kv5U0j+V9AZJ/0TScUn/bVRC0E2A\nZwy6iW8HcLWCPuHXoZmwW0Dv0Dv0DmD7oJnMYQF2C+gdegewG0Dr0DqA3QBah9YB7AbQOrQOtlIU\nBcdVeqgvDF31O9QBSddK+quSzkpak3RsS7iepA9KShbH/yvpcUl77fdfkXRBUn1gf+/gXm/aEmZG\n0v2D31+35fefl/TgFvurB/f/8TH5WZX0jhH5vGFgH5TUkPRuC/fdg3DftuW3Dwx++xtbfqtKekLS\nr9v1H5DU2Ua5/+1Bfr5nTLi62WVJd0l633byzcEx6QcadcU06vWD/HxOUnnL7/9ocK8XD+yKpFOS\nPi2ptiXcNwyuf7uVWVfSD9q9Pinpzm2kCd3k4NjGgW7i23FwXK0H+oRftyUcmskx1Qd6h95tCYfe\ncXCMOdBM5rAcHLvlQO/QOw6O3XCgdWgdB8duONA6tI6DYzccaB1ax7G9Y7v/qxdcOZKkP1JfvB5T\nX4BWJH1TURQnt4QrJP1sMeg5W3iTpN+RVE4pHXjyUP/tqb2SXjkI9/WSThZF8ZtfjLAoGrr8ZtIo\n3qx+x/9XO83cU/AG9cXoJ+z3n1VfFP6y/b5WFMWvPGkURdGWdKekW7YGKoriq4ui2M7XUt6kfnn/\n1KhARVE0n/x3SmmvpH2SPqzLZQqwG0CjLvOl0qgneUdx+Y1Xqa8/aUu8t0s6LOmni6JobbnPuyXd\nOySdUv4/a37Y0/kUoJsA2wfdvAy+HcDVBfp0Gfw6NBOmG/TuMugdegcwDjTzMsxhAaYb9O4y6B3A\n9ILWXQatA5he0LrLoHUA0wtadxm0Doayk80ruDIU6r/d9AVJHUmni6K47ynCPrzVSCkdUl+svkvS\n33uKuA8P/n2j+p+cd57qXlu5RdITRVEsbyPsdrhx8Pf+rT8WRdFOKT245fyTPD4kjouSXvY073+r\npPuKouiNCpRSeqOkt0l6haT6llMjrwOYMtCoAV9CjXqSx4bEKfWdKg3SUXg6B9wr6Svtt0ZRFOft\nt4tb4lNK6aD6b7Q+yVpRFOtCNwF2Aro5AN8O4KoDfRqAX4dmwtSD3g1A79A7gG2AZg5gDgsw9aB3\nA9A7gKkGrRuA1gFMNWjdALQOYKpB6wagdfBU8HLEZPDxoij+bBvhNs1+8ssgvyzpF5/imruedqqu\nHrpP8Xt6rm6YUnqtpN9S/7NDb5V0UlJb0ndI+uvP1X0BrlLQqNE8Vxr1bMf7VPFt5eO67EwWkv6l\ntvmGL7oJEEA3R4NvB3DlQJ9Gg18nNBOmBvRuNOid0DuALaCZo2EOCzA9oHejQe8ApgO0bjRoHcB0\ngNaNBq0DmA7QutGgdbscXo6Ybs6q/8mYclEU7x8T9hFJLxny+wu3cZ8HJP3FlNLeMW96+ed5RqVF\nkm7TljfXUkpVSTdLet8243m6PCDpVSmlclEUTyWSb1J/4PhLRVF0tqTx7wwJu918A+w20KjnlkfU\nd+huU9/p2sptupyPnfA3JM1usR8c/EU3Ab40oJtPDzQK4LkHfXpuwa8DuHpA755b0DuA6QLNfHqg\nTwCTB3r39EDvACYLtO7pgdYBTBZo3dMDrQOYLNC6pwdaN2GUxgeBSWXwCZffkPTmlFImUoPPyj/J\nuyVdk1J685bzc5L+7jZu9Rvqt6W3jwm3rv4necbxh+q/MfU99vt3SlqS9LvbiCMjpXR9Sum2bQT9\nDUmHJP3DEWG66gvUF18wSindJOkbh4Tdbr4BdhVoVGQHGrVdPiHpjKS/P3AEn7zP10t6kZ5GOoui\n+GhRFO/fcjw8OIVuAnwJQDcj+HYAVw/oUwS/LoBmwlSB3kXQuwB6B2CgmRHmsADTC3oXQe8AphO0\nLoLWAUwnaF0ErQOYTtC6CFo3vfDliKuf7X7G5anCfb+kr5L0sZTSz0r6vKT9kr5c0tdIelLMflb9\njvvOlNLt6n/S5VvV74QjKYrigymld0r6npTSCyS9R31he62k9xdF8dODoJ+U9IaU0vdJekLSQ0VR\n3DkkvnMppR+V9MMppfdI+m313zZ7q6Q7Jf33cWl6Ct4p6XUa/1LQL0l6i6QfTym9WtKHJS1I+lpJ\n/3dRFL8j6fck/RNJ700p/YqkI5K+W9IXJL3c4ttWvgEmFDTqS69R26Ioik5K6Z9LeoekP04p/aqk\no+o7iQ9K+oln4z4D0E2A7YNu4tsBXK2gT/h1EpoJuwP0Dr2T0DuA7YJmMocF2C2gd+gdwG4ArUPr\nAHYDaB1aB7AbQOvQOhhHURQcV+kh6dvUf5volc8knPpi9ZPqf06mIemEpD+Q9B0W7jpJ/1P9z+ac\nlvQfJX3dIO7XbQn385IesGuT+h37bvU/DXNK/bexXrElzAskfUDS2iDOd1j6b7A43zqIr6G+APwX\nSUsW5gOSPjMkz8PS+AFJnW2WfV3Sv5J0fEuZ/Zqkm7aE+XZJ90raGKTzLeq/6da1uIbmm4Nj0g80\n6spolKTXD9LzJvv9xsHvb7Hfv1n9/31zQ/1Po/2ipGND0nNpyL3ejm5ycDx7B7qJb8fBcbUe6BN+\nnYVFMzmm9kDv0DsLi95xcIw40EzmsBwcu+VA79A7Do7dcKB1aB0Hx2440Dq0joNjNxxoHVrHsb0j\nDQoaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgInlWPnkOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABw\npeDlCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmGh4OQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYa\nXo4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICJhpcjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgouHl\nCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmGh4OWIXkFL6hZTSQ1c6HQAAkwK6CQBXM2gUAMDOQDcB\nYDeA1gHA1QwaBQC7AbQOAHYDaB0A7AbQOgDYLaB3MM3wcsQEk1JaTCm9PaX06ZTSakppI6X02ZTS\nv00pHdsStBgccIVJKR0b1NnLr3RaAHYj6OZo0CiAKwsaNXmgmwBXFnRzNGgUwHSA1o0GrQO4sqBR\nkwe6CbBz0LrJA60D2Dlo3eSB1gHsHLRu8kDrAJ4e6N3kgd49+1SudALg6ZFSukXSH0q6TtK7JP03\nSS1JL5f0HZK+SdILr1gC4am4RtLbJT0k6a4rnBaAXQW6uS3QKIArBBo1saCbAFcIdHNboFEAEw5a\nty3QOoArBBo1saCbADsArZtY0DqAHYDWTSxoHcAOQOsmFrQOYIegdxMLevcsw8sRE0hKqSzpNyUd\nkvT6oig+auffJumfX4m0wVjSlU4AwG4E3dw2aBTAFQCNmmjQTYArALq5bdAogAkGrds2aB3AFQCN\nmmjQTYBtgtZNNGgdwDZB6yYatA5gm6B1Ew1aB7AD0LuJBr17lild6QTA0+Kb1X+T61+7gElSURRr\nRVH80KgIUkr/LKV0R0rp3OCzOZ9IKb15SLivSyl9OKV0cfCJnXtTSv/GwvyjlNLnUkrrKaULKaWP\np5T+moW5LaV0/biMpZR+JKXUSyndmlL6hcF9l1NK70gpzVjYckrph1JKx1NKjZTSQymlf5NSqlm4\nh1NKv51S+sqU0sdSSpsppQdSSt86Lj1b4rgmpfRzKaUTg3s9mFL66ZRSZXB+X0rpP6SU7hqU06WU\n0ru3fuYmpfR6SXeq/ymiXxjks5tSest20wEAT5up1c1BWDQKYLKZWo3CtwOA54ip1c1BWDQKACS0\nDq0DuLqZWo1KzGMB4DJondA6gF0AWie0DmAXgNYJrQPYJaB3Qu+gD1+OmEz+ivod4ZefQRzfI+m3\nBnHUJP01Sb+eUnpjURS/L0kppRdL+h1Jn5b0Q5Kakp4n6TVPRpJS+ruS/rOkX5f0E5Jm1BfYV0v6\ntS33u0fSByV9zZh0FYO/vy7pQUnfL+mVkr5T0mlJP7Al7M9Jessg7H8Y3PMH1P/sz1ZBLiQ9X/3P\nBP2cpF9Q/xNBP59S+kRRFPeMSlBK6Zikj0taUv8zQ/dJulb9wWRO0oqkW9Svl3ep/2mbI5L+nqQP\nppReXBTFqUEZ/LCkfzWI58ODW/zJmDIBgGfO1OomGgUwFUytRgnfDgCeG6ZWN9EoANgCWofWAVzN\nTK1GiXksAFwGreuD1gFMN2hdH7QOYLpB6/qgdQDTD3rXB70DqSgKjgk7JH1S0oUdhP95SQ/ab3Wz\ny5LukvS+Lb99r6SupH0j4v6fku7aRhq6kv5oG+HeLqkn6Wfs99+QdGaL/fJBuP9q4X5scK/Xb/nt\nocFvr9ny20FJm5J+bBtp+kVJbUlfNiJMdchvNwzu8bYtv335IN1vudLtiINjNx1TrptoFAfHhB9T\nrlH4dhwcHM/6MeW6iUZxcHCoKNA6tI6D4+o+plyjmMdycHCoKNC6gY3WcXBM+YHWoXUcHLvhQOvQ\nOg6O3XKgd+gdx+WjJJhEliStPpMIiqJoPvnvlNJeSfvUf+PolVuCLQ/+/h8ppfQUUS1Lui6ldPuY\n+5WLovja7SZP/TegtvJhSQdSSgsD+xsG4f6ThfuPkpKkv2y/f74oii++SVUUxTn139S6ZVRCBvn+\nRkm/XRTFp54ywUXR3nJNKaW0X9LG4B6vfKrrAOBLxlTqJhoFMDVMpUZtDS58OwB4dplK3USjAMBA\n6y5fg9YBXH1MpUZtDS7msQCA1kloHcBuAK1D6wB2A2gdWgewW0Dv0DsYwMsRk8mKpMVnEkFK6Y0p\npY+mlDYlXZB0RtJbJe3ZEux/SLpD0s9KOp1S+tWU0reYoP07SWuS7kwp3Z9S+qmU0mv0zHnU7IuD\nv/sGf29U/02p41sDFUVxWn1hvXFMfE/GuU/6ovAcsaMq6ZD6g8bdoxKb+nxfSul+9T8TdE79Mn2Z\nYpkCwJVhWnUTjQKYDqZVo7aCbwcAzybTqptoFABsBa1D6wCuZqZVo7bCPBYA0Dq0DmA3gNahdQC7\nAbQOrQPYLaB36B0M4OWIyeReSXtSStc+nYtTSq+V9Fvqv4H0VklfL+kNkn5F/bejJElFUTSKonjd\n4Nwvqd8h/4ekP3hSyIqiuFfSbZL+qvpvYb1J0kdSSm9/eln7It2nSr7ZxbMU3/WSTkp6Ysvfv7DN\nuCXpbeq/XfZBSX9T0l9Uv9w+L/oZwNXAbtDNUaBRAFc3u0Gj8O0A4NlkN+jmKNAogN0BWofWAVzN\n7AaNYh4LAGjdZdA6gOkFrbsMWgcwvaB1l0HrAKYb9O4y6N0up3KlEwBPi9+R9Ncl/S3137DaKW+S\ntCnpLxVF0Xnyx5TS3xkWuCiKD0j6gKR/llL6AUn/WtJXS3r/4PympHdJeldKqSLpf0p6W0rpR4ui\naD2N9G2HR9QXh+er/4mZJ/NwWNLewfmdcEp90dnKZ9R/m25F0kvHXP9mSe8viuK7tv6Y+p8WOrvl\np+2KLgA8u0yrbp4VGgUwDUyrRu0EfDsA2AnTqpv4dgCwFbQOrQO4mplWjdoJzGMBph+0Dq0D2A2g\ndWgdwG4ArUPrAHYL6B16BwN482Qy+f8kfVZ9ofjzfjKltJhS+tcjru+q35m++HJMSukmSd9o8exT\nzmfUfyuqPgizf+vJgSjeMwhT3RLXbSml60dlaoe8e3CPf2y//1P18/Z7O4msKIpmURTvt+NSURSF\npP8l6X9PKb1yRBRd2dtnKaVvkeRv4a0P/u7dSfoA4BkzlbqJRgFMDVOpUTsE3w4AdsJU6iYaBQAG\nWofWAVzNTKVG7RDmsQDTD1qH1gHsBtA6tA5gN4DWoXUAuwX0Dr2DAXw5YgIpiqKTUnqTpPdJ+uOU\n0q9LukNSW9JLJP0NSRck/YuniOL3JP0TSe9NKf2KpCOSvlvSFyS9fEu4H04pvW4Q/pFBuLdKelTS\nRwZh/iCldGpw/9OSXizpH0j63aIo1rfEdY/6n4b5mqef88sURXFXSukXJX3XQGw/JOnVkt4i6TeL\novjQs3GfAT8o6evUL+ufUT8v10j6ZklfWRTFiqTflfRDKaV3SPoT9T8V9DclPWBxPSBpWdLfTymt\nqS9qHyuK4uFnMb0AYEy5bqJRABPOlGvUtsC3A4CdMOW6iUYBgCS0TmgdwFXNlGvUtmAeCzD9oHVo\nHcBuAK1D6wB2A2gdWgewW0Dv0DvYQlEUHBN6SFqS9HZJn5a0KmlD0uck/aikI1vC/bykB+zab5d0\n7+Cau9Xv/G+X1N0S5qsk/aakx9T/XM5jkt4p6dYtYb5T/U/jnBnEdf/g/gt2v66kP9pGnt4+CLvf\nfv+2we83bPmtpL5QH5fUkPSwpP9LUtWufVDSbw251we2k6ZB2OsG5XhqkM8vSPrPkiqD8zVJPybp\ncUlr6ovqq9T/RNAfWVxvVP8NveYgT2+50m2Jg2O3HNOom4OwaBQHxxQc06hRwrfj4OB4Do9p1M1B\nWDSKg4Pjiwdah9ZxcFzNxzRqlJjHcnBw2IHWoXUcHLvhQOvQOg6O3XCgdWgdB8duOdA79I6jUBoU\nKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwERSutIJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeCbw\ncgQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEw0vBwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATDS9H\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADARMPLEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMNHwcgQA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEw0lSudAEm69lU3FlvtcjW+s1EuR7tULex8OYuzXq5Fuxrt\nTrcT7FanHc/3usEuSineICZBjc3NLA0XHj8fw5xtxAAxCVKK95ip1YO9b89isGfr8fzF5oUsDY3s\nl3iPrpVD1/NdxIwmy3eyNJcq+fs2RYxStZlqsOf2xGu6pViWvY3ZYFc0H+1ybMblct6sK5V4z2rV\n7ViW1ZLHGfNZ8TZp7aPT88qVVjfXgt0qNoJ948v3BXv2VqurhRj+yI1zwV461Av23EwsN0nav/e2\nYDe6MR/1+kKwDy3GNO2djefPN1aCvdmNeWy0WlkaKs1Y9mkz5vOxx2K/+U9f/YvW+SaeYnyQUcGf\n++LoXXoo2Bfv/niwz5w4HezW+nIWR6exHuxuN2qsZ6NsfbRsml2qzQR7Zj62xQXTx/ps3v5nZ2Of\nqd/8injPpevtiqu/6RXePnqxnFcevSPY68f/JNif+sTdwb73gSeyexx/NPbJY/v3BLu5Hut6rhLL\nrVaOaaxXor7WLHy7FfWzuR61T5LSRtSa1Ua85rV/628G+2vf+u8sgpiGQq5V1l6LaKfWapYmVWIb\n7ZVim0w9y0fzRDw/97Krv8HtgLNnz4aK73aiM5BKcfzp9eIY5v6FJBWFh5HZo+Ms2T273Xi+Uon+\npF8v5T6n+0lfCrwcxmnVsLIcHb/5fkPrItrNVvTdSimWk/tZfg+rmqxuSqXc15fGt5lR5Pkc136G\nlcPoODwfnsaxZe3nh6TB6dg9m604G/D5RU68R9nKvuuO/ZBrPJXJfjl67PDU6N0vf+d8qKRWJ7YB\nn3PMRPdGyvqzlKzeN3qxDko2T5mv2vyt3Qx2sxNv2uzF4t+Iwfv3sLmMt/+FekxjYe1urRmvb3di\nHlLy+XzeJMopxnnBhtGSlVMtdUeer9g921b0K/m0RVWbVu6bt/OmXebyZPfY7MR8XogulGpDpgld\n71+Wr5mK5yuG9zzMWiJL2fw+S4Jk9b9pMtCyOEoarV2dTjy/2bQ1hdhtJEmLuWsfaFr9NW0hpGWJ\nvNiy+b3X5ZBy6FnZ91zTrb7/y0c7U6N1P/hPvzVkfn4++r2zc3FsqZv2pVK+RrNv/95gH9sf41yc\njQXq88nVCxeD/dC9DwT7/BMn4w2LvDqqNdfoqJfJ1n1a1vZnDsX5Y6UWG+qJBz4f7D21vI/XK+7j\nuIMbzYqVrfum3qc77nMN8+tsHVBjfKKu2W0vl4M3Bnv/0VhOlx79bJaGbiPO74ohfvhWSlYwJaur\nss05e/JyGBKptZFu1+YvXta29pjsHp326PlPtepOQX6PwtNQiQNR/cCtwf6d998Z7Pd8MK4HrKzG\nNbztzGW8H+zZcyDYJ088PjVaJ0mnjlovcvnywd4HjGE7LV5CvnTutt+jMuYe3q8rPscYkia7Z+H5\nKI8eywuXLk+zdzK3fYNBkjxOy6fLePLwY8vVbC8XL9dhQjEmjePj9H2WnZZrnqSx+fY0eV1nmz07\njH9YmsbF4dVv+fa6Lcb9927bWZYZlyYPbueP/J3uVGndibPdkaXmmW13o7O92cjXatc24xhz/MFP\nBXt19Vywjx56QbAr9TjG7bV9qeuvuSnecEgOGq2YrqZNCmq2HjJr93Q/yW/he6m+3iJJPVszqVej\nj1sxH8XXKne6E9QdsqZQ8gbscbr2ZDcZ16nGd4ezF08F+xOf/UCwW5txIeL0ubi3fczq+0XPf2m8\n3ur2uqPR/5Tyseuexz4X7Ifv/XSw//KLXxfsT7ZjfZ8/GcNvlg8Fu3b0JUPSEOOY68ZFgHor9ovW\n+YeD3VyNexDdTpwL9Hz9tJ5Ppnu2frOxEfvJgs0v/tG3f9/U6N0f/vEnQuYP7l8K54+fjO1utRX7\nziHbB5OkpVpsu5/uxTr65htvCva7fu03g33t0SPB/oqX3BLszx1/ONidUr6O+/jjcQ/vxCNxP7ft\nCyK2trtmE9uW7ZVl69kb+bMnvWZsy+WFWFZHjx0L9r59cQ5x263PC/bB/fH83n2Hg725mevtQ8dj\nn263Yt3ccmt8HuLIkVj2jUaMc9b3lN1fLvLnPmbm4jgyNx/3BGfsOY2q+WHj9go2G3H8PXchjrWS\n9EfvfU+w1zdivtZO3BXs6/faems3lv2bv+MfxhuUYxv8d78c95glac6k56u+7Npgn7oQ+0mlYmvV\nNnd+4PFLwb72cHwe4Nxy/kzWG151XbCrtdF7fa9+8W1To3U33HxNaDg+h0/emJO3w+049LYGM8Zn\nyp4fM38ZscrzAAAgAElEQVRn3Pn+b7YGk/WXWKf+vESWb09ltl42vhx6Y6ZOYy7P9sk8QDF0L3b8\nfu1WysnLOp5338GfDfT17zyVeaS+h+hrdH59YQWZ7XkPcUUL2R6Y9Wkvp6x9ZPnyfmBnh5SzP0Mw\nuxD18cjz4zXXv9TW9Hox/MqZOE/oLMe18mov90Nq5rd1iqivm50Hg/2r7/j41GidJL3sFS+Lvt2x\n/eF8px33DzY24nix2co3Q/25YV8nL7LJ0mhtcS0pm779hdv/XLBnSvmY9r4Pxbn04v447/B1HG/d\nHXsmx+exZX8W1ueoQ563zR6XHtOnsj6ZxTj6eQiP3jV+2Jq2151341e8LM7X3v6274/Xt2Ocn7vr\nE8H+7+/67WC/5z0fDPZMLR9H/vob3xDsj975Z/EeD8TnxfYfiv1+bk+cv2TjhO/rbINi2JrsFnL5\nG/0MSKbhY9Yjho6eY8bLIktDtL/wmXvGah1fjgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgImGlyMA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGCiGfax5y85M3NzwfZPyyT75HBRip8GqVXGf7O6ZZ+K6RTx\nkzqtIn6aLo/NPgdlaZybj5/Ok6TukZjOtn06ttSL6V5YjJ+F27fgdvwcn+wTfpfOL2dpUG/0Z378\n01qycvJPaSX7PI1/Yqdcyd+36dlnAuuz8ZNR9Xq8Ztk+b1TpeXsY/f3mYZ9/yz7PZu2jbOcr9rmv\nsn3a3s/3ZJ8gG/I525791mpE+/G74+cQb5iJn8ip3hzjW1uJn32qzsU0Ls7ln9pK1uUrXnY9bw/R\nrvTiJyAr7fgJ1vVWbD+9/Ju8atnniLqdeM2evXlf2l3Yp496pk2l+Im1Ps/uF9FSJfbRsrV3/2xW\nuzOkvdvnukpjPsecvA91o0Z329YWW7FcOo0YPpXyTwh32vFTr71H7w727K02Fs3Gz4nuvJy38133\n0dcU3aiHnU371PL62WA3Vi8G+6O/82vB7q7GceLE6ag75y+u5SmyTxP27JPSXrctO5+seeSfjo26\nNDNjn27rxU+sStLqRmwPq9Zt9l5vgpmiPo4j//xmHiL7ZYfVncZ8smzSyT5nN+YT7e5X+Wfoh12T\n3WLMp1z9F/8s3LBP8GUx7LSix6bBPzMYQ3d7+eea3YcZ8k3T0SkY8xlW/8Swf762HybGUbVPIe+0\nmPK6zEIMuWrMJ2h3+EnHcQwL7uWQTPB6Vn/JyjL79GB+V7vh6DT20xDtejXX0FHh/bO5eR6HKeLo\nz1luI9kTS7MVy2N+1vqLOU3u75RLea13bd65byHqY6sd41yP7o1KhX8CNYZvbFpfyOaLUmHj5kzZ\n5tI2R1jbiJrd7MXra5bPno2BlSFzhoalq2lyuKdiLcvaauZ7Wrv0uqsMkc595nbXLUzXPwFt9d21\nJNg0V3OexiG+QdU12867NpWq1iZrVi5W1uX8w+dZGtZ9euJp9GHJppS2bKFkaahawc7V83LwL9J6\nCG9T/t+ArNs9a5bmml3fHuKGeF+yL2lrc4rFrl63Pl2LOuNrchX7xHe5ms/N6rX4W606us8mq/VK\nPa5NLB6+PtjNVqyQ9lqc90jKdKNr/ueM+TelepwnV+txjW7W1uyq83FNZmUlzt0k6cieGGeydpa5\nAraulLoxfLvjvoevj43/bHE2dpndacVENRTr4uCB6yw+y+OQuVnZfKTChKTbjfnO5muWz2rdfVP/\nlPeQj3nbPUvdrgcYGb5n4b3cSr6uMsTHdsr1uEZRW4xle3YtroPc/+AjwW7b5+TH+55D/DrL16Y7\nHtPGuC7j570ah03Fxl2TnU+jz/u4W7Y6cxkZ9l9jeRp8a2X00vuQNI1Ls7W2Yc3f0uD58HlItqYy\nLt9ZudsFPlQNK7dx5WD3yKZOPv/3NGX2uLn/kGvGteEx4bNP149t80P0tDQmDvOZsrWZ7J5j1pTH\nrgUpT+fo5YSs/U0ba43VYLdajWDPz8Z9yUYzav+wOeSFi08E++KlaPs1VfOr9i7tC3bF/Mv1Rlyz\n3tiIeZCkSytx3XzfnsMxQBwW1bR8Z2vcnXhBtWz+ay3mQZI6XdvLsaKqVKO/OG4dyNdoNqwcur18\nElKvxolsuWy+evmZPhYQ03Ru+XQW4uS56JMsXzwT7OMP3R/s2dreYJ86dSrYjz56PNjXHIu+/3Ir\n3xt/+GS8x+mzjwa7thr3V+879kCw1zfjPktqxbI/OhvLvr5iE35JySaNjVa858qleI/WSmzX+/2Z\ngWv2B3vT/LTTy5eyNDQ3Y7r2WN8rp6viMZHnhNtfcVuwl9diWaw/HNvZNfvjnvyx/fk8dsb2Tp93\nKs4zi0asY18gmZ2J/XNmPt7z+pufH+w77/xEloazJx8Ptq89pcWDwT55Jmrjqu0RHtoX56233XAs\n2CcetzxJ+uqX3hLTsBbHif/njk8Guz4TxfDIvqiFexZjGnxP8vz5mAdJeviRh4N96y0xTe4fLC+f\nD3bN5vudTqzvVB6zECWpbc9ENCtx3CiSzUur9uyJ+UxnzsY1g3f+2u/G8+cuZGlYPnsy2L1OrK89\ncbquFxyx9ZzVqBuPP/pYsA8cvTHY1+zPn1Hw5zweOhHTeXBPfO6ja85e1Rbp9szFcpuxZ48OLuV9\n8+SZqJ/XH7Pxdoq3Y8u2/+NrFdlzU9tydEeHye4xJrZSlqbRz23144zXFGMdeFsDt3sWtp7mdnfo\nuu6YPUY/m03fPPzO9m4HP0bT5jVZ2fk+TLbfZ+Xg+3/DUxbDZGXZNdufoxu95+gMfXzC8+3rA2Wf\njPuznba2beuG8/ZcZq2e+/kVW8uemY16uLDH1v0U/Yz6YvQlUznORZped5fyhRMv6/a6+cDl/Dmf\naaI2Gwe1zU17ZsnWh+uz0c9SJX8meN32DHop1rPH6b7dOM2dmYlp3rMn+jwnHz+RpenotfE5pxe9\n9FXB9mdXXVPPnYv+xIkn4ti+f/+hYF93bVxvHjbPHfYM7lbcd/P1Zdce1wG3u/bccna9r9tL6tpv\nPld++UtuCnbd6vbSRuxPa5eib7G2Hp+N7Zj/U5uP6/iS9MTpWBdPnI0+Un02tre5pTjfS+av+pjQ\ns2dLs3FpqAPk44DFMW6NLRsD7J4lH1fG70j43p+PXfl4unP4cgQAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAEw0vBwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATDS9HAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAADARFO50gmQpHq9GuxUislKKYbvdFvBPjA7n8XZK3rBXm7Ea1IqB7tUju+J+PVuJ8VE+fWStGf/\n3mB3byiCPZ8Wg71vKYafL8dyqFtBrKwux/gtTZKUypZOxXyrbHaKaVTXTpdifDOz9RigZNcP7rqV\nSj3e01NtRS0VMU5PYimVzLY8DQ0T71q2fHk+S169luieYqK6Pc+E1O3FwvQ0Fa2Y7tXj8Sb75maD\n3ZxpBHu9Gq/fXIj9SpLqc51gz5Tmgt2xNG604j0uldeD3WhFu7VpecwKTppJMR/rxUawK6W87KYb\na9CdS/FsN9ZBqh8dEkfe958R5divqxXrw4p11O3EdtXHwljbqlgfK7oxjqwPFTF8p9kMdqsay6lX\n5GXivzXW14K90NoM9t4XvTbY5dkDWZwhib2YJq+79ubFYK+ffyyLo92IaTr3+PFgP/5AtM+fPW/3\niGl4+JEngl0xAa3X4jizbtdLUrcb66LVimF67XYM34p1uWbtY60S62FhLmrVvI0rRTfXBJMaNcxv\nmNt/KLvmmWHt1fvt4Fe4TLdrlWTF0zONKJvPUxR5efqY0mpF365ei+Ngz3RkmH8w7p7PFI+z51pY\n8bE6hi+Xcle92VgNdq2+MPKeyR3pMXgaU8rH8sKctUI+/nu6vWzdjmns9awchlXdmOry6vRiyMup\nGHl++Fjr6fbzo99DH3+PzEseGV//CrvGfTGLYmyz93IZek/zabV7fLmZuvlI1WiXbY7o0tgZ0sdr\ntWj3utZWe3HcLZdipMsbppVN669FPD+ki2uxGsdu19Nm2+xubHcVy1Y2F7OG180mgNJqI16zUIn5\ndn/UZEM2DVa7E3/omijs35P38XmT6GQVWFh9ts1ejm6dqpbIWjnanSEdzPPhblHH9HHvTAxQ9WxZ\nfXsLbFoepHz+Peey4m67nW9bffs8oGzlPGN9QMqXGbwvmXuppt2janFWLcKytYdKOa+MluXT29w0\n/88jzUb0/yuV2PB8Tc+1b7Zu60aSZqxxVn1pyueLvdHj28LBw/F0Nd7z4qP3Z2lorq4Eu2IOR6Ua\ne0jP4iyVYr6rdv7A4Th3v+/s6SwNsxtxDrq4ENdofO2qZ/rbtjmn+8tVs90H719jSuDOgc2jN7tW\n9seuD3ZtbinYHZtnl6szWRq6lo/COnnZ/Bufa7hP5baXS2+IA5Rd4w6oF0vmM8fzFW/Uth47ZMlC\nsvlKdf5IPD0X1yQ+deefBPuJ07GNdW2dZVw5bYfh6z9ThIu5D0Bj1oeHDgbeFDzM6KaSOwPj0jQu\n/qFxjo6jGD2VHlIuFn91G4Om/ebjgOfD/Q15eD/vTo/fb1z8w67ZTv1vjXPcdG+cPWwnz+vGrxnX\n/iwTXtdjy2XI2n+2ZjamDefT4h22T0/AsPY6bmo9rtymjPsf+HSwly+dCfb83J5gd7tx/+am6/9c\nFmdJ0eFeW43XNJpxDW9xIY5Za424J7K6ci7YL7ntNcE+ey6ueUv5Ht+F3qlgez7r1bhPVbHJeMX2\nSPbtOxjsYsiQ+Mij9wb70lrcw33BrbHsDu0/FuxN2xvY2Iz+6oWLsdxq1bgmKOVrdnuW9gX7oN1z\np+uGnU6cm3/isx/Iwhx/5J5g92y/oLEe/cOiG+viwH7zgWqx014qx32WUw+fyNLQW4nrp7fsi/sF\n9aPxuYJHV61sTZyO7IvlWLK17LZvpku6uBLb9bqlKdk869D+eI+5PdGvXrY9sfOXYvvKJsqSDs77\nunGs7+WN2DeniZ/5xXcF+8D+2Id77VjHZ5fjfvfmyQtZnHuW4lzm8GxsB90zsR09z8bu/c14jwtP\nRF2qVuN88Pm3PC9LQ9m0645Pfc7S5HNp29/r2Z5g2+ZKNoeYreYOyOHFmM6jh+K4ce3djwb7oUtR\n20opxnnuTOzDrUYcQ+695/NZGj5712eC/cd//KFgLyzEtv/q27882F/7hr8U01SyZ1dMGlfXY5ok\n6a6PfSzYB4/ENYBX3P6/Bbtti3q2PasP3fGJYH/0jo8Eu2v6K0nJBqNmI+rrsq2n3l/bH+y9i1EL\nT5yM4++1N8Y2+OU3589kfeGezwa7vBz71m3XxbGvbWtEaSbah/fY2kxt9HNjklQujZ6/qzdkwXNK\nKCUrzyH++VZ8nX8YO91jzM5a+Oy5PH8Oa9gGhWPJzvYtfa6W7Q/GAJ2u75nk6yOe7yyZfg9/fnBM\nvnze5Gkecov8B59b9Txf3dHnfYF7KL4f7GtuvvlqSSz7OnLs0zXThKw/S5qZi+POzGwcC6u++O/7\nD7ZhNVOP4cu2htdoRZ9Nkjo92+xJMUxRivnI+lqKPlfJ9uBmYpZUaud+fqMdNb7UsOcghvij08TX\nfN03BXumFgutXo9+WsWecTt7LvpdkvTxT/5psNdtvE8l1y/b6/Tz1u8X5mMaFxdi27t/I/cvXvSi\nrwz261/7uhgg2yuLbenBhx4MdqsVfYGbbrw53u+25wfb93b6tzT/MlsnH/18tfcHt32t358V7Pn5\nbj4Zz+OM9vNvjvPgjfU41z5/MT53t27l1un4w9Pjn+H4wgMPBXvVnsXbdyjuaS3si/awZ3S24uWU\njStDrilbnOUxfkPXxgl/Xr/TtucLbczP6r6b+7PZMwLmt/mzSz62bYdp3r8FAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAIBdAC9HAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADARMPLEQAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAMNFUrnQCJKmnbrDLpRTtSi1eUKoHc6XdziMtiniPFO/RLToxfLJ7lqrxtL1H0u3F\n+IZRrcU4jlx7JNj7qvuDPZNi+N76ZrCLTrxnqx3z0ItZkJRlS0XR9R/sgmiWq7GJVGvRnluYjWno\nWXySqpWYL1ldtHsxnz27vmev8JTL5Ri/2ZVKtCUpWZhSKdopjX5PqGfllCyVheL5bs9zkRd1vToT\n7NlaLEs1Y7ltPBArZ2FvLMe1lXiDs6t5v9j3mnjP+dnFYC9314PdaDaC3e5eCHZK8Z6VXizXbjcv\nh2a3GdNQjmlY7VzMrplmiiKWh1qnLYT1n7yLZf32GVOJGpvKsX+UXEeG6GHH9Krs15g49Sx819/d\ns8s7Kba1tvXx3pC217WyKyzdmyux7W2sXwr2/NHr7B5Rgy+cfCTYF8+fjefPRvvMqWhLUrPZCnZj\nw/qgjXdra/F8xbRpZT22r2o5FkK5HOuhXsm1sFWK15RK8R7Varym7eNlEe2iiNevWRqbzZjHklec\npEsbMUzZdL/ouP7ttJMUIywp+eA6NNSwzrp76Fn/qpgv5+dL5vsVxZCx3OrR/YvCBtpK2cf6NNL2\n64fXs0aG8ThKpdj+txNnjC/XV/dJvHl7H9vpu9AVK9fhabZ821hV9muyKEaXg7ePYeXg6cp9O7+H\n2+P6qLeHMcGH3NPdwbK1h2435svbuPuXw9KQNQdvDz0/P6bdj6mb5Dccmk6rmx22+0nC5609q/Tu\nGP9lpp6XTWHz1PX1WL4dGxd9jri26VpnOmTxz2ezL8l1o1OK85RGN/orpWS+gfkX7gf6HTc7eTmU\nrfEu1Wx+X8RrOtYOOzbdb1jTPXRwLtgHj8W5uiT12nGe2jp3Mtjuo6xuxOstyZqtjtbvYbLkCzY+\nN94/b2OjDZ/lzIkxX3C0yy1JWrBE+BzQlwDcdevYQkXdpjfz89EuukP6Rc/b/ZCEbqFhU6ya5bNU\nc52ychmyuNIz93KzHa+pT/F/PdJp27zJ5iizM3GdwXWnWs2XHmdrPv64fppuWKcu+dhj5T+zFNfb\nZvcdzNLQ2YydtnANN7tcjvlIpWi7L7K0tDfY1ZmoO5L02Nlzwb7BMuKa3zXNn5+NPrb7vx0TmlZ7\nyDzZOkzF/JWm1f9aWgj29YePBbtcjZ28ubEa7KEemPkXhQ+glo9KJZa9z2s7rdhhPfww1yRZvktW\n3+4CdXveBt0Ji2a56usssd9IUnlmKdrzcWy698HHgn3nn3062E2rS/dLsiEhS4Fkw2vmG3ZcDKeN\nipWSa7vbXojDxoKdXpOFt7ZmY71PnV0Ph0ytpdIYn8Tbs8fh4f28xz8uj9u5pw8l48Jn97Tw7pdZ\n+KxPSyqsLrxPtTbiNSdXon1qJYZfN39mv/lEt14b7cU9Q/z2ceXk9pg+7n0gaz/mQ22rLrP2MsYJ\n9vYzbuqe5XHIBTudkg7rN1PEZ+7+SLBnbC+gZP7ExUuPBvvRx7+QxXnsyIuCvbS4L9jrmw8H+4FH\n7wn2yvqJYC/Mxg6xMB99uYNLh7I0bDbiWv7pC08Eu9WJPuyj6+eDPTMT77lv6Zpgd21eOzcXfSJJ\nKpt/WCtHX+3BR+4Ldt32BM9Zms+ci3a1Ev2Hxma+v1C2Bl+zNdnNubVgu88z4/uUhvsCs7XFLMy5\n07E+z1+I97zmmug/1udivpqd6CMvFPF853z047vLNhmXdPONNwW7thDra20j7oUumg+75BNVK6f1\nZvS7zl2Me6eS1FiP6Zq39nH4cGzHpXqsqwtr0Y9eWY0Dyayt4e5d2pOloWVu9cNnYj/5wkOxf08T\ni6XYbvbXotbVbJ5a7sRB7cabogZI0t4DsV20Ltie4qNxj/Dmmdg/2hdim2h14n5wyfYcL9Xs+RhJ\nFy7FOnzNK14c7Ll61PAHT5wJdq0c/YlKJ7ar+Wpsl525fB57x9mYj8WlOI+5YGsq7sGUre1urJku\n2bg9U80djuMPHA/28qXlYM/WY30vX4ia/4IXxnJ70Yvj/N3XzD/2px/N0vCTP/WTwf6Gb/muYJ+s\n3B5sX8ssp1jfH/9srKtrj8SxtFPOHZSZ2ajZ7VaMc6kdx5FyKWpXMm07cz7qTtvWIFbO5pqxcvcf\nBfvo8/5csOfu/VywWy9+SbRtXePzd7w3ptGeZXnhl70qS8O8tdPyZlzTrT0W59J6eUzDJOP9K9nz\nEdma6pi9HClv/+Mo2STU98Hy6eDo9ZNBInaUBg/uecj3+S2NQ+Y1+Z7y6Hskv0u2V2tp8jWboXke\nvX83rq78vNdNNhZW8jXcivlIddPXmvkvM7ZOPGs+la8T+9wjW/SQVK7a+qelyZ8L6lnZ+7qgby6s\nNaJPfakRx3NJanbjOFJY72tWYj6LOLSpVIv5KjdinuY341haL+U+9vnC9qu60S8vmtP9bMqrb/+K\n+EO2Fx3bd8/mb3v25mX60MMPBrvTiWPxuHv4foA/F1K2881W9KHWN2wjS9LCYvTpa+YP+jNuvl9X\n9mf7XJOz57HNHuJv9Ny38+c4fO1SXm6+luRaZs+T2f2z52+GLtrY/oGtPe1bij7Ths0HW624XlBy\nHRk2UIQ05r9dWo33KJl2Le4/HOzs2fgxpJKv/ftzSrmm18z3m7M9q6ql0Wsjfw7Cn723fmj63Mn2\nffK9wE4vxtnpuB2fUdgOU7x9CwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuwFejgAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAgImGlyMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGCiqVzpBEhSpVwLdk/dYJdK\nRbDnavPBbnSaWZy9XrzG4yiiqZLiD6lI0U5lS7PHZxFKSvbuSaUW4yhVLI7NdrC77VgOvW4n2M1u\nDK9yjF+SSinmo9frxTQWlsaKpzFev7gQy37P/EJMUzumUZJqlWqwu70YZqMV01QqxWZZpFhOlUo8\nXy5H2/MsSbLfUqlkp+P5kr82lGIau1a33t5S3hw0U50Jdr0a233N7FIppqmzFiPtnYn5bqzH+63d\ns5Kl4UXPj9ccfv6RYK+vPxrjbLSCXZSiPVeN7UGdWC7dlrVRSWXL15H5A8FOG3kbmmp6Ub9S62I8\nX1qMdhF1oX/Rs/ueW0rWZ/09OtOecjevs7WNzWBXk+mZyVXL+lBPMUAqxXv2urFPVl3r2nnbK5lG\nttqx7ButaD/82OPB3mx/NIZvx/7QsXuub8T41jYb8fxmPnapF8upZXEWdv7SaoyzrFguHr5UiXXZ\nasa622zGPElSzcaBTidek0uujb/maaRevKBl40a7E9PcbeVtvmL9YG9ssmpurI1Mk+SJHiLaIxkW\nfodxFEPGqinC/aYhIYLVtT5dFNGWpEI+drv2jffNtlIqjR7L/Xw/jPuoo/V3XBrGhe+4r6e8bLvW\nZ9qd2I9nZ9zd31nbG5YFL/tkcXo+dloOpeRjwLBy9jhjmDwNsU31srmA58HtISnwfpz8/Oj5R96G\nsxsEszNkvO1ZmHJpjF9cWJvKEmU+QDfvi06pZPW1wzY2yTQ71q7aNmZaG5mZtTbRzRvW6qaNg50Y\nptGIcS5vxHY0W7W5U7Jx2+sn5XVcru8J9lwtzlMqtejDbK7Hcbds43Rhc9CuzUEL75CSFqqmt6O7\nm5JNwC5Z2R88NBvsa266MditIX7Z5ob5vHZTmyplRblQsznimDxUh3SdnmV8f8yGZmxdwqXR02wu\ntnz6XjOfahi9MT6MF2XVhqFFm97UazG+djtvk+3o8mbz7dVmjKNu+fCytyYpn7b2hvh1LoeW7Lys\np4j5+blgl8uxD5dtjtG1MTf1hszNbPzpdW1Nxu7hc7nUNZ3pxoZXqB7sub0HszRsXDwXr7H5YNnu\nmQ2Zts7Ytvnh6upGsFutvF09fHo12GubsVP6MLFq6yVL8zGfyTSjautnm628f81UY1nvnY8daLUR\ny/rwDYeDXalGYara2tdMPdqpbkImqd2JC1rZml3mg9vaZdnHFV/7jPcbMuxka3CZSvvpUiwnnxd0\nzCcvW5ors3uzNMwsHQv24+di+/jQRz4W7AvL8XzX8j3eA8+FKyuG3MEdG+tE49NYL5Ds/Bh72G8e\nx5g4k42jxZh7FuPSqHwZ0ePMphAegQ96pTEOiPsrw8bMrJx8wub39PBj0jiu3MdIgJTvFx1/LNr/\n9ZMx/IdPxT55oRFtd3lmbf3tNdfFRH7v6/J1lpc+3/RuxgL4coDXfeYr2g/uoFa3UZfuT45bth5X\nl55In2eP6TOSJB/+Ri8nTT1rK5eC3bBxtNONznenFe1aWs7ibO+NewEbG3Fsv7h8PtjVit3D/KgL\nm9GPOn48drD2DS/O0nDyzH3BXlmP+yy1avRpz194Itizs3Ee3D4cfcNbbnjRyOslaX0jjs2LS4eC\nvWH58vn53EycLJ06dSLYlVr0/arlaEvSNYeui2lY3B/shx67P9j790Q/+dDBa4N99uLpYN/34KeC\nfWH5bJaG6697QbDn98c2d+Bo3BOcr8Q1h8ImaHXTpqVa9CdrN8R9akm61Ihtcn01pmH/XNzbnDPb\nlmJ0/uKFYF9cju0rdfI9jAPzsT737dsX72Hydm4l9q1Nay/z5ldXS7H+z9lekSQ9cTGu1zx2JtZX\nqxXvMU00v3BXsNfWYt/Yd/0twa7ti/OcVW8EkrRm+7ml2BZL10Vtqt0QB7XeqVjH60+citdfin3+\nnrW4Zy9JZzfj3v+BxecH2/vPS47F/rF8Mdb5zEzMw8XVqN/dXt62q82Yhn3leI9v+IpYDu/75OeD\n7c+SzMzE6xtNWxsdsg5VqUaHY2U1tnV/NmVzM2rCxz/2p8F+6cteEdPYjHX9yT/9QJaGxkYsh4bt\nZZ46H+9Z8612m5heuhTHkAXbGzpw8wvzNJyPbSTZXtBsPWpbtRPrfzbKr+5+IrbRP/30g8F+wTXX\nZ/0nzMMAACAASURBVGn4fC2OnyunHgn2xpfdGuya+wirUU+bj30m2ktxXOp2X5mloWL1O/PZOFZV\nTtqY/aa/ksUxqfjzEvmefWmE9RT4c1Ueoz9XZbavf+SJsviHrDPku/qj9xx7vqe8jWlLTOKQEIU/\nczFm0mCLT4Xn0+5RMf8meblJqprWVe15Ml8/q9lC/Mxc1PiZ2egP18y38LVQKddbD5OV3Zj67tj6\nq6+npWq+QeHPXSarC09TzZ4/LWy/6tLGmWCf34j+8Xonjs/D0jBrz6wW9oxrYyXWxZpNXOsXoxYu\nrcfze47k/u3aWvTLO+aXVJane2Jb2MQ+ZYsHo/VwbiZfk15YtOcdT/vzKvaswDCtCGmyfap6bAfe\n7zc38mez8mf/XFt8T9DzbWm2cun6swbbaDa+/5o9aZXp+Jh19XFyOmacycpgSKT1amwfS/assz9n\n7M/6eZ5KrtmexXxRXZc24vxsfk/cD6jPej8fV9dm+l68xzbkeauO+fbtbmyDPu74nok/w+Pns6Zg\n601Vf1BU+TNa/uxLz54x73Z98XM8fDkCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmGl6OAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAACAiYaXIwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYKLh5QgAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAJhoKlc6AZI0OzNvvxTBKpfj2XrFfkgzWZypiHG0e2mk3VMvpsCutySp\nWq4Gu9XpZGnoFTHOdi9GstZaD/Z8M8ZZdLvB7nai3em2g12pxuslqVeK+Uy9mKZqpRbjKMf3ZWq1\nWNaH9+4Ndr0ar19vtLI0pCKmoSgqZsc0zVYbwY65lkqVeH2yPFpV9a9xO16iZHYx5ryTFANUK3ld\nzJZiO614OzZ6Vlc9aw9rD8Z7lnrxnp2Wl5xUeSBe84KX3BLss2vng/1E80yMwAqi2o3tvt00u5H3\ni7nZWBuNVmwznW7M99RTWD21m9Eum0z3Yv+QJJXy9vaMKMV79sr1YLdbUXvUzeu524q/NTsxX1XL\nVtc7rmlRsjR5n2xYp654uUmqz8RyajdimtbWNoK9vhHtlbXNYF9Yj3VRWF222rGcvK2vbVpdSyqs\n33et35dsrFpej3F0bSyqlGPB7p+Lmp2sjzbauW7MVqNWbTRjvpJpeMlUeO9sLPfNzXh92yp/oxHP\nl4eo+jUzVt+WhtVLy3aFxzFG1McyZKRxv2HoaLR7yMfNWB4l67OdTtvOD3t/N8aRLEyvO/p80cs8\niiH32HL9kGbi6U7JfZxiR+fHhfexfxgV84vcvyis3DL/0XzaPM35PT1MHsBM9wWzPui+v9XN0PuN\nqwu/xrVqdB68DXrdS7mvn53vmSZn/uHo+vfhtVDuO/a6cWzxoip7X+ua/1gqm235Tl4XWRKyH7Mg\nz1Ryr2I2mrEONzsxs7M+TTUd2hji1rVbNo9tR/vCerQryfTVm6W3Cetfm53cj1yydrCQom7UatE3\nLFlfaG6sBbtbmF9nbX+pPkRoetYWrQ93fb5vbXXPvlj4x66/LtjlFNt+p5X357b5am2b6pqrpz2x\nWGQuVDYHLVuH3chdas3bUsl8zcrKku3y6fWf3cLWRSpD+quPA6XCfTfXlRh+YTbaS3PRbnrZd/L2\n0G17Wdl4aWstc9Vo2+nsFlXLeGtIXWR9zSV5irVufj5Woq89uV21RjBbzvtXtxX7V69iumLtyNeN\nvPGnbE3P5iyV3O8rmc/UaYwe1+uzsRxmrVxaNpe6ZHOSps+jJfmyzfHTq8Gump+3aRecWYuNddXm\nhzOzcf5X94m4pKX5WH+rNg7tWYpCNFOPdXX2/LlgH63G8zMz0e5U8jR03Y9zH8k6mPv1hQlstWbr\nq9bn05CqLpuf1vP5nJkevlSOZV3YOk0qWz+a3Z+loW3r25/8szuC/fDjJ2J4m/93e6PXtn3eULfx\nXJKa1jez+UtvytfsytlExmwLny0w52OYt0+fhmZTHV+jzha1x6Sh5AN3lqQ8Tst34WNcdk/vEKPz\nmNnD5ne2fpU8TR5HzWx3af0WY3bBsunjkDWdC+djoB/54xjm/Sdjn9xpb2mY/r77oWg/spLPB//t\nG2PBfPlL7a4+H3FnL6tLC28+VVaOw/yfqju9Y/rRONuv9+DZ9cMcWjO963qA8UsxE021Esf21bXo\ns5RSXBOfs4nt4tLRLM71jbjXWa+a02+NK/WiX3TtwSPBfvj0o8E+efFxiy6fxzabce1+dS2mqVfE\nfLabccy7cP5kDN+N/evCyoVgL5stSQ89ck+wUzmW3cte+Opgn19+IthLi9E/OHrkpmA/euLBYO9d\nysvh7KXoL1zXuznYVfO7N5qxvh987N5gf+hjvxvstc2LMY3X3JqlYf5YzMeS4r5yatqe4Gasu6XZ\n2H727z0Q7KYp7NkL0R+VpIr5MIeW9gW7Vo91s2mLcKfPnQ326qWY7xlbUzh68FCWhhmb0LdMe1Ya\nMd8dW0dcWlgK9vpmzPdjZ2MaS/V80L9wKe75VhXL/vob8v48Ldx//IFgz953X7DLnT8Ids389QPX\nPy+L83mvvj3YS0dj+TU3Yvm2l6POVOJymRaWFmMajr402Kv3fCRLw/FHTTfmYrpf9aK473/7LXE9\nbL4d++N95+Ic9MbDsb/dvOh6LsmeV7mvEfvborX9o3tiWz5xIurtkQMxTT2b7505czpLwobt3/pg\n37B5Tc0W6ZYvnjfbxohOrMvVi6eyNHRtnyX1bOHQzi8olrV6tkfcimnotOPCcambP4OzuRYbVdnm\neGVbR6xXrJxW4z03epeCffr+u4P9yoV8X/slL3xZsB+89+PB/uSpR4J9wBavH/3UB4O9Vopt+iW3\nvz7Y+/bmc2lfc7+4GPvWiZU4eXhBHsPEkiu/rdPavKpsV2TPxCnfv3P3umQ/ZHtn2XN2tq5g8+Zh\n3n62g2jrglkas4Wf0etK29nEKtvipK8D1WqxXfm+i/satZlo1219zeOXpFnziXxdx/XS01By2/KU\nfP9v6PMP5sdna3iy86N/SFYuVVufTUPWDb1+/TnKjpVDy3ysS2txHFluHw/2Ri+OrSV/QFXSbIpj\n/p65PcGuzNhcvBQ1v3Ep+nnlc/Zc0mbU34UDw54jiuNKz57Z6a0O2dSYIs6Y7zs3F/2N2Zk4fpSt\nHlO2oZM/L5s/OLqzNPqzq0sLMY3dbhzbV1fzek5pdJ/zfuvPw3i+Xd/8OVTX16HPgLjuW5wVf77F\nn3W1DTq/R6ZNY567GrY83WpFn2hhNvbRumm2P6PWtedU26Yz6+txfcFX/S6uuG+a52vv/sPxfNmf\n6YkMe0Ynhh+9KZnvqUk92xNu2jOMNXsGvGZ7HL5vM45xz0ZJ+frp+Gt2/hweX44AAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAICJhpcjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgouHlCAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAmGgqVzoBklQtx3c0yqVysCt2vtftxggKsyWllGKQojDboih68R4aHT7F4Nn1\nkiyGPJJuKaax14u2ehbe8t21O9TrtSwNPS8HOz9bmw12uWxx1mJdzM3OBLvT9fB5GgoL0+m2LURM\nY60a71HEJKic4g8lsyul/J0fbw9KMU09WRuysvfr/RZlq8tKtZqlwcP0rD20rVy61qS83W+e7wS7\nXvU05+XwiTvuDfbSTbG+Ts4tB7tjfU/Wztfa6/GeVpfrG60sDUV3LdjNVoyz6OX9eZpJ3iutngs1\n4/nOah5HZSGL9ZklKvap2p6DMQnWVr3tSsraSqsZwzQa8bz3qVI1pqFcjeGrdr7TiRE0mlZuktab\ndo21tZXV2DYvrTeCfX51I57fiOdlOlIyndloxv6w2czLrbD6L1scFRu1qyVrP6YzPu7UKrGcOi40\nrpWS2hZmZSOW7Vw5XjNv40bLxoBqPWYi2Zj/+MXNmIBsMJWOzEbturAZ09RoR30ch4/x3oW206O8\nLxfDEh4uGHN+wilZp+71Yjvypnbm/NlgHzxwKI9zTL10rU+X7R1gH3ddbz2NmV82FPcXd1av48Pn\n58vl6GOMiyMre5ljlTusFv/4OAvzxUvWr4vCy9IjNb9sG75A7ptFbcl8f1n9Fu5/WPwa46crcxfl\n+Ugln2qZb9+LWuX9pp35BHkaymXTVNOWZiuOVe2WaazFWZ+ZszTF+L3c+gkrRoYpDfFJp4W2t23L\nq/sC3rS7Q4arjWaM8+J6jGPWitOGVRWmfX4Lc0e00cvnLde7X2bLBtX6nmBX7Cbdmv2Q4k1nSvF8\n1SfXktqdWA7dbrTLNk/ZtxR9gwPX3mjh47y3bXlqNHMfu9OJ6Wxb2S1WY5rmaq4BMbyPfSaVKs3m\nfXxxPtrudptrp4rF2fE2aG121tqPL7VIUqs1OowNCZq1NC8uRtvH88ydHSIzXdOqTUuT58PLvmJp\nLlkiOpaGzhDZqroGu1uRDwpTQ9nmXjO2LuTj/qzNB2breYFWqq6fvl5iY4mVf7nk64g2/rV9YM/r\np1KrB7vVizpQWEOqW767nTgHOXPmfLBXV2J89WpeDt4W29YYK7ZG1+nEfC0tRQ1vtqJI1Kuxc+xd\njFooST3z49rmKzZcC5txHai1sRLsbjOOEanua3h5Jx+zZKci+0Gj7cxPjGXfHebPuCj7Gm4nlm3Z\n1v1SLYpfzX3TUhynSjN7syScPhfX5E6cOhPs9Q0r+/aQtZitabJymJuNft78ggm0pIsXLwTbNb5I\nO5trTzw+aFmfzBrrkDUV/6lwKXC7POZ8Zo9ewy58oJWG5GtcGsYN3mOuz+whafIu6Ne4y+rnvejH\nltuYvYJmXpe/+un420fOxP4wRFmeET6nvftc7qj94Ltjmn5ybyyY215o1/gUteZ1a+dtv0G2BqjK\nsLr0fhFN7wM+986u9zSNWcMbuhw32u3Imd4prCTp6JFbg72+HveMajavKZWi/zAzs5TFee7cyWC3\nur4XENci5utxTOr4mrjN91YuXYzxN/P+cGY5htm/EMfmStnGzTGbvhuNS8G++547Y5ob+d5XYz3m\nc3FPTMPaRvQXu91Ythub8XrfM9lsxP2L9bU4bkvSnE3I1tajT/rgY/cFu2obDtVatLs24Z/ZG+u/\nm3ydSao1YidrrsV0uxQd2hf3n+YW4j0uNqIPtLoSfaaFavTrJWnvnuhrpYrvJ8S9nvPWxhqrsdz2\nWLkeOhDT7HNWSbpo9dmwfuFuRLkS73F6Jc437v3sPcH+6HvfF+wXf8VLszQ874U3B3tvOc5pWiux\nbqaJh89HXapUojPhz6IsVaOurB6/K4vz5H2fDvbikWPBvvFrXx/sbivWYXEutoGDl0xfLY1z/uyC\npMV6bO8rNu882I1rwS+8bn+w2+3Yzs5vxHs0mlEL33VvHCP618R7zFh/83no6TPngv2KL3t5sG+6\n8fpg+z5O6uVzkMMH98U02Hy72fZnLmIczWbMw2OPPRzsjs3/VoY879BsxbJbqMZ73HbM9h9W4rjS\nuHji/2fvTYItSa4zvRPTvXGnN7+XU+VQWRNQA2ZOINgUm6RMZLdkRmtrWUsbrbXQTqs27WTSqnuh\nhYxm0kItqRdqmRai2GiRonEEYWwQQwGFQgE1ZWbl+DLfeOeYQ4tqmer/PfpGFkig+j383+7ciHA/\n7n78+PHj/jJRPryFcoG+78bJDxwdvnIFdQgD9G198uGjCMe/KHEe7NQ4bza20XfOLr3i6HDyzvfx\nB0pOFg++AfLjh7ieThN8/1O/+B+hDmuYY3h46y1Hh0e30T9mR3dADrLz6+v4nh3j0b7Ho9wwP//w\nR5Jbtr1uEbwzotiytcIGlXzO86DdRHRHLSQ/FEX4PIrRl/L3Zu5ZWZf8b0yyx3ceA77k1nI225Rb\n5vNd5x4c58sonxrweRWfsfC5qrvu8Pku9z3LnC8oKZdZUJvYH+cz198uOaZaoDyf4xxfJBhzFxHe\nQYjW8H2PYoBswgkHs5QOJPwcv9m5gvYS9mh9pfxBQPnW8RHmAPO1+44ORUx9uYl5vZOxuzc4T/z5\n1/4c5L29iyA/e/0GPt/dA5nvNpi5dwdcf7Tan/F9ID7TiGM6r6XDtoYtpXPGy/c++TyhphwKx7xt\nd3acPDr7KjMz8gPV3zgDtrqfORYMqJ+LhnXj/fdwnzt46QWQuV/mKcZMvJwmCfqm6Qzfr5z73G6f\n7OxijBwPMKZh+3FSFFQev+/cgyacfJu5Nsr3BdMc2835Aq7TvZu/+r6Vc2XIzDznTk8bH/8+7DlP\n8wkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ4ryjP44QQgghhBBCCCGEEEIIIYQQQgghhBBC\nCCGEEEIIIcSZRn8cIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKIM034SStgZuaRXFQFPvdQ\nzbquQS6r0imz9PGdMOzwCyBmZUUl5KQkPi9qrNP33a70PKyj9lCnispkmV63skSdSg/leDBydKjr\ngH5AMQpRb8/H0VgbDLGOTh/ko8kY5MB3/97GC7DSLEe98xLHm4bXQj/COjxsUxSgHIbUZjOrPbYy\nGguulOSAvq/J5vh7pzozq6jOktqdZBmpgIX41O6yRB0WBZbXCbHfzMwe3sXx+qM/eB3kwee6IO9c\n3QM59HAeZYZ1xh38PijdsUhnNLc6CYiFh2Wed2qyC68mX0S+xqqJW0i1hbIffzwduA7SKdq4iE9p\nWCcLHEMzs7qgcaZ25WS/Pk2afE524PH8wMc8v9KcXjCzZYp1drro/6aLFOTT2YLkJdWBbeyEtO6w\n+VOb68K19YL8QreLPrVLPnojxkrqGt8vKux39pfcS53A9eEF6R3Q2pZTHUmB8ixB+1jvoW8q6P2k\nQq2SzF3jjwr0Nd0Iy+yN1kCuKdJgF92yRDg/OPP0wx9X1uHgmui5Jk3RDpIC51unOwC527CGlWRr\nPG6Bj/bt03zx6tWjEgQcbzaMM9uSt1puo+39unINJexg37SVwc8DnudchTMf3H6orSJ5dZ1tOnFs\n7zfEk4zvuzEG1kFxuFMHfu+5nqFVh8D5BOvktY3LDGj/wP3Sidr7oaC5FAYYA/ikU0R7oormVUDr\nhNOmhr+t574NqZ1V41w6J1D/9GNaC2gOFznvY107O5hSHEYTjOsoae33OUaqeZ1mnV0dItI7q6iO\nAe4JO11uF8ZtowF+H/scBzoq2GKJ72S0f49HuPfduX4T5CrHdqeokp2ezEGezSl2NbMyw3YNyfwH\nlAIoeP9G3pG23pbQnN9Yd1Qw9nQ+jQ1PL8/Z/pPfob5meykabNKnGLeg0L/bx47p9dnfOkWSkvUq\n0czMTpeoVxxiwztUR0QNzWnuLSkM57A8aAjU2KdzT5VuyHpuCGiSRhEac9zBtWVjwGuPa1cexRLs\nqzzybdzhJc2FRYpzOKNcREn5FjOznAa+ojIr2pvNjg9AniYnID86wL16Tmv0/gG+b2a2zGj/R3Fe\nh+TlBNtxfcjrPpbP6/7aCGNuM7N3P9gH+eUXL4B8Oka9Hzx8BHK/j3VMjtE+ok10bt2eq0OxwDqq\nIiOZv8CG8p7Vp/F3Y3bXMVU8iSkX6VMM7QUdkikf1tvA8kJsd1K68+J4imuTF6AObuqS/efqmLob\n90DOGuYF5x653VHX3aedK9g0eJichbTlezNnMWfzc9buVh1Wf++83xRotendVqYToNSrn7McNejE\nP/E7dL7gnGpxO9t05DZTHHfrkavjv3ib4uryp5vY4RyymdmbB+ggf/fPcY7+t9co9h/x4ZCtltnm\nw5ZxMGuwwdWPeWw4deO8z93gzJmnGBe2F67kHG9hzczuP74D8mxxDHJMa1SaY0xTmXsWkNW4lo/n\nGC8Mh2gsHVqjjueHIOcl1lHXGOsdnzx2dBiPMXc/W+C6enEd1+KwxjiqrLGdHJexYexsX3F0eOby\nCyDfuIFyWsxAPqT4cjTcBjlJsE2L+SnIk6l7VvTZV74E8sHJQ5DvPXwP5IDzjJRzCGntH3Qwnijm\nqKOZ2/dbQ9y/7+7geVNF+4vHp0cgZwme02xQed0IdTIzu/sQbSQtcXwz2n+EJF/a2QF5fR1juze+\n8ybIf/Hn/9rR4dorz4O8NqR4kM7ADmi/MDnB8X7wLo5ddYT9lH77+44O33vnNsiPjvCMOJtj3/7T\n//q/c8o4q+Q05uMZ9uf7T56AHPfQjq5voA2YmW2T/Y9OKR9290cgb23gOdUH7+LzZ9ZwLkR0VnuF\n9mZmZp/+zLMg3z6Zgvxnb2Ad9y6g7X7jDrb7ncfoR6YJ7hEWcyzfzOzFa9g3v/O5l0Hev3UX5HgN\n904vbOAcznnxp6U8S911Zz5Df1rmqHdC59Yz2mtdungJ5E6EwSO3++gU6zMzm9OZcp/Oc6+vow6P\nyDfOaG2bTdAHjChneyPGOW9mtl6gXVd0nspnQUVMa2FI90IC9OmjjWsg52to02Zmh6foV2Z0lj7o\n8dk55b4pJnj9r/4E5P4G3lXZNIxbzMz6GcYRIeV3TpbnN2nXCfncf3Us7ITKTdtFGhPnrJVyLPw+\nnzEFpGO3izFYp+uu4yHFBgEl1iPKRXa7lJOh894w5BwPb6wdFVrb6eaaKBdFeynOr3Aesszc8wmG\n+5bHO6A5XVHus6D7OznlhXK+32NmJd3jKKjMnPxvSvdCFkv0CcsFxh4L8o0Lik3M3PuFrIPv4Rwf\nruP7/R3SmaoocrQXCrnNzKxLG8+qj3bc62D+k45eLapw7fNz9FvjU/Rt0xPcT5mZ7X3qGayji2v8\n6bG7TpwnPrh7D+SHj7CP7j/E559+8dMg7+26sV1R8PrQlkPmM6LVuVmPbHMywfiirNw865RiFr7K\nHLL/cs4h0Z7Zh/O9AL4fwfdtzJrP7KiQv1U8qpBTNM79bzNLE5zni0PcB/M6YRTHsU+eL/H5Ykn3\nWsk3cr+bmW1sYwzjrD3ccXRnvK3f3Stu3kr5//v1o/Bd5ySjvEhE622H1+zVSUDf5znWcO+I2snX\na/6m97FcrYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIc4Y+uMIIYQQQgghhBBCCCGEEEII\nIYQQQgghhBBCCCGEEEKcafTHEUIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEONOEn7QCZmbD\nwQjkNMtAzssC5LKuQI5CtxleUKNMfwcSBT2Q/cIDOatS/N7H8ooKdQo89+9MuE7+W5TQwzoNq3Ao\nqc6yzEGOI7cffK+7Uk9WIQo7IK8P1kHOCuyXJEN50Os7OlSG45WT3mlJ411jOyM/Rp19f6XsB+5Y\nVPwD9TV1g3k1/lKVJeqYYxsce2j4syPf8J08x3YvEuzLinTsdNFmwwDHKvAD/N5ptFmaoA6PvjsD\neX2Cz4e/loC8+QyOL8+9sMaG933XqKczbKfvYRm9MHK+Od+grdU+DZyHY+JVU6eEOn+A70R7VAba\nTl3jGNjyFsrhAMSgh+V5fbSD08nC0alTYh0Z23uOc6r20Fa6XbSDHslJiuVlNEczFD/8JsO+7eRo\nr1lOOtNaVNM87/hYiV9jGyJysMuW8szM8gJ/G4zQhy9pDp/MUecowDrZx4foJmyW0DoSus4rrbGd\nUYxzNsmpXyKsZLrEOsKA10LyGzTWeYMzm5OPvnhxC+VnnqUv2Muzb2pZgJnafb9u+O1nmaxAe0/Y\ntuMhyCGtJ01rGFPxQknjzM99H5+X5DeCAG23rtluzMoKv3HiB3/13x17NCnb7Kaq3Y7wGmLOlWVQ\nZ/qkY0U6+B73o6uDo7fTVdxO8vn0OcusY1M/uT+t7ksug+P0hhrwfXaoDTrUrYaLH7S5DdaZbdjM\nHS9uiFOGR/Ei2Rhbl0dRdJPOzm+kkv8xbfYs49o2/pDR0n+8cMe0yvGbfg/lgAY5CsjuyHctaZ/b\nj3E8tnpu0FRSnDZLsI6wR2v3aBvkJME9xuDyDZB3rz+H5dE+x8ys4M4i2+V1o1iOQT649Q7IVWcD\ni4uwjcu5G89uBBjDjDo8wCiG7BrJ9DOar+uYBrEOF2BmFY1f3OG1jJVAkbdjLNP2zSIuz8zylON0\n1KE3wucxbt+tZBMlOSSlJrk7LwKaSwPqh5jmQYJhiPkUIwfcbTQNGraxxgNesIm6ap8bujSo3Q7m\nIoZdju957WhYB2j/xzkXDqlKWmNPaA86W3C8Q/43WToqLJeY76go91jQHpZ9fJpgP3AdixR1PDxx\n9/IcOgwHWObuNubkpgvUaYscyeYmvt/roX+NPDdWufcQ/evFXdxbHR2dgDyeYzvHJ8dYB82Vno/v\nexn2u5lZSn1Xk+OoOC5z/C06Pze2RLluiPycOdySP6193KuXPo5dWVHMXWIBh0dPHB0e7x+AnFAO\nIaB8WZ1QXzpxH+U8UuznonBjgCCISMYyXnnusvPNuWJ1Kr9hA9jy/lOU6bhIlgN+TnstXtSeRicq\n0+N9BvlQpw4uk48kuDx+zm1qKpPr5G9obXfed8Zu9b7pvfv4/L/6E9dP3J49RaLipwzv57/6A1zL\nfvmb2Pn/4O9jO/2Y2slpeY5P+XlTzMTdxGPXEPN+lLaQqmX76dqfWfvm+2nmzTkijjD3H3d4DZuD\nXOW43jx88n2nzDRF28soIM8Mc9h81rWgvDzn7EI6+4o77lnoDsVRD8ZHID+hvfKLl6+DvFyegry7\neRPkjM4Eg45rKMN1zHfOEyzz3sO3QX7n1rdB/vwrvwHyzg6uu7nh2Di+z8xOE4wxjt6ns6Max/Po\n7l2Qh7u4vx+tYbw5PcR+7QauU79y8RL+UON4HUwwLk5ybFdAk5LPqXmSvvHdNx0dfu9//32Qn/s0\nnhfEPdzjbG1iDHy3+gDkjM5vv/VX3wI5P8SY2Mwsu4VljGm4ZjPKQ1DeOSJ/1qHY7sWtTZAvVBbu\nugAAIABJREFUdtyz1Sdj7Ou1gs62mw6zzwkZJR+mFAt3YvQZnS7a8v7MHVM/Qt+VJti/L/hfADmk\nfMr83m2Q3+zhfO1cxbPYnw93HB2e21kDOe7i/Pq/v/8+yH/yHu0xKOfHPr6gOxxN6e7tTfQTvD+L\nj7FdX9zFOexTHYsZ+sqQzwZK9yw1jtDeX7iGfXdA+++DI8wbcmxQ0DlnRfOR16UPf8POefT4Pshv\n/PAHIPdp3Tg5wb0251oubKOfOj195OgwK7BdHNfzkW8npjPlDto07wdtD+3jAvlKM7Pf+K3fAfnP\nfu+foQ7JPZDnFDPUA1zrXv7UL4DcH6H9nD7Bdc3MbPL2n4I8pJyu/3HPgM8QvSHe2ajpXJTPtfiu\nWMAXB8wspjxgSLYZRijHMdpRp8vfU54h5BxOU46G9A4o9iMfX9F8dMJ7amfg3C9r2KSSDlwm+wD2\nK+RGnHZWfN+M8pBmZiUloCs6a01TvttCd/mWuPbNZ3hus1igzHfgzNycLZ+9u2fMq/uWz2aPjzG2\nTFI3b9i2nSMTtYrOOBanWCd1m9FSaHnacG7Xx5em4wnKE6wz9FCpqEJfFgxw7uZdXLeWxb6jQ5f0\n4rO/xTk/i3XOW8le9/cfgzydoH1fvHDBKXM6xXGsybc4dzJI5rskvN50aD26T3upIHTv1z58iPHE\nlPZO27QHMNors49175WQbyN/yP7RzKx07txQ3vzjXRsx98Iu+WAnAMUCooYrpa997udB3uyTzhHl\n8guc07PpnGS0jXSJeze+nzFaw1yAmdlghGPF/tG56uTA9kU5YU7AOQmzpgzb6rsqJZ0XLMknR9SP\nIcWOzlrXEpeYmfk+xYY0r/ibH+cs9nx7RyGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCnHv0\nxxFCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhDjT6I8jhBBCCCGEEEIIIYQQQgghhBBCCCGE\nEEIIIYQQQghxpgk/aQXMzPr9GH/wAhD9PEeZnhdV4ZQZUsvKCssocvymE3RA7kWoE+voBR7IeZ45\nOhRlCXJapCBXJekd1CDWVYXvV/i8yPG5kWhmFsXYV6GPsnn49zHdEPuhJB3myyV+Tt/3Ol1Hh0WO\n3xSG7S5rlH0fy2SdPY/6yVAuqZ8+fIfkCsfG83A8q5r6usDxXWYJ1lmifUVOjWYB1VlkKNcpyjze\nWY/aPcDy/Q7aqKuBWcF9k+D4jt/Hdu0HRyBv//oI5IvXL4L8cPwQ5LB2//4qLPG3coY69Id955vz\njEf+rA6pzyq0vbo4dcuopvhO+pDeoDKzOcqLE5TXr2L5a8+AHF+4hp8n33R0Kkv0d2WB83yW4PN+\nLwK5KngOolx56OSzFOdgmuN8+lAnlOc12h65Hos81Dkg3zVeYht8dCO22euB7FF9WeGuXQWtC76h\nT67IJ2fUqN0h1rngfiG/s0zQvvodNyxYpKhTL8KOGsQ4dj75zz4/D9DmS3p/NMB1ZJ65/ZTRNxee\nvQ7ypZsvO9+shnwjrTNWO6uIU4JHizCvTT9rhD7a0sZwDWS3f3AC1U6fm/kBrR9k/yHZFsdhHLNw\nne5z149EIfkqmpPkBpx2cLzBVBQrBP7fPFTnuIr73tUJZf6+8RtnuHg8Vz52fmjrpw/fIRVaKuHx\nZbkmH806NNmk+xMpxUquFtteb/zFD9Ama1vdDq4joHnjxsxkL01atdTR1HfnhTjEtvVi3q9hZ5ws\nUY4bNnAbI3yHQ8MwwjGLaF+aZLQ/66MfGXZoH9ywXlU5/kbbcSsK1CH2ce32fdyXnD7YB9nrYLx/\n4cZzjg7xcAhyGGGMMz+8C/L4wR2QJycYM+cB+z6MsRpCINvo4jeRY9socw5iQXuh9U0sYEDl05by\nQz3ZN/F2niZcQQEpmYfRMmN1iTr47tJnHSozXkOZUwDsJziuLyl1skzx/cnC1WFAnd+jvktxG2sn\ntN1JqF1hSGPh0167wW1x13jULw3L5bmhG+OcjWnC+DXn23gtasiP0HzhMKwssYw0xb3XbEl5QvJD\nnKObTskozGyxwFxVQN9wfG8+1snfLxe4L5/TXsvjfJyZXb6wjlWQIW2NsO+/8vkXQZ4usQ7qNssL\n1Hl9E32pmdlvfvnT+A2tC7vbG6gjzYbT8QzkEe3/0hm+77MjMvdf7ik5DisoP0rvB5xGIZPznSDM\nHQsHzhOSnNJeO88oX0p+a5mjc7tz975T5Qf3H4F8fMr5n9XxKceF3A9ZxvPG7Qfe71zcxjzgb/7y\nzznfnCvYGNt8Oz1vSIM6/s3dBHCZ9AOtUXx+4H5PcpO5c4DA7eBv+H1+zjpyXMUyt9HMbZejQ8v7\nLe3mGt94Hz/4x3+I5b01duP0reHqwRsnFJ/kP/190CxDvX/3T1GHn/8Sdsz1NfLJ3M88dm321vRN\nmz0x1PU1xRE8p+rWffS//df/vxB6u2jPSZxl0gTXrHiAg5ZmGHfVdP56fHjslBmEGC8kFIB3aQ/Y\nG+yAfHqK6ySvWXmKA9+JcH0yM+v18JsLJb7zcDIG+Qd33gL5F1/7ZZBHQ4zT7j/5Dur8/nuODoMB\nHtoN+3h+ltC54izBGPXtu6jTWySHMe6199bpbN3MKhqvfoRreyfCuPntb2Md8wWN/5VdkNdiaiPJ\nZmbzU7Sx//P/+CrI0+kE5Ne+gLn8k0Mcq8cPn4CczrDfkpkb6/cT7Ov4Pcwh3J6ijj/MMK7utriB\nPm1oruxsOe8kBc6DyZziRT7zp/15TvKMztJPDvD8tuDNgJll5eozi/N8hrF/ivuzis7j+j2cP70e\n5omaYuXxHO0qKtA3vf4HfwTyxf4myHEf58tphXsp89E3nmTu3smjM8QBnWO+dBFt8fYx7jvqmhND\nq++m8H0KM7MPKM93j84lLxrOp50ezpcj8oUZ7TFruqMT8obPzCKKJ0/uoE7Xrl3BOiiHwPvzuI/n\nVwn1fdUQ9HBeKKU7NNNDPKufkn+ePUSd+2Rysyna8J/ccxOHx2PWE+H8VhCij+/G2K5f+sXPgzw+\nxX7ZabiD04lx/Nd38Y5B+cE9kPt9zPnuff4rIN946bMgc43pM1eNeWuCdp48fht1GOw535wXLlNe\nnZevKELfFlDeic/szcwCSnI75z/0ftvZG49izWd3TXki1pN9ckVl0GPnXNM59qd7WKl71y+lWKKq\nOVeZkEw5Olp3lov5SjnnQxhz85uc56t4nedtsnN2R/fwaKzZXszMIsrzhZQ3Yl/YdvaaUL/yfUS+\nI/dhmSTTc+cO0IzyZ1PUqSL76dABR2/g3k3pDHEsKp/so6A7bnSZz+d1ZA396+D5Z0Gezt5xdBjP\nD0BeJjheydKNic8Xq+8msO1MZxhnLZbuwROfZTln7DRuzjEHDSv72AHd1z06xrV9tIaxn5nZ4RHG\n+Pcf4Bq3uYm249yvpX2K4+dpjgZ0V9rng04z59CBfSjPqbbkp/OU80COAu17lt0t7JcXrmJMHJDv\n4vu7yQLtY/8x7kHnc4yh+H7F1u4FR6eIYtqKTxlr3qsRjsHxHGhLiDX0W0tamdeRhHIzHVr7Bj26\nz83rtxNDN40l3VVpWbOfxh6Yc3x8K4QQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKInwX0xxFC\nCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhDjT6I8jhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII\nIYQQQghxpgk/aQXMzMII1YgK/JsNj/6GIwgCkOOg75RZlgXIdTYHOa8SfO6VKNdY5zxLQR721kDu\nRl1HB9/PQC4q1KmqKpQD1MHqGp+TXBT0PZVnZtbtdED2zCMZ21lTHctsCXJaYBt8H8cir3NHh4J/\nw08sjOgH6gbzalv1AqlsJX9vZnVd0TtUhtFz6ssixzbkBbWJZK9knc3qEvu+rlD2a5wHntH4L1Hn\nIsCxsQDHsuu3/+0TW0xVo07Hd3DevPP/3EUdPoP28MgOQF6/tO5WWqJNlkucW5FF/zZ1zynk70Ka\nD9mCZPRdZmZ1jr6GJ4HHtkDjbOSb6mKCMs1hz8PyoorqN7Msw9+WKZaR0Zzqx6hTFKAdnJyiLYbs\n2+j9PMM2mZmVJVp8lmM/DQZYRk3ryIxsNc3xeUH9nhc4pzvky+a167OH5A9r8kUJ1elRGTsj7JcH\nGfbzkvqFvQS3oekbj0KHLjnhiHxRFLLvw/eDFlc1y12dtikOePnnfwHk/vrl1YX+jXF9PC9G7MNr\n55uGMs4RHE/4AdpBSeMahmhXpefOj5pjGM9z3sHnrFNFz/l7HpPV5T+NDgz3C8PxSfVjmAnXwTpy\nLNgGx4r/ppYVkplPvwQ00VknV+d2vXwfX6oqtg+j51wHtaGl35pot6HWAlY/pjb6njsWPFNYJ2d/\nQFVyP/pOzMBj3aQz+z98p6gagvNzwtoAZW57lmB/9kPsi1Hs2kxl7D+xjJDGbJpT7EBjOOri+0OS\neY9iZlbRviSn+GN2cAJyp1uTjHvjMsU47uD9t7G+bObosH35KshxD/f82ewU5SnGr70B6lBl2Pez\n40OQB1133elEtG7UHK9iu3Ma/24Px2ZjiDpk2erYwcws8HnSosjbTlpOrchWr20+PV42TNewj9/0\ne7RPJaUq2vB75Ic4BphMsb5BQ5aKbSygOCHllEPEe2N8HlFfU7hqDe7WaBpYSevItDq///ZIj/Ze\nIcVUvIaWvDrl7vxy1jSK73n9Gs8oh2eok0/fZzM0ivHY9TPZHHMqPcM9bEh2FpBtcuwxm+Pe/WSB\n5Q17saNDQOv2IqUypjhfXrp5E7/v9kC+92Af5A7Z5dbGrqPDwcETkN+9/QDkosC+ffbqJZCPT3ES\nn5ziGrFBe/1OwwaQ1zZ2h068ws7OQx39AO0jonUpCN2xoBSrpeRYJnPMBxxN0X6WJerQjYcgVz7m\nGzJ2KmZ2eopr24QcZE65n4hy0Sxz/OuTEVelm8Pd20C9f+MXPwfyqy8+73xzrqC13YnX2Xx5/WgK\nlfkbXnydtZ6fr66jbtOR0oxmZhZSjN9WBuvEZdJ+3zlx4jY26cS/cRktdXrOcz5Xwff/8h7KL1zD\nRv8XL7pKXr+wet/6xn384X/5Ovrwbz/COffj7Pc/Lu8+QV/zL/81tvM/fxHf98OWseZxabJ5/q3N\nJvl9nldcPs8JznM35uxayuBzG+c86nxx5/7rIK+v46BM5xg3+RzrlQ0Bu4+2ltN5aifC81TPw3Ux\n8rdQh5MxFt/B+ZMWuJ8zM+sYroN7Wxj3ZJTjfjzDOr719l+DfDC5iBXUWGenQwkBMwsqjEHefP3r\nIM8TbEftYwDy6P4xyLd/cBvkZ/YugPzSay85OixoTpySPD7FvfM3v/4tkK9QomP/4h7IR2Pc36dT\nlM3MPLKZ+Rj7+tkhxrD7X0MdjhYY+/dDnLRDOpeu+EzNzML1EcgnFNslKdpoQmffS3IDHLl1ejgP\nHo/dfjiZYiyXUR3O4TYvDC15x/pp/B95UT6j+HhZ4rPF/UcPQeb7Es9cQdvmnGrB42VmFPLbMZ3X\nepQH3B/gfHpmhH5qzccz9CrAfUp36N5/eesQ59M37h+B/KnL6CcK0nGtQzm8DrYzKfhs1+2Huw9x\nz/h+FzvmB1TG/hDbPTrFNhjl8Ooe9iPfhzEzqw5xfnXuPgJ5efsxyOt9rKPYQR/POe/A2Vs1zBaa\ncrM5+tfvfPPPQD6Zoh96kfbnRYF+iWfo9uUXHBW8AeYQbt+7A/JySef3ZOcDygF3t66DHPRxfW6y\nh+MJ2tiFF74E8ptjbNfuHvb9YO85kI/GWF5APr5sGIv+C7+GZYTXQH7hRcylnCe6Xcp/hGi7ndjN\nf3wUPrM3c8+l3DNGxD1TQrHge1VPcR5YlnyvBO2iIh+dLPE5x6Ipr/sJvr9c0r0rM0tTfKekOnO6\n68Lnu0xbv4Whe0cqjPC3fo/zQPicy3TPYrH8quS7Lu4cTxK6L5jRuUxKdyK5TL5PU7BM95qe4pyV\nbcY5x65xXvR6GHtu7WGceOEyrtdV0HAfq8YyBh1cby9d3AB5eYLtSCZoLws6kPDXUedi6vbDbIJ2\nzPu2PHH1PlesTh83/vJRmuYozxE+s3DvSKxOLnS7OCeH5IOnC9RhexfjUTOzBY3jnQ/ugPzsDVzj\n1tfR9vg+teMHqD6P9lYBH4KYmUd3dPns5uPe2eE7GnzboeYkH7/fkNO+2seY6MI6xlmcF1+S7zqi\nPevtuxjv5mQ/ow3McezuuffTar6P7dzZoPWVmuncK3LyZ/x9u/90t5D8A99DpzvktF5G1K8x2Tzf\nLTXfjes5UcjtZrlquGfZxvk9vRVCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghxM8E+uMIIYQQ\nQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKcafTHEUIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBC\nCCGEONOEn7QCZmaDfp9+KUDKfA9kj+QwiJwyszygbyqQF8UE5GW2wPerGuQ8z0A+TcYgR37s6BB4\n2L2+h3p3og7IZZCAXNU1yVh+UWKbqrx0dOiG2Ddlhd/4pGNVYt/nBba7KFH2fOznpMgdHbIav7EA\nGxLSeGbLFOuMsA4/wL/pqWpsU006mpmVBfZNWZJM/VKxTO9XBfZTSIPjVe7fHdUtsmerf6BuszJH\nHYoS+z7u8rxyy1wWaPdFjfZSVWjXd989Bfn9tx6CHG1jP73wd19wVFjb2gQ5pHYtZ+74nWdqD23N\nSPZqmlPLpVvGnPxXQK69R/4pCEhGe/WM6iQdKvJlPcM5a2a2oHk/y1AOAyyjoDl6PEH7XmTYL0GG\n73c6KAehu7zV7NfJX51OqJ0VlrnZwzIHtPTcPcI27p/guNTkqyKPvYBZSL/xK4sE+8WnSR1Rvwbk\nX8dLml+sE5mGmdlGD9eqeYr9NOzic1LB5llBz2lNr1f/nSavnWZmN29eBvnVX/ktLNNHnVppdcg/\nTiF/2++fLRYJ2v9wMFr5Ps+PsnJjGo/6rKQ4iHHXdq6T5hvFRF6D7fE3bXAZHF847/s4H6LIjXFd\nvb2Vz93vnV9I5PIadG6ZMyX5W1fnBmezogL2x2ZmPsWg3Lc+9SXblBNXUQwc8Fra4BicGJR04LFh\nnSoO7o37jdvUMLZsp9ROHm+nXzjGpfd53p1vz/XxWRugHR6ekp8qUF7rYf+HDfO1pl4OA9rH5jjm\nJa2ja0O03V6AY8yxRdBx12E/pHU0wrV/Mp2BfKN3AeTNTfT5VYLlnTx5DHK2cOPbxeQQf6jWUSRb\nL43nC45N3MWGT0rce/e67hyP+Cfqqor8Qklx1/YmjyU+z5f0vGHdqchZVSHlFEinlqXR6pJsNEe5\n23d16A9QZvdYF9T38S7IFdn05OQA5IJ0Wqf6zMwi6oc0o76ndvci8l287NDc5FnQtJTWtD5OKKz2\nP2aMcKagfFkVcI/ReljTWtSwhtZkexHZ/5TyQtMFzZcOGiLHGnmKA5Qn7p41S9APBB76Ot6b5ZQH\nev8+9sv9I5SNfMKao4GZ30P5+ecvgcz5gvHshErACdPxUceYxipLXH/bG+IEuf7SNZC95RTko8c4\nh+cJjvd7tEZ0SYebV9BHmDXly2gOO/EuxVjsmHyKoQPMiXgRdbyZeV4X5MkJ5ru+96N7+DxFHQcj\nzHX5IdpgTM500bD2jceYa84ytNuAcjmdLrar2xuCXJNz5DxJHLqLxq984VMg//znXwG513Xz3+cJ\nZ2/F7o7XkzbZzF1kyDfwc4/fp9drdqkt8UqzTqwDB4gtZbbpwDJvvhp08gLue97IfLwyaz5PIjfx\nj36V5nBMMVGvIU7nVBPp9MLzJO/hC//ZP0MlH8/dfe7fNgVt8L76TZz3//HfRx13N2hNJ3fq8WbC\nTVk49uXRGl07W20yGK6j7Z93425k+/6wVqqDnjrz6MdKDJ4ZKsM16uAQ15sFxWHsGwPfzbt3O3Re\n0MM9YVZgPME9POht0HMyLjqf6PVcR7I5uAHyMp2DvD7CtZjPgPePcQ96fIpyxLFd7MYTcXQM8vyU\n4qgH+LykXD3nbBandA69wLF56wHurc3MHp7i2bdH+S6eYnvULtzdm53cfQByleFYdBr2QRn1bYcO\nHfbpvCBPsB+WdFaUzLDOZc7nOK4OfKaQ0TeZc5bNvmvlY/Mo5uXzfDM3pvWcQlbXwfgUJIScB2nQ\ngfN6H9fFnmU6tGdMU5w/NeWVhjSnk9yNlWdkm/HeHshf/nU8p7r8DJ5jTY/xjL30MLj4/g+/D3Jl\nrg5vHaLtPbOG8XmU0j6jwnb7tBD3yZ/u9XBfc+cJ70HdOzPTJfrbz13GPd+P9tGfPl+hsccp+oTK\nR51T2rubmQ1pXxLEKA9ocR8uUOfHlCM4PkJ/uqCzeM4HmLl5iB713XMvvAbyow9wT/mY8hZ1hDMy\njvGex9bIXXdGXfytnKKNHVU4fnS1xEJqV5lhuze6OLYPyf7MzH7va3dA3llHnbprnwX5zSPs+/vf\nfwJyXWG/bK5jTOHs/83saIzfLMotkK/WDXdmzgm9PvWPkz/hc1LKiTbkozn2K+iOR0lraEFyQvmO\nhHJRJa3J/NzM9dlZjnJF+Y6cY4OSz8lW7wf8hviWcygB3UkcsB+inA33Lcd5rFPTOWhBc7Sgdi4W\nOEdzGivuFy6Pz1X5vLDpHU6cO/EOtdPJszhnuVi81xCd1Hx/hp53OzgWozU8S+oN8YudK5jD7e9Q\n/Gy4NzEz2+jgvbd+B9e6NMO1ju9hhrRfCnuYhzyaYh5y6wLmZ83M5ku6PzW+BTLnus8bbmxNz9vu\n+zTd+zD2mfi8Yl9B77O1RnR+N6e8elmiXWxubjs6rVGSYzzBPeHDfYxZ1tbRXoNwtS/iRjp3GRr6\nyZmo3G8cs3KV1JE1+5qa7sDRXS/ORR0d7Tsq/vW/+irIv/OP/hOQ966/SjpiP83mdFYU8H1v1OGl\nlz6N5V/EuN/M7MkTPEepKrYfukfEBbRcInbmgDPW7l7C3ZPy3RSnVJAyyi/MluhPQ1o7Q7pv0Ghf\n7mUWfEzNCPmO7VNwnve9QgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYT4GUB/HCGEEEIIIYQQ\nQgghhBBCCCGEEEIIIYQQQgghhBBCiDON/jhCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBn\nmvCTVsDMzPM9kKMwAjkIUK7qAuQ8R9nMrPbx7z7CMMY6Imx6RH8nUtYl6lAFIBd1jnJZOTr0gwHK\nMcpR1AE5j7DOzMN21RU+r3KUF/O5o0NVo14e/TkMl1nXNepAdZQVPvd9LD+nfmn8jerwFjj+foqy\n55GOPvZLSeXlpLOZWZHhN1WJ31QVtqNmucAyfeqHwEMb9bijzawbos3FHZTrGr9ZphnIRYH9yPOg\nNpoHntsPNdn5dDEFOc+wjmF3CHLooc6LU/w+e3eB7wc4b8zMXv67r6CafSyzLF0bOl+g7Vi1pMc4\n7laQnJFs5swpI59qPj3nYQloKQjZftG2uqNNVKl0fXBCtjRN8Z21GJXwPZxz0yXZAfn0vMQ2LqYp\nyIOe65ML+mlOOvke9lMUojzooA57632Qxwscm5MZ6rQ7Qj+xID9iZlYY+VSa9zXZT7+LOg16uK5s\nDfD7e0c4R7sh9mPou3N2c4RlDmO0l8kC27lMeA6Tzh2soyR/y+OwPcR+MzPbXMf1tDvYcN5B2B68\nlaKzTvEc81z7cuug9Zfnvjv85wqfbIm7mGM/JmK/ZGbcaWGEtlFTzBPRustrvU9+paRYLgjctZzr\n4DLacN+nmKdGmU2vCc/juGm17Brf6jbUtesX2pVabe8e9QPHn9zPThPM7cu2seEi/IDXIeo3+p7t\nx8yNc7ivHLV5uQ74MY8Nv9CwblCcENA+qs1GA1KirV8bB8PRe/X8Pk9Ml+RHaM+xFdOeguab5zXN\nL+zPJMMySrKz9R6t5UG9Unb23pGrQxRjrGcPD7BOioHiAcYKg01cl6uE914YK3SHVJ+Z9dewjCzB\nvW5N8W3QpXZU2M4yx7nSG+IaETTEs+w/K7LtJdWxuYY6dUIcu3ROY0Nj3TS9csd5kY5OiMLjj8+X\nNBYlVToaukrEMX5T8DaT5Gp6BHJK+/1lgu8P+tioIHD9bTdCHdIMy+SwgUJkc9I19JyG0qrS7YeE\nylgW+M4wOr/B3Wx8CnIcd0Ee9FH2yc/kubvHnywop+Z0Hw6q53PegPJjNIeTBA2trNz8iNXso9n/\noo4ZbSg/2Md+OVliHR3yr1ujnqPCtStrIB/SBKm53dMJyOMxzjcrML+Q0fx7r2Esbry4DfL+Pvbl\nZ59/BuR+hPu/v/ruOyBP5qjDDrX7xqUdRwfeGtROTEw+nXJ6fofin5BsknLC5rl7zGWK43vn4QnI\nr7/9ARZBZV7cw/JKyvFxjHVwgGurmVlC48Nx2mCA++CQ8opegOtxTc4v7qLOn3/xkqPDL30Oc3aD\nPn5TNeR9zxM1h84cJrU9bwrt+JuWnJ2z/aL3WUcnnGzT2cwNIBwdW8oMuA0t7/P2viHm4diuVSc+\n42iJmQynh232OVdK/dw0ltyOiPeQ+Pi5l1B+fg9feHy7YW36CfPDB+jj//Dr2DH/6Q18329p89PY\nfM1BLn/DawDZPJtr27a5cTvKBuKkZn62cnYFnb9w2qDfw4GnkMgyDAXMzD37Mjq72tu6CnJIxtXp\n4hhdfeYmyB6tP+MJxmFmZsMYz7I8ys2OT3Fgn33+OXz/zrsgnxzj2VdC+/3TBJ+bmdXVGMvk/VqO\nsd516vyEYtx6hGt/UqAOkznm+s3MCsrN5xQPpLShy6jOO9MZfY/PC4rDmmJ9zvO5B9OcB1ydF/xJ\nzEnPdQQo8vrLvoza5DecCfOS3zVea9CBVXQXIiEdR7RW9mcYr3rOZr0h13jO/dtHuf75Y4E2AAAg\nAElEQVTsNZDv370H8mSG+5aLu1v4/v5Dp0yPkiz3Ht4H+Y//9I9AvrR7AeQnB09Avnsf9xh5hXP8\npefdeP3uCfqZz2+tg9wJcE7ubWAO72SCvmu7h77zizeug/zoyPV18Sbut3ox2u4LZKtfpTI+u4l5\nwGKBvmxJ+/kZ7YPNzGYJjt96iotTSXV4S3zfD3gvxfc8MI/oN5wVsdsoKVjsxCOQdwfYb3PKVe5t\noQ6HR+iPjx+7a1+HJvWVTbShi2u4jtBSZrcfow5/9Id/AHKZ/gLIf+e3v+jo8Owl3DNeu4A2uUln\nvLfuPQI5jmm/Pv8OiEmKm+3R9qccHXYG2A/7+3dAvv0A+/48MT45BjlJcf7kFLgVtG7zczOzlOZT\nyrkqOivjO0xch3vex2ck7vwKQ84Lov/l899ujL6O7+EF4eqzOyf2sKbcI8ocA83n6Ou4HwqK41gu\ni4Y7j5Tr53WdQy4nBnNiMhT5LN/5vgH3fN9bIbn5sKqlTU13MDyug3P5dLdzPscYaYBLvPW36D4A\n3Suq5pTkMzMvR5uaLjEnO85xTY8jXIeG65h/9SknEZboC7fWMYYwM7NDnO9pgjnZyjWhcwXbgWtt\nlOvn+z4NCTL3DsXqOxX8Pu8RQsqZjCnuWl/fBXlIuV4zs8EIY7P5AmO/23dug3z9Gsa8POfcc3+s\nj7vgae6+eB7PY7rzS369onm9TLBNyRLPf0fbaP/sN3ojmtRmtnEJk3Adyg9w4oN3ThnFZQuKTzsh\n+oBXX/0cyEWDfZ2eYuzmF7ieFmRfWeOdgY/Q4qP5rguPS3MRqw3CnXdIyv1GMfpowPdx3Dtg7hXF\n1efcTX3dhv7nCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCnGn0xxFCCCGEEEIIIYQQQggh\nhBBCCCGEEEIIIYQQQgghhDjT6I8jhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQghxpgk/aQXM\nzIoa/0Yj7AQgl0WFz2sP5LrC52ZmQdQB2fNKLNPLQc7rBAsgnczDOsMAu67jxY4OvbAHcreL73Sj\nLshVhTrUdY06V9iGito9O506Oszn+FuvP8AySupbH9tdoQrm0fPCUnzfsJ/MnK6zYInjawusJKoi\nfL+g7+mHosY2FEXm6FAU2Hd1gXXWJTWU+jagjugFqONOH8fy5u7I0eHVm9sgP3NhHeTNnTWQ3zlC\nG/3f/uX3QD5dHINc5DgW88Wpo4Pv4fgliwXIi9kSZW8OctdHu6/n2C9Fgv329p994OhgNF4v/srL\nIHcGbt+dK2rscy+/h89z7PO6RNv1eEKZmR+RK++QHNK4sXsLyKeSfXuGOsSjDZDLBp1OU5yniwzn\n5XqMPno8p/dpjnpku8MeyjXZ1SKlOW1mOS0V6wNs59EEx2ayxDl4YQN1Xh/2Ue6hb3s8xjaVFT7P\n2e+Y2XKJ3/QjWh9p7GryTSGN5doAfVMnwPczWl83+9gnZmYbA1y7Hh7juvJkjH4jDlGHyEc5ydCe\nAlpX+M82t6kNZmbz6QzkbPYE5O7GTfqCbNyo72m99Woem9Xvf/gR9qVTx0qNzh8xxTxFgbbtBzgf\nOJQLAreHSpozbDo1xYccgPCweS2j0ORvm4Yen7PvYh3oOdlJVaLfCUJ3Tjr2TGVyfNiG7/NY4PdN\n/eBacIu9kw8vKf6cLXBOx130twHpaPbx+7qidcKjxbDk2K+x3Qh3Na9FTt85Rsh7Gm4Tv94QA9Ce\npK1MnibOPqqt3Q2TgPuaabah80FCsfBaF221Q2ug77MPoI2Omc0SLCMt0Q+MKN6IurRPpX0ux/88\nf/PS/fcSemu4Twm6RyDvbmEMtHNhE7+n2KH0cZ8bhZewQh/nvJk5E6zG8MHyHNvpkb/sdjB+qJcY\n53VzLLCTNvy7EVRnRn5jc5PGf4ByitszM55uXGXD2sfj5cwn8qc+zcecTKykSvs41NYfuDo4vo7k\nMsM6E9oHzKcUn2KaxMyj9b2hG1iHitrZoX7x2J9SoSEtKxwTzBqW0mmJ79BUtIaQ9dxwNKG8UobG\nneQ45yuasCUnlszMpz1qGOEcDmmQOLbm9W25xD3JdIaxxWwycXSICmxHTXPQC3C+LDM0jJI2LmxX\nSU4+oXAN6/5j1HNRoG/rxdgv9+5hnuf4FP3r7gjfH1B+9f2HWJ+Z2Zz0qii2uHUHy0ym2Nc56cx+\napqgPSwTN2fX76ENeQHlP3m5JF/mR+hYwj7m18IOrluV56bDDx/jnvK9uwcg7x9h3/se9m1C7RrQ\nWjqf4TxKM7cfIlq74i72/fYmlhkPsF0zyukVJXbcJco7fvkLrzo6rA8xbxxQX3ueG5efK1aHTe5z\niu0a/xkqXtgoL2PcpS118JrmnO60ldf0TlsZIbfhY5bnxDwNOjntbvmG4ybeOrMO/Nwpj8YlaghI\n2uqgTwYYIttr1/CFr992q/hJw2vT//D76G9/7kvYMS/9HK1d1Ad1w+liq5tomVdOz3MY4eyz6XlD\n3NGahOOxbcn9nHWGAxy4JKEzPtoHeZTz7MXuwG9t4frRobxORTH/6QTPto7nuIYFXXx/fYhna37D\nIP32l14EeYPiizfevQXynSNc6ye7uE6ubeK6PB9j3DU+wT2mmVmRYlzEuaiKzhEP+EyDzgYWS4wX\n8iUOTpa5OQU+8+V8V0nnTZwX4pydm6uiPIezsbXWOVfTWkbm0ZDjpQIoKdyUw3PSo+ycPIpxfT4T\nW31HoKTyuqU7Fl2aTD3K+5YhzpMkQpvlc+uc5mLgLJY0ec0a8nh8TnJ+c3a/9uv/Hsh37uDC+8M3\n3wb53mP0S3GfkxdmsxnO++US/cJ3v/ttkN/wOZbG8nh+DgboS09OThwdsiWeIfv1Gr1BfifF919+\nFnNyn93FPcazI7TDV6/sODqc0B7y4mAL5MiwXzjnklM8MqF9DDuFaEhBlZlldP40pjmYHqKP78Z0\nJ8cJJ9AH+BHuteLe0NGhQzrUNc7x+T7a2NUp5lcfkw/vk4HMfazz6MANHpcZ5jo86ruMEoM5+fhH\nx/h8STq98iqurXwdwcwsyH4Acu/0PuqU4Rq+XfwQ6zy6AHKZ38Hv6fpT5OF9GTOzUYx3LcIU5+q8\n/5C++HtOGWeVN77zLZB5zEuaG875Yenmqjh+YYYj9Dt98l29Ptounw/6tJfjM0ozM5/XXVpTCzob\nyHOMmZZ0FsBn1Px+WTTFVJzfJP/KZ28t54O+z+ekWGfjisw5b36r5QzSjQJaziQbEvPu+R/r9PHO\nRTnHy36rCeeslD7h+4ExJe7X9vCDoIdjmxe4BsyOcO00M4ti9LdJPQZ5Uj8AOfNwDU/mj0DeHj4L\n8mBI84bzTWZWVLRvqyjOaDpnO1e03PdxthBP82/Frz5/470OP+c7RaMejsHRCY773oVnsPyGM0Gf\n5uH1a9dBfuuHuO4+2sc6NtcxtnPP6GnOOufYrk9mP85+gf0f7/9Zhd4Q15EF7aMDukfEOYmdHTc2\nvPnlz4K8sYZrUxhiLMh588NTzP3P6bzpuRdeAvnq9Rsgn56iTzAzi+nA6HSGfqSkM4yAxqLiu/Ee\n9zvW57jThoXFvSeHIs8aZ7/ojD0+5n4L6Rxw0MNx+VBN7Ce+A8Y6/jinE/qfI4QQQgghhBBCCCGE\nEEIIIYQQQgghhBBCCCGEEEIIcabRH0cIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEOJMoz+O\nEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHEmUZ/HCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ\nQgghhBBCiDNN+EkrYGbWiTr0C/7NRlWmINdVCXI37jpl+mEM8mJ2AvJyMgc5DLArqgDryGuUq7pA\nHQJug5kX0jc+fhOQjnVZoVxjeWWFz6sKX6gWuaPD8gTb2Yt7IK8NIqyzwDrShHQIPJALFM333L+3\n8RP8LZvieBq1w68DkEOqJPBRrgx1LrCbzcysLqkzqS89ekxVWJ/a9Wwf5ZduDEEebA8cHSY5tvuv\nbz0CeXs8A/mLn70O8i994SrIf/jnpyAHc2x4scCxN3NtynK0mTLFMvISn+cedkxYkAup8Pli6trk\nD77+Hsiz5QTkm6992vnmPFEvvgOyN7+PL2Q0P8h2a+NBNDOal16HxiXEOeXVaP9G9u55vDRgnd3+\nGsi9AfoyM7P0YAzyIkVbINdkoxh1jGgSLgv0pwmVl1GT0sLtJ9/Heet1yTeVWMfpIgP54jr6y4D9\nH/miZYbzabrED2oeBzOjKWaHU9SBHtuCGs467azh2Gx18YX7E9SRfV+Tngm1i/vaI0fD60Y3RLlD\ny0aOw2CdLtqGmdliiv5ytv8jkEdXPosfeK5PRtheGuZZy/PaeDzbyjjfRCH6kYIW58Dn+YdzOvRw\nvpmZFeXq2Kui+DCgGVM5vg919HkCNY0zleF5rn3ic573NF+oHwLDdnsNcZVTBtXBvo7jx+l8CvJo\nMMLvnfJcx8A6sHdyHlNfJukC5CDAfuSh8Brn0+o5xv7U91ePFfdbQ4nuNx7bGI0N7Wlqp1228jlT\nN7xQcynULWwfPDgejS/HGY69NWpGcUhLO88TgxD9Uifk2Bj7LwxQTjO3d4oS7WaLlzBnXcU57tgl\njw+NadiwzkZ93Nt4PVRitI57ym6MfqRLsagXoI/3/HWQFzN337JIcCOaU0xc1FhH2EWd+pub+HxO\n/UC23803HB2KA9RrtI5jszGk/RfthXh/T67OGasicu0hpPHLMuwHSlsYpSksXaIcYTdZv48y20dT\nmRVt8QoMV226QJ171O6a3K1PfmeRNniNaLW/9R3fh3Icsm8jnWiuznJ3TchKLPRCjOObnePQrz/E\nOcuhQVZybELreuT2ZxjRHKacHC8eZcn5MJTzBA1zNsF4ZzHBvIOZ2XZMuaaAcpE0p+cp2R3vL2k/\n0KV9+L3Hrg4PnqCc0b532KOcHRnvWozPd+n97RHmSzPyGWZmDx9gX50ucdJ79ROSySlw/myIa0bQ\nwT1pWrpzfED5UavYueH41rRXqEN0blEP1wAvwvfz1E0cHp9gPzw+wpzbYkm5mnq1XymoDUv6vtNx\nc9kDcsr+AOULFy5gGX1sd1U+Brmk/dML1/D7nQ2c22buXPRIbsr7nivYPLm5HDaxQ2zqHv6trQ5H\npg84ZdeqY4NObe84myl+3vJ9q44Naz0v5vwOl9kmc0ph9fGTWdhSn5kZT1vuR5K9GNv0youUV/8a\nxYLVTz+YeH8ffdW/+ANsxD/+DOncpTW/qZ94eHks2tzI6nSDkyt3ymvoRicd1JbCc1O254rxKe61\neI2qqI97Axxo3kOYmS1TjBcmtP/q0Z5yEG6BnNMZcEkJ4jTDgb52+TlHh+eu4vnZiPa60xlujiYp\n1nlnQuez5H8Hm7juDtfcPWREMcd8gefSHNO6myPKq1Pw5tGEOD6gDZ+ZZRlu0Cqukt7v0xlxv4c6\nnR5gDDujg53pGHN8ZmbLBfZtkqBOObWrrPj8vS3nx2Pl5jUK3o9TviYOKZ4kx89742WIC0lNzifk\nsTWzguqc0V2IHu9bKe5Kas6DUL+RPQQN3easuJyza+nrs8zlC3sg9/q4kO/u4vPXv/U6yPuPaLNm\nZnmO8TXvz6IO28nqvGrYQTtcW8ez1/Ep+hAzM48m9cEEz8ouD7CM3YuXQH5pF/cA1+m+Q56jX/ny\nHub8zMy+W2JfegvUacF3DarVe6eTMbbT93EuXL6C9yXMzC59Cu8S/MX9eyD3qM4+jf8lukPxo7ff\nAHm5xH64fAn70cysR/nTF569AfKrN3Fdqh89BPnmDPegX/urb4BcGK6dR2761E5PeQ3HvfPjI1qH\nitX3A5xznBn263byvzo6/MP1N0HufvsOyD6daaQ/h2tC+IDuaO2gjuE++vh86y1Hh3Id/WPnNs7F\n9It4N8XsnzhlnFWWOfqALMH5x3EdH0I1n70hfMbUpVxEj3IXyzkaa55zHEBy7t4nKik/VtAdDs4L\n1nz3q+Vs9mloOzNsOydtPzddfTbXVCLHSM5ZKudT2f86B4hcgbtXd39hP7L6bL2m+CUMOJ/6FDbY\nsofk+4Mbu/h8tEU6UcydU853yfcZzSz18e7TzH8AchljHjHx8S5g7mGucpijkvmSzidO3Djk9OgQ\n5Cigu0uhe7fifNFmKy1ztumw2uM5ws+pDOeMHZ+HEfrgu/dx7X/p5VdBLgvX/41P0ZZe/vRLIN/5\n4A7It27dxvc/9SnU0eM5R/dA6Cynyfdxu917brSX4rvM9HYnxrOA/hDjTb4LHdK+ahC6hxz33/8A\n5I2dHSqTcvV0Lj2bolzTveXPfO5LqAMlRmZT9+zHuXOzjvOe1y6+y+SxffJCQmP7NEudc22E77I4\n95D4/dVrHa87swXmC6IGPxXT+X7tXDThxc0popVzfqIhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII\nIYQQQojzjv44QgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQZxr9cYQQQgghhBBCCCGEEEII\nIYQQQgghhBBCCCGEEEIIIc404SetgJmZ7wcg50UBchDh8zqoQK5q9288umEN8uPpIcjTkznInagL\ncm/YQZ2iGciFZaQT6vzhOynIfo061QHWUdUlPq/w/bLCdtdUXuC5w+kv6Yd5AmIvxjonBZWZYwFe\nB/u6E0ZYHzbZzMyKE/yxSrEOI9GjHzz6G56wRnuwyiPZ1aH0sAwvwDrIBG2QYT/tBthPfhSD/Gc/\nfAzywfEdRwcaLos7OP6eh+345rewjItXtlEH6pe6wPEPSqrQzMoSO8evsU6f+q5kG6SxqSw3+gGh\noTEzq0ivW289Anm6j31v/41bxpnm5F2UaUy4D7kLa6/BwMm+LSJfEOE8rUv0Vx4bJ/sikntrOyBf\nuH7FUenW/QMsg2wnL7DMimwxJTupuJtIni6xvDCgSW1mFX2UZqxTQTLad5e6uROizn3yjwWNbUHz\nKclRZzPX/1E32TDGdo1T1LnMUR500RbWYpSTQ1ok2BbM9QPctyV94/vYL4HjB/CH0Md+S6lfGtyI\nzWktu/3m6yBffO03sYy4RyVw3MDzivuB54jbT57xvGkpo2mxOkdw+531h8bdJz/G87XpG36Hy3Di\nJP6efFtFtu757jizRbIOTp00X3itd+zEa7L41Tq4tobwnB32hyAnFPOEpEOngzGymZnHcZWjN8ew\n5Mzo+34X46qa3veDpr/nxjpdnfj9uuU5ld7SpqYy+BvnOY8dl+f4U263q7RXr25301xapRPPk6ey\n0ZrXbIoz/H8ntpw/GSimMgo/2CbKCvt3kbp9E4U4ZhzSBAHFJ/S8pDWuzLG8kN7vxH1Hh/4Gxnov\nfwFjSSsWWGaNcuRjmd0hlldV2IYkcTeRAe2VLMN2jC69CHJOMbZHfqO/vgEymza5wg/1jDGHsL2J\nOYCC9rVlgeMdUazIMVPGoWCDO/drXuvoE/pmvqA5je7VRtgNFlGgtkwalCA9a8oZLHMsIyuw77ts\nYrz/oSqDho5YptxweoFdU4sP9+n5gnIKx4nr6zY6WIaz5XK3H+eG4WAEskd2U7IvJKPxvYY1lNcb\neu7EWPy9419pr5fifPVrN2fHORUuw6NEUUZ2wits1EVfeWV3HeTbD44dHRa0n4s7aFgx7ed86om/\n8/nnQT54dIQ6kr/9hS+94ujw7R9+AHLUxTqenEywTIo9LuxsgbyxhvbSHWDsWUdrjg5ehI6C97Wz\nlPfqtLYVU9QxGoAcUO7ydILrlpnZyRTzxJM5ypwv4BjJS3BvXda8T0D7Wd/YdHTY3tkFOSZHs76B\nfc0zYzDAfW9Ac/HGlQsgN+VN/ADr9HyKARrm83mCjxg43Wa8R+SFuWmPwa+0hPg1r2EcLjo6fcz6\nzG2n0242DZZZJ5L5e+foJmiwo7Z2kylah97nOngby+/T2ZFFLWNrZkbhqTPeXCc9f+Yi/hBHKM/4\nzOSnQEW+7Pf/Av3Gb//72PFf/FXa6zUV2jZ2bWmPtudsj09xHuH8xHE4hwnnOK4zc3M0Hh0KlZSb\nTWmPMIjdDhrPMfYaDnGd45yNm4fHeKOmPcNGH9ew4RDjLDOzMETjq2gtrqjdZYlxUkm5DO6njPYk\nfN5rZra3/QzIkyNsVxhjGRTSWMGHAY6944TqjdycTyfDvk6W+M5ghM5qtI3ObUBn43vXcCw5x7BY\nuPv5LKVzEYrNS9rfT47GIB8/xthuSrFbSjmELHdjfT5G41zjWkj9RN9ParInym1FbB+hmz8tac+z\nSWtPlxzYgNaFhOLHRUsOIWrKXXL+tGaPeH5jux6NWUD72jW6F3LtP8Dc1eEB7q3Mms4C2M/UK5+z\nn+I9Rb+P+6KLV19wdHjr/dsgP/tLuMfb2sW90PUffQPkzQvoWP7yDta5s4nnvdEA78eYmc1o3m9f\nwzn43vQiyNdGnwJ5ScHBeIp7qcEAdTqYuXP8pc98FuQrV3CvdOeDJyDHXRzvm9dRx0uXcC+2WKJX\niHlfZGazKfqqAdnYm+/dATlbYDsnC9xzejHunTeHWN4F2s+ZmSUp6pmS3tentJ8vV9swB03Xbr4G\n8iJ82dFhdA3tNN1A3zcy1KGzQx73AvkhzsntUv6nj2uKmdn7YxyL45jq2Mc6MJNytvncr10Def/W\nKcj33kZfVnKs0QCfx21fRNvs9nBOTidYx8FjlPnOG9N8Vkc5uJZzUCc17JytEXxvr0FHjgUDOlgJ\nw9Xnvxx7tp3VNW1k+A7Fay/eAPnaLvq+jMb39XdugXxwjPbx48BniE4Ogn7grXXg5JXxedNYc26Z\n+7pDZyBreK3Oot7qTSNdibQicefJtIvrSrFGcX6H7p92aL+Toe+anOL3Cd1fHZ+6eeQxxcTJkuJT\nznOcN1pScG2tb07ZrS6U7dFvOVPvUG7p+BTHdXMb443DQzfePBmfUB3oa27euAHym2+9BfL6Gu6V\nnfjUmaN0Z6chH+bMy2q1j/Vozrr3HRCOgZOE4jDKM+2NOEFn9tyv/iqqSHdPMoqZSspJFDnmB3p9\njKmfuXoV5DzDeLhpHbl0Ddfo5Daew8wXdEbBe7WPu/Z5PNZN+0OqYmUNbhnOnGmBcxxOm80sorMb\n3jN5TqL54/s6/c8RQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQ40+iPI4QQQgghhBBCCCGE\nEEIIIYQQQgghhBBCCCGEEEIIcabRH0cIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEOJME37S\nCpiZBR7KdRCgTFpWRU2yW+Z8uQC5H49A3tu5AvJyNkOdpqhU1O+AXI5S0rl0dKhD/K3wllhGiQ2r\nixzkqq7wfWpoVWM/xB3U0cws8LAv0zHq/SRDOeN2eqij72G/eCnqmB4ljg75AvvBqz3nnY9CzTIz\n5wcqD+XA3PJDH9vl1diXw+Uc5C6NxfspVjI7PMX3Q+ynju9OrZL05L4s6W+Vvv/eIci3H01A9kJs\nE5fX1M0VyQG5AN+nv5eq8IuaBqemsal9so8GD8Ndw3Y+m+A8OW94Kc45C6hDyP+x+TfOHh43LiMc\nUCHUxwXO27qieVzj+0G8B/LNX/ktR6V3334P5P1TnGNhQLbD/q5Euaqw5Rk1OaImD2L3b/+6ERsf\n1pFlGepInd+hz0NyPusxvrDRRR1ItKLhzxMLchRxhO32qZ/6pBOvI77FIA966Ddyqi8K3Ulb0Vj4\n5D93+hHII+qHUQ/lNMc1YZmizh479QYCDzvvnbfeBfmLk32Qu93LLSXyRGP7RNlzvKmZ1TSgNFbu\n4tbezrNMRfPL9ym2c9YT+t4NBsyjdc5Y5jIbyvgo8znGft0OzhenPnPXLCPf5NM66LSzRSeus/n1\nlrWZvuHnHC90oy7IywT9tc/rlJkFPrebNKTxT3PyrwF+UDnBPD7nNcHMrCrxmyCM6A3aL1TUD6z0\nj0FR0H6A7MPpOx4Lel5VtJ9wxr/dJivy0R5/43GcwX3LleL3VYP/47EocuyXTrfnfHNe4H2Nx/1H\ndjbL0U7j2O1PZ79FcshDSHUkOcX3Na6zAa1xgxHuk83Moj7GjnGOsWA2naKOGe5bAu8iFhhiHdkU\n9zVpQvGxue32KGmwcf1lkA+XuPYfPLpD36OvG9C+N+JAzcw293C8vBD7MlvgN/kSxzMKsa9Lmk9+\nj9bGomF+0U8R2diCuq6iflvfxDq6XfIZ5HaChnWnpHgxL7CONMd+oK61mnx4x6dG0ZqSV66vqzP8\nLWAfT59E1JCC5mpJ7X4yxzaMOu5YbMQ8v1F0lqFzhMf7Sx4izk04AUxDvsxZv3gNXL0RdmNFitep\nvNBzx9QzbBf7Hbb9JMcyCrLti3tbKO9ugpw3bCEeHaI/fe7KNsihYQx1MsE47dOvvgRyZ/AE5MMj\nLP/l115zdPjRB49Bvrw2BPniRdz/33lwBPILz+Jei2OsJOMJiv7YzMzvreM3Ba47t/fJxx+iDr0+\n6nxljs6xT+va6czNXR6c4Nq0SLHvS7I53icb7XMrD7/vxX2UB6izmVmHchZDWqNpG2we/TDo4X5m\nbx1jsGtXcH0OO+5YeBQrej4HHud7H+vxQsjhgc+xNT2n7moqg1MHHpfJdXIdbTIP2VPoxFsEJyDg\nwxunX6hOfs5bygadnO09v9NSp/E6HLWNFf1AcZtTXtNv3C6WfSxzl0LktR7tFdKGheKnzIMj3Nv9\nk/8Rdfyn11C+8ukGn+CMXYvfaLLRj+LkZqi8ti2t2ceeN01pv/PExe1XQZ7O74O8jPDsK0lwHzQe\no2xmVlLOpRNhzJImOIHWe3yWSbkH2junKa6zs8XY0SGk5L1XUp6cbCkK2HnRPiehXAedS9elezB9\nfIJ9yTlkjxykRzHxcoLxA+fNOzE+H200nQnj+h4uUc+tHYwXIuq3gGPijPKQFFwNkaUAACAASURB\nVLY3dIOtr2FcXNJ5U0l738vXMQbO5ljJYo7trkM6K28ItCfHmPd9fA9txpthO8c5yknFeyAcu4JT\nfg05O3Z/ww7+0AvJJp0tENkL9VuP6sRo8998E1IZnPv4d2Dt+UnxjT/+VyCXlGApKSHSoTsWAcfB\nZtahjT+fBfAekfOENSX1ApKzFOfv2qu/7uhw/9HXQB7sXMI6wzdBvrr+BupM/fDH30MdPv/83wP5\n3Xt41mtm9r35CeqJU9jKCe3vqg2QH9x6B+Tv0Fhd2Ma9dHf7qqPDK69eB9mvHoH8+rd+CHKa4Xi/\nf2kX5NHG90D+5T2cK6+/f+DocEi+Z7SLZf7Jn/4pyHnOZ6Grc8BtZ0lP8w0/53Mblpkl7RnfbLjC\ncZV89LPPY9D7yhXcz3ce4/vzGus4SdHBDmK00fuHbr+89Zc43v/XV3E8Azr7/of/5X/vlHFW2bmG\nuYV4gP05p3s3WYJzIV24cd3aNuYSXvz8MyAfPMA1dTnFdZlNl+NEDu/Zl5q1b4u5Emc+8ff8nP03\nBzhmVlFeMKC4LeA7jaRTELBOtCbw9Gu4BPTiTfR//+A//G2Q9x/h/NpZxzzSV77yZZB/93/+5yBz\nLuxpcj7clxEFPE6I7dyR47Na6peGfuB7IRzXx32UeyNaj+k8ospw7KopxcO1my9LPOyrMMCca5dy\nCmT2Npui75vNMR+bj/F+63KO+ykzs8kU52uyxH4JG840zhWOffI6yndPVt9L/bCE1WU6d0/ocUAG\nX2Q4jindMx2O1kA+PMSzVTOzGd1fmdFd5hvXb4L83q1bIL/97tsgl3QY1uvhroH9oZMLNjOfDuBq\nmlPciz55cZ4PPvVzt0t3VZZ0f3FxDHIe8iphtiixDD4vSBIcmzylOUfn1H6Ae4OQYokkwTm9d4GS\nfmZWsq+K0Wcvl7hG1y33hNzYEMe2fop7djxYbVfYnDnCU6S1Pjpj4/uyZragu0mjAZ2J8BrwY9zx\n0f8cIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKIM43+OEIIIYQQQgghhBBCCCGEEEIIIYQQ\nQgghhBBCCCGEEGca/XGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHONOEnrYCZWbfTwR+K\nEmXPA7GsKnzdCrdQL8A6+j2Qr157DuTj40OQ09MpyFGCf0dS5SnW1yOdzSzsop79Lurkzccg5wss\ng9tZlg3t/AjdMHJ+86nvirxGuUC5zjPUMUSdbYk6ZQvsB25DE7V5rW98lKoknT3UoaqwzhpfNzOz\noMpB3k1xfMMK+3a/wPHejlEeRdiGpES5SYdOhOMTRWj3BbXjpMY6Uxq7Xhfr9BvqZOoKv6lIjgzH\nO6O5xVX4PupYkwl6HVcpP+Txx3dKnv/njJrmpBeSG2Z/SF1YF2jLZmaeMzA4ELU/wPd5DlY07yuc\n13U1wec0By++8uuOTl/5nbsgH/5P/xzkbJ6AnGRoa2wFUYC2meb4xjRFOWuwo5sX1qhM8us0B0PD\ndsbkDqsCdY7Jtq+s4dguSaWtPhVoZgdTfKkXoo5dknd7McjTGY5dl3z4oIPyGq1Lax33byZ7ZKJ9\nKrPs0/Mu2t+ICuhG2MaUxp59flm6Y9nrYpmHB7ieLsYHWOcujuXH/ttQx5W5vq12rJbf4cn8FE77\nHOH7tP7U2F8BzfGmmMen2K6mOMlvKSMMyBY7OH8i8se8LpuZed7qNczzaF2sq5XP2/AabC0veR1A\nnQIf28E612R7Aa9LPVwzqqphLedvSM+8+H/Ze/NYy7LrvG+d6c7vvnmsqq65eia7ySbZpNIkxSbZ\nIiWRdiTLtizAsI3AMOQYigMDgRE4NmIkfwRIgCiOGEgJCMW2LJmSJVukSE1sqdlNsps9VvVQ3TV3\nTa/qjXe+Z8wflBF+3z55tylZadbT9/vvu2faZ++111p77fOqMK7UKlVsQ87jj23m6cH5xncv4qQD\nJfd9EOw9du6UJJstsUnO7TjHde2B7YWfSLkd51klfiOg3M0n/8bt5n7xfbo+4Hm2t72YmXkFBYqI\n38ONd/uFCE3bcur/cYw6oFyBfZ+Zm58H5D8Lst3BmPqb8vc6xd1qBc+vzh9x2uB7NCd57euh7Sc0\nPXY3tkHfvtgHffrsm6CXWq5dLS3Ngg4aU6ip7zodzC1//euXQbcpP/nEhw6Anmq5YxGRLacx+XSa\nkjVa+7DLLwKeb3i8JM13nBMtWy0psI0t7DarN/f2dfwOUYm7JZM0cvEW0k3qde437hfOCfB+ZfUC\nn306zYM6l5Qo9aO033YSWs/T+Qearr/le9bI9ZWEy30DZ9KMR3ZYkPF7Jbl3wXd17IDmm3E+g76N\nY6ZHuUbkmpUTVzNah+SUe47IByRkFHNTWHf06R1mmph7mpnVq2i8Rw4ugN7YwFplPUFHcfnqOmiP\n6oJTM3OgL16+5rQhpBw4ohz57sOroGfmlkAvzuMzfPIJoxG22a+0nDZs7g5AX7l2E/Rzp8+C3u3g\n+e023jOhetr01DTo7S7GJTOz9dtUFx6js+O1B8fjjGzOz7ANrSbGsXoV7cXMrFrFvh/TeMcUKBpU\nD+C1+H3H7gLdrOHivSwP4UCRpZgDeP4PxFbCnx8Uoxz3xb6EjpekylbwPTg/mHB8ouZhDMihOuug\nsmsmaH5POl6UPGJPSvKNif3AbWJTnNBmq0zQHCjKTJ23Xmgt4L4X3nPhII7N2iIev75T8sz/n+Fc\n8Rsvot/5J/8DdsI/+cfu4N/1AOV+3G+sv7+tInesOVEpy8n4GZwEc/lnn/+TcouzPwp6YbYHejy+\nAXpz5xzo7c23nHvGCe4fZCnHE8qzajgoq0unQPcHWOstPFzvdXfxuJlZSnubbhkI7XnKxz3CabKl\nQUz70jEZSonz29nBiVyt43vHI1zQdTvY5jimWN9AZ5TRJuB4UFKrquA19QY6K879xtSmeoMdIO3P\nJlwncidMbpg/NNq0tzPGe4S0EI1I15p4fW9EeVrJWERUi2w0sd65fRZtdjzCe+yOOSegGh29t19S\ns5uixfM2OcQO1V4aEb7nkBIL38f7tWgsmyXBK5jFZwbUl37JftB+oTfANQOneVWaK0b7UGVr/IzG\nJKD6tEfxJeSaNieL9Ixqley2TkUeM/vcjzwB+va5b4D2q6dB7/bRr3jkCx9cw34Y7FwAvdLEtZSZ\n2dVbt0A/ds8nQJ98+GHQv/XM10CPd3FdGlDRZjBGnx92cb/PzMxPD4Keaa6A/rHPncR7kj3cvHEd\n9NmzGNs6GAptqsmJn1mac90dB/Suu3A9NhrRe9Ec3trawjZ0eG/e9XU5rVOPHDninPO91Ou4DuX9\nV25Di2LjcSexM0sCvMfFC9i329cugV45Mo/nJ2jn250h6GNLGFMuD3FtbWYW0H57n2oA0zW3HrNf\n6OyiXdVqaKv3fQjtsN/FuTAeUqHXzJYO4BhNz+H3Fbx16qdoy90e5mmdHZwrAflG3j82K1l6k1Nm\nF83zo2xLcS8q/E2cmeUhrWv4eD6pYorwa3qUrHLN3Mzs0KFjoJ97Hf3vi6++BvroKs6nf/T3fgb0\nj3/6h0H/X7/670FnJcEv531NOt6oY2eHzvc3VE/jGjCHxtL1Ie8n4E14n8Upd+XYpqXqGuhPff4n\nqY1uze7JM78D+gqtR7wMHzqgD4P62zgP0t4m6KSLxxNee5hZlmBfcs78/dr9HY/zkZzzocCeh8tO\ncR7h1BJQ8h7i7jaOa5ryfODnuw3IqP67Q7Z24vgJ1MfQT3zr2efwmRk+dGGBv1XgPemSvRyP5yCf\ngDJ3N3tI7v19TbWC+cZMiLHt5jp+i2hmFlDOevc87rP0u7hv3edvnamfPOqH4RDj7QLdv4x2E/cs\nWqQ7HazF5Lkbk78X/r5mkoE634Wa2/fO4EyYRubt/d0dr835eQVvcptZb4B7Nfz9TY32Ub7f763c\nVgohhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQtxh6I8jhBBCCCGEEEIIIYQQQgghhBBCCCGE\nEEIIIYQQQghxR6M/jhBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghxB1N+G43wMwsLQrQBWnf\nUHsBNjuM3Hv6Of44TMega9UK6JmFJdCjZh1vGCd4/74Heux3nDYEFWx3u4bHva0cdDJCnWWo0yzF\n6w3bUC3rCCKnexr1rfUzaiS+d57jM7OE7ke3K/+xmCDxhyzHZ3jURLaXMMd+MjM7WfRBN2areI/G\nHOjHDqI9tBoB6J0RPrM6MwN6ZqrhtGF2YRavabVBr9/aAf3auaugX790C/SNjS3QTj8V7mB4Po5f\nUODfR0U+vmfg4/Gc56aH98t9Ol7B49/9ESW3MhnTAO8zilEM2qM+tyjaWwclfcrz2sNrPGPnQ73u\n9+h+MWn0b0U+osdNOU06/MhnQB/9+u+BPvfaZdBxhm2aqqOfz8m+O2Oc5/0h+qruwO2nmQb2y6F5\n9PPtGhpnr4/3DKnfkjEej8i25xoYZ4b0jjyfzMx6I/JfdErFmaP4nl3qh+km3q9dxX49NYe2sUC+\nzswsd2YpPjMh+/Oon6IQO6ZVx36JE2zjiOKt5W4/FTkHAo6nXbqC7mnue+L9UHqT4piZecbxkM/h\neVoaMPcNozH6iVoNba3gdIPmT14y7oPxLuhKhHO44vPf/Jb4y+9tA9mNOyfd6wMf5xDHXoYPBxNM\nj3O7vCSnCXz0ZZwHOXCeRX2bO7aLMi/cd4wTjmXYbn6GT2OTTWozNaLsdOe9SXPf5Sn6AY/aFITo\nm3yfx8LNT9iGPLIP9ofcZs/b20Yn5tDfvcuep2Q0FgHnHZOgNpa1mN8jctYk+9ffhbSaHqTYvznl\nZD7ZxDh25xfPFw9N09grhCHeoxWxXdL89HEdVJk77rQhHeC6JKHYHMd4z0FniM+M8PyXL2JM+NK3\nroN+ZM21rE/O43psefEY6CDC9VZvjO/96jVs06lVWjtPtbDNHrbRzF2fe0PUoc9zGq9PnbiE1/vk\nE8rS/IRcD6dJtRZe1MJlqXk05T0yuZR8RJa58zWlpUGR4Dl1mvKhjw+p0lJkSGvpUYr9FJb4jCEZ\nfj3C9yYztyCgvJ367fYInzlb27tGYWZWq1JcoJOq+/ifHuFaVEAJjRPPHFt2O4d9XUG1pqJwc6C9\n4PtVQmxjEbrxj4eZY2ZMidyIbH+2jX4ozXDCXr6+Dfq+u484bTi4ugx6MELftbGD+W+cYT+9dWkd\n9Djm3AMDVavl1g03d/GZYQUnbRrj8bUFrGVxXlepUJyhYNnruvXTq9dugH7jHNYLbmxgX45oLZ6T\ns1vfxDjWJSeytY39ama2fnsDdMI1NnqGRzbq5Hk0Eer1JujpWaxDmpmFEQb9Xg/bOY4xVqUJrodO\nHUR7WllaoDZSEMgnOy7OHYuJ+esdDsV2J7hTl/E6tjxZ5meQZvfEuzV8fJL2OPdzG8X5wcQ2cS33\n+32nP00/TboHa8oNjN0d9yvl2M75ZdOD8ouJbaCOmsKtAbvvKN7gO2+VPPNdhmPjV59B/7vzj93t\nxZ/7Bzh4970fj88uY7yk5cnkHctJ9rZ3mcbMStZIXKPb565uOOT6COY0QXAC9NoSrhmX2+9x7nn9\n0pP4jBTj6lQN9w9aFZyErQDj6oFljGkHDhwCPd3E9ZyZWeCkOfiedx3EHGZl8V7QDz9wCvQoRVvt\nDjEn2h24+erNLTzn+i3cw7u1hXlQJUS9vYs5DNeiuDTV67ltWD6A+UFGOUtOi8yE9iMimoPDAfYj\np+l+xXWYHo1nMsSJOj2F+ebcNI4n14WHA1yUUlnSOj23ZudxzY6+K/CopsDFFo+dC8dTCqZRSd2w\nSrXGpIoOb5b6LqdnZgEer2aYC05T/W2q4S5kq/di36brVPsYvQOneYfS7Q9At+rY/x4F/5BrwSU1\ncQ4yIY1R2a7RXjomP5PQ2jseu7WqQwvog19+5jdBj7yboLeG2MbpaWzDcBfXKc+ffQH0T/3Qw04b\n3vvRj4AuqF+q47dBn1xE//vqDvft3ongjZu3nTYcv4W/3ffoo6DH5EeaI/Q7tGy1pWUsqJ0/j7XL\njR1ck5qZ3by1CXpx7QDoR6lNjQb6nU4HY8Brr70G+pVXXnGeOYn7778fNK9TNzYwPnMbd3YwDm3Q\nOnm6wYmbWUxrqCHNveVldNqdBN+7n6F9hLsvg77l4fU38qNOG7xdfOb01DToY5zH7yPSIe3fNFHP\nreAcb85QwlRSC25QvSsMcdxrVAyevwtjzfo6xr8xfW/BdcR3UlLl/J33Xnk/zylVkm5RTL774EHn\nmdtUk7u5i3ndyPk+Aq939jWdcgP1g+8uhB794GOg+x38/uHpb38L9Auvom/8na9/A/SnP/U46P/7\nS78DutPFb+rM3G/3fCqE8B5ZxFvOE/bRmbJ9U/6Jv2HjeMzrgCBFm3zi/Z8C/f4HPgq6H6NPMTPb\nGZ4HPX4Na5mXb2CNtj/AZ0YF5uiFTzGftM/1KTMLQtrjqtJ8LrlmP+F+xTHJe6DtFe9gob935mbm\n0y81+h5y/SbaQRjS2oz2D9ISH8y+Y2eXchCqX5w6cRL0W+fOgb51G/MV1z+yL3L71al7T9pO471T\n2vvJaaOS7x/RovRtml+tmUWnjYfWsIZQ0LewI1rP90nHtPlar2EsXFjAOnulgvOvbG+10cAY3G5j\nfrKxgWOTpuQHqKODAP0K+2eHsm+GSbOHdr+XoljnFqL3ls7nPO485O8Fuz2MRRGtq8OSeDmJfbx9\nK4QQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKIvwjojyOEEEIIIYQQQgghhBBCCCGEEEIIIYQQ\nQgghhBBCCHFHoz+OEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHEHU34bjfAzGw46oP2PGpW\n4YHMSAdBxbmnF+I5lbwJOknGdAX+nUit3sCjjQKPt+ugh/k1pw2NRgK6GeIzBzneM09RZ1mKbc4y\nbJMfgI6CyGlDnud7as/wmfznMkVGbaS+Lwq6nuR3f5pwjXMR6iKn8ffxeCXHfnkw4rE1u+/BI6D9\nBtrD4cU50O3pFuh6owo6iLCj0gTb4PnYZjMzr4K/edROfxbfq38A27A7jkFv7OyCLhLqt7I20Ph6\nOf4Q0dwLfDxeFHu/p0djW7hNcMaf7SNO0Eb3G1ubW6BbSRs0WpoZd6EXBMYUUZXOobv4pMkPmE8+\nNEPb9LIuPi/fpka5oSQdboKOB+jng4Bsx7BNlzd6oOsR2yZeXyVbHaauHW12hqCXp9BnzlSxb7d3\n8R5pij458vD6jAarEXGsQr07wvuZmU3X8D1HMc45NohBjG1sVPhvHvGCRh3bfGgOY11/gH7GzOzy\nNvbblV20j16M79EIsQ1rs/iMo4vof418QkhjmaTUB2a2O8A2tNt4Tn/jBl6QjVDzHCH7s4I1+S0+\nbmaecTv5HI6XJQFzH7Hb3QHt+7OgPSNfRn7EzRXM2q0Z0CnnRTQ/MrqHR8fDEOeDT7aXZa7t+XST\nnG9K5BQ3A0q0OC8LyMd7vuvzGe4rj9vEqR6/J+VRfH0ldPPLOEFfkWf4HpUKxpUiRz9RZJgjFx7O\nyZxy5CAomy975wvct0mKz8xpHhcj9Cvs80ejgfMMnxKrSgXfg23M1Wj3PDYFzRNu83fheEp5VYzv\nXa3iM0J6Bx5LfqbHyeSftBSuIZsKSvKE/cIgwXdLc1qf0fQZp3i8Frr9GfrY52NKqNnXNUKK3d7e\nYxZUMA5HU6tOG+LeTdBJgnaUUJ5Vn8JYX2+TvnUddJpgXM5zdz1feHiP6eXjoP2wtqc+soB2uTRN\n/pXs1JwcyswK/M0PeLGM/RCTqyJXZlG4d1zyPdfXDTENs7CO79Gep/UcdoNl5AuzPs1XWkMmqdsP\nCZ3DOW9EtZeA3oNcm+X0g09GHfBaxcxa9F4cHalkYAHNm9t91BG1caZG8bhkLc1LJjahkmXavqHf\nQ0Os1THecdzn7uPYZFYST/gUp9SEHc5mwvGKpyvbrZlZTg+t0JozSdmn4zMWF9CfjqguFFTwfnOz\nuPY3M1taXgJ989YG3pNc/HaX4noN9fkL6G+5n44eP+i0YauDPnl2lnwb5RLDEeb5KXVuu4X+u0rr\n4u5ux23DNv62sYX1rjGtOVPKVwZjfIdtesZgjGMzGrl1w5jHj2qsQUh5Ga/VCZ+cQhCRE2HnaGZj\neo+CBnA0wrlYoZzh2CGM6c062ijXz511g7l5nB+gHXslsWpf4QRn21vz0qtseegU9v5s2lnucXrC\nS+2y9J1/4xjG2jnfCbwlD/keKFco3ZHiZ5LvME4XuazDy1Y+n4+z5ueXtpHfg96br6F+8en4qWOU\nE9HtOZf8QYDX6t98OXHOee3n8Jzjx7BzP/Mp0j+G1x++h/wxhpXJc+Yd5GQFdy7b6A9g3/+nZDTE\nBMOP9q5NcL4eRmvOPY+e/EugH1rDGso992IexPWyg2u4P+fR/PEoufN8d82QDDFHGfUwH4g8qn9V\n0Fjqtb33xgIf36FkyWAFLRr6hnt8Q5oyXD89d+UK6G9+51XQr751GXQYla1j3Z++Fx5/j3K58QDz\nrpDrFvTiydh9oE/tataxX6YauMDr9zEH4npbPMKxq1FeNQ5o4WxmHcpxUwqQl3N0Lo0a2X2G9pBz\njZb6Ic/cfpj1sS/rtOc/oDrGbQpeBeeTGe1nVfD6VsngR0OqA1ONzp/dvwvZLOP6GI4Z134bNUwu\nxom7f8d1U9674jUABymOoxyOxvQdwGiAPsLMrLF4DHQQYr2s2D2Nz6Cazk6BPvzKFdzvffAYrsVq\n4StOG86ffh10WqDtDjLUF3ZxPmaGtpsX6BxTWpMsLLt1wyjEc7Yy3JMeDnHNNyY/k9H6LyF7GAxx\nT3u76+4NhDTe7AbOnj0Len19HTTXUjY2sB7AlO2ZMU899RToI0eOgH755ZdBv/DCC6Df8573gF5c\nxvg8aFx1nlmfQd/UIHu4Tt+BjQuMz0WOY5XM4PW1Bvr4AxnGSjMzo/rM8sc+APoDkTuf9wszbcw1\nKjXaS6CcanqW6gQle5CDEc7J7W38ZmM4xv68eekWHu/imEaUczklwNLvy7gwSPtgE2oTXBcM6T3f\nfwh96ace+4Rzj7vIT1y4+Qbo/+3pp0H3Ev62D++3OIt73AvzmFtyDdDM7NRdd4E+f/o50E0f+3qq\ninH+xZcxl/zkow+AZj9WPhZITieNRrTXSmv1KuWF822MAXVqc7XiLsZrdE6NzvHrFEc8jG3TBX6j\nsFpD3/b00y+B/rU//G2nDfV5jI9LjSnQ8S5+A5al6Mtm5pZBjyOcVxVqc1Tit7q9vb+j5G8M9h17\nf5LhFMw8KmaVxVHOD33ec6fjfIdKhBP99ibmbo3WIWoDXl/2LUpA3w50dvGeQ9o0XFxcBH3ixAnQ\nm9toW/x9Juevfsm+NW8y5E4xEiV/h1xwMZP7lXK/JMF3rLdxDv/wJx53mnjlPOXAdDyj+dLrYW7X\n6WC+cuT4YdDNJsZPXmuY862YWa1GfmCGvg2l9cdoRHvnE/bZ2J44NJZ9VcLfubnzgq/aew7wWDsx\n/h0EfW7DkPZIBkMcq1Ydv9d/J+h/jhBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghxB2N/jhC\nCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBB3NPrjCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ\nQgghhBBC3NGE73YDzMzi8RB0rToFOqO/4QjDCLXn3jP38Ue/1gQ99gp8RhLj9XkO2vPomSF23Zwd\ndNow1b0Juhlgmy4PMmxDjm1IMtYptiHAfvH9kr91KfA9S7qKzt/zcsuoX5wTym7p3JOv2fuhhY86\nTLENd1fGoO99rzsWm7t9vMe1TdDR9augt2baoFsVHO/VA8ugZ47chW2uo72ZmQ0GXdC3LuMzL7xx\nDvQLV3ZA3xhVQacZ9ovv4fjnnjs2nscWgOcEXgC6Qjo1tFmP5plHFsZjZ2ZWUBM8Hm+njfuLZ184\nA3p1ZRH04UMHQE/PToP2W65tWbOFmvyV0TiyLsh2jLRHvsnyLbw+cNuUJzjngpBsicY9y8i2HMeB\nx0N6hxoFgrDEHzbIB4+H+F7TVbon3SJPMvoB9XCAvmg8Jh9Ptl0N3TYmCZ4z36qArpMvGo4xLkzV\ncexrVbx+qol+ZHMb4+8r19HvmJm9tjkCPaJ5Pj2F45+M8J79m+j7Ol2833wT32l7gO80IJ9vZjZN\nQzHfxr6/du5N0EcexffyApozBcc2fuaEuGVmBftHc9s96R77idnpBdBxMqQz0P4Dmg9BQH7L3PyB\nY1qWYZ/7dJxzu0ljEJT4kZxsIyc/wLHYic10Pb/TJG3mvvekvCp3+m3vv43mfDKj/NPMrLNzG/TG\n1i7oU6fuxXuS3/B9HF9+J+76OEa/YWZ2+/Y66LevXAT9+qsYby9dwuPrNzFPH/Yxbg1HGCPiOHHa\nwCkL222b/ON9d2O+GEQ10FENfdORw8dAr6xijmBmtnrwMOjZ2TnQ9Ro+wxl/egcef48SNzeXLLPB\nvzh/f+95GGcjykeSnHwbdV9UlivTPboY4mytibboO36D/GdOPqE6AzqsoTZz/Wcao6+LKmhX9elZ\n0HEX11qH5jDWP34f5reV3C1LNOtoy+3Fk3hChNcsLOMa8GMP4nxrVfH8uIN+q76M6z8zc3PigH06\nnk4lAsscf0wGQOu5rCR18Cr4zNo0rdcaeH4yRJ+djikGsEvPaaxT1yYpTXeWFgXFV6cf6JbjFN+p\nGeIDkthtQz3Cdsb0Hrz03aK0o0M59sEmdTYNDblOMytZp9JDO/H+Xcf2B9ihHAtCHwfdi2i9WZZz\nFZxD4T2DAO+Zs62SYcUjXouhDkqqYZUI105+wLklvsdUqw660UBD2V7HDQ/enQAAIABJREFUNceI\n1oObW+5aa3llFXRecJ0P12/dAeYn2S285/w0OoWUHMuV65j/mJnVKrSGJP+6s9MDPaacqNXCOJKT\n04gp/+10cH1Yds96Hd/D75IN0lprPKTxJycxjvEd/JK1RrWO4xuneA83f907p2KLi8kms9TNLdMM\nc97hEPNTn977wAL2/fLcPOiIcs2M17mcmJiZT7HK59DlrKn2GdwlnNaSLpzjJbGA8z02v4COT7rn\n3qZX8kOJD55Ue52U3nPg5ds578jXlzyTz3Ge+X1qfoeQ20zrar5dWRsj1nRSxfaGrj90F+15BJzv\n/ODXjcq2hnY66D+ffwnjwsun8fwv/SbGnZ/5G2gMn/8r+JD5g1R/q/4p+onti+fhD37X/5lojTHe\ndD2MgezbPErwy9YtnQzPefk6xqj5Gbzpex7CGFWt07qWFltegHaVp26daNS5hdc4DaU9X4qLvLfF\n+amfk6Py3XwiyDG+N2kBlga4Fl6YwXXvwYUV0I+ePAH65QtY2/rjF19x2nCrtw2aw3+ljmMVUe6X\nUw40P4u1rSLH41s7tHdkZosLuL6OaC09pH0Z7vtxgv2YUe4/pLyqNe3WFAqjPGiEbViaweM+5f5+\njOc7e2hUP0t5vW9mF8kG70uxDlErsN3TtM/XpbVzlOIz2tSGZknNt7JM6wPqqmChZPG7T+D1WkR7\nlDzHK7SXVpQkLLwOTVKMSRVOIGiMymr938uI1rVRdtE5JxnfDXpmCevwRz98P+jx+G3Qv/Fbfwj6\n8IOfBv34sd8H/dD97v7v62/9Z6C/eRbb/dy3vgJ6dQ37/sDxQ6DXDqFhBhXsx1bF9bcHDOPAhctf\nBz300Y94LbxH5yrOjdkp3M8aDAagb93AGGNmVm9gcsdLpcOHsW7PHDyItczf/d3fBT15H8hlbW0N\n9IkTGEcuXkSbmpnBeN3t4np9fgG/2bp544b70BrF6B1s9yDHvu0EmHd0PWwDp9jzLdpbL/n+5Vgd\nx8u4rhyj/91P5JTH3trogM4obs/O0nd4XLg1s24H+3N3HWsTm1exxhLvoA8IKY8LaVD5mVlesvhy\nmrW3/Wf0LUFIdZ8j8/g9zn/+iU+Afs+D6FvNzA6SH/jwE4+APkff8r30NtbcPv7Rj6J+34exTffg\n/t/6Fu55mpkNb6PthlQ3+rH3Hsc2tzAH+/LFa6AHPZzjSeru/zKcpzEZ+SaOr60G1jbvO44+oUp1\n5Erk5nW1Gi/G8Rn9Am1yK0WbreVo93GIPqIZ4fXdbbd+uh2jnW+EOP592tOotfAZc/NHQO9u4T57\nPsY2U2nUzMxGlHfw1nkYTSpK3Nk4ma5TuOGFLK8HS2yZ7uHWe/l7SKTI0U/0aEN36QDaHq+9ysqI\nOfnQIdW9e32017U1XEMeO4q+5dXXXwXt1KS5bOm7czD3aC+HN0f5JnScvxt1riY/srWB/nB1Hn3b\nzhbuQZuZdToY/1anML8Yx1x3xznc6eFYzs7hHA5DNx9F3DjF37bPUd7VbqN99MhHZ7Sv6Xz/zbki\n5UheSR3faeWkeirPs0np6IS6dNnlfElK7e6SzXP99J3wF+fLFSGEEEIIIYQQQgghhBBCCCGEEEII\nIYQQQgghhBBC7Ev0xxFCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhLij0R9HCCGEEEIIIYQQ\nQgghhBBCCCGEEEIIIYQQQgghhBDijiZ8txtgZlZveKAjH3VaVEB7Hh73i9y5Z5ZloEMfX7WoVPGe\nQYDX5wWeT9rz6JnhlNOG3TG2Yf2t86CvXh+ATpKMdAI6pXeqh/QOTgvMiqIo+fV7wb+P4fPzPN/z\nuJEufR7/VGBLnUvouEfju2rYb6vHF0H/0embThPOX9wGHfr43u0m9uXyHPb1wdU26IcX0F5ObNwC\nffvWjtOGc2+8Bfrb53ZBd2JsU9JAm6pOYxtthP3AeKUWgfjOKfhe1QDn3ihP6QY0eDQt/NI/v+Lx\nJxv6gfBKf3589Q9Pg16Ya4F+4NQB0PffewT0wUN43MyssYrjZlXqU5rnnhcZnUDH6QEFzgcvI9vz\n0JbNzLYvvwI6HqM/4zlYIWOMAtTNCr7jTANtsxej8eVuWLDAwxcdDGPQcw00vofXmqCXmthvEdly\nktD8oEYEAb5zWuIuM7omirBNIelqQWNL/To9jfbF/vbNW33QZ7bGTptSHpuI/N/xNdCbV6/jDQZo\nL12KjcsteqcQn9dLXF/G9xjGaF9XL14BPd5GXV1dBu0+Ye9Y57GzMzPjXIQ1T6yJ8fnOplqh+RKi\n3eScb5DOUhxTMzOP8p5iwjj5NB8olTPfozbR/MtytDMzs4yshXPSNKO8iZ2RYyb4A9+vLK/ic7Is\noePY906ctb1zN9Yp+zYz+1f/+ldAf+1rvw/6v/un/wz0Bz/wQWwz9cO1a5dAf/tbfwz6m9942mnD\n2TdeB725uQV60Eff46aw+EOzRvZAU7Yfu56iEnDOyn2HNnTjCq4FlpYWQD/y4feDfvLrXwb9yitn\nnTasrKA/O3QQffKxU/eDfu9Dj4A+eOgI6PkFvB/PE89zbZJtim10ckZ6B8O5MBEUOH8Ciqm5k3SZ\ndUc0xykPG9L8malyjEI9GqMvbNWnsU2VutOGsIZrn1oL51dYx/yi2kCdjjC/8MeboN9/agV0pYZt\nMjObO3gcdHvlPtDx8DboteNo636C67/ty2/g8YDiTImv8w37PqdAkvk4P8IAB4dzmiSh6ynMZIVr\nD81pfEa9gce5jhEE1Gb28WQ/cYrPHLupoPmUf+Zj7Ks62yAtTQZ9fEbFp1iZsQ2XtIHWlVGA1wzJ\nR28l2Oa1KeyXKrUxxKWFpZk7tym1sZzWrcXIuWTfMNXCdVEYcV5HhpXx+tO9Z8B1vYCLB5wT7b3e\nGw1wANIY13oco83MhkO8JqJB5vmR0KS9fB19463NLuilefSNQUnMIDfhxOGZOfR1UXAZL6Aazd2n\njoIejnBSX7iB9zMzO7w2D9ov0D9ubvVAVys4YXZ2qf5FY1Whse313ckypvVcQGuHahXXATHlWGmK\nz+z3h6BDanM1IGdqZqMRtotzxYAcEa81mIwS3tGY7p+7652CxnNMdb+lOYzP9584BjriuJPSPOB1\nREnhJAypfu4k0c4l+wv2V3u7Jvd4WW7IxVfOp5170g90z4JimAV8/wltNDOP70nP9OgaJ0Vx3nuC\nZlPjdyjDXcDv3Sh+pvOMvc/3uB5NZfjSZ/A1E/8ZMmzD7Bw9MsLjcVnh8I6E1smUA7/xFvrDf/4/\n4glPP43x+Wf/Sxzc93wYz49aZfPwnbTze9gvXf//wckMa/nPZTXQ7APYb21vbhoTUuz2pjAP+r0z\nOM4Nsvf3PMhtwDYWIeUTXXf/LadY63PNxnGXvFbizS18J6cOyX7KzPFVkWFOUqdrdjPMs31ax7Ri\ntP8PHDkE+tSxg04Tnn8Da0d/+NyLoHOP9p3HmC/Ua/jMkPpxSHlYrepu6OUp5jQ7XdROak5FuPGI\ncqIYn1nQ/nwtdNuwTHu6UYHvNRqgTX1nC3WNv1ugPCuksS4LbSEFwHob27RSwWfe9rE+c73Pz8B+\naZFRTzVxHpmZebu0jqJvJfLL+3chG9I6JKA5zfk971n2EndvIJ2058dBzkMdBNj/nBby/evFq04b\nzr2G/m/52CnQH3z886D9HNcUX/3OBujNdayXFYfQJoJi3WlDb/g86MsB+qbtu7CGd3QWv49YWsT3\nHOQ4NlzzWaA6pJnZiRGeE1/EWmR3Cdd8XoxrwnAXz/cqeH5Bey5x7BbMItq35j3iI0eOgH7ooYdA\nX7hwgZ6B/pjXYryeM3PXyj/8wz8Mensb66OPPIJ7A/ffj/XUl19+GXRCdZEwx/0MM7Mu7cs0aK6d\nnMd5cmlARbiMPOj1N0F6M/i9zLDltuHWiOJEG+szcYJ1jf3E25dxjo4HaLsJxfkt+i6gjJji8HAT\n79G5hX4lIt+Wc1Sk/CenuM/1EzMzLs1SKdJZ9h6jfbIff/zjoD/zcdQPfOTDoMOwZMFw9Ryes7QE\n+qf/9t8BffKPvg7683/tp0H7HYohMfbzSujmlucL9D2PfuwxvOfOSdBnn38B9OwU5QYex62S7x0Y\nXko7roj3oKnmy/UzykVS8hmRszg3833M4xKn2VT3yzFuhB7m3Lc2MBZagt/6PXDPjNOGcxvoVzpD\nHJsgwr6enVsFPTOPe7fDAa4TkhjfOyupB/Q6nJvQN7G0f7Hf8IzXZ7wHwXUjLvyU3HNCqYkv4W+3\nshTXrTF911Sto+15tHnG3yWbmY0pHxjRpt3uLtoib81MNfGZDdpU3O1gm3d2MFdYXKBilZn5ExxB\nTn6APSrv7fDamn3R9Wu4B3L3sY+Avnz5ktPGjGr7Pk2IzR38jnini/3A3z+0pzD/CGhdXDgF2sm0\nqE6ytIjfOm9u4N4N55Y+tZHX1TwOZaWtSZ+sFRO+8XCmkTNn9v4qhGNE+Uno28b07Xy3PzmXYfQ/\nRwghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ4o5GfxwhhBBCCCGEEEIIIYQQQgghhBBCCCGE\nEEIIIYQQQog7Gv1xhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh7mjCd7sBZmZegH+jURQe\nnZGDygrURVFyU7pHQdfUQnxmVqD2fWpTjtebl4EMw8BpQjC/BHqU4PH41mvYhrwLOknwgpza4Hvc\nb25H5Dn+RpeY51Ff0y34nh4dp14pbUNh+Awe3cJ5KN51ajzE43WUf/DKTdBbXepoM2vVa6AzeuT6\nMEV9dQf02Vs90NfiKuj3P3IU9JsvbThtuHhuAHqQV0B3xtiGVoA2Nu6PQXNXe+7gOW1wwdHwyR5q\nAb7nOItRe9TXIT7Tj0psEl/LsY8ieCftvnO5vN4Hvb45Qn0L/cC165ugH/0A2qKZ2X0R2lKjtQLa\ni+gCH+eD51EoYH/H5GiLWX/dOeW1Z58Dvb6J7z0YoS159MypCtpFq4ZtrETks8doWNsDbKOZ2a3O\n3j51ro5+/IHlFugGtSGK8HxuY3+Eczrz8Z1ydkRmVqd7jskvmOHxSoA6IN1oosO8sYH28+ZtHJes\n5E8mWxW8J3vYt69eB+2HbdAz003Q9QT968octnGBumWj5/r0K9s4vrsDPOfq27dA3z5/BvSh5QdB\nexyZ2H9SXHL0OzqHYjb5bI6Ndzoe2XuWYn9EIc6XOInpOPo1M7OcAkgUoXNLUpwvPB/GMdqNT8/I\nadyznOefWURxMaAclv1KQf3Q7+Mc7Oxuo+6g7vVwjpqZpfSebDvVKvr4egPn4PTMDOipqWnQjTqe\nPxxi/mJmdubMq6AvXr4M+vkXngfNafKzT/8x6N/76ldAX796DfQ4decc5w9Ozkvnc9xIM87t8Xi7\niY0OS3KaOMbfajVKUukReYrnD4do9+kQc4BWFd9iZX7KaUOrgedsbmJe3LiONrt+6wboN87geuTe\nB94L+vFPPgH67nvRf5qZNRoYL31/73XYfiJN914zcm4d4nBYwYsrM5uJcI53U7RFN15gG8YJnu9X\n0VfWZnGNWnBybmZhaxl/yM+jjCnvuol2V2tTDkVrsbiDfuXAKdeuDj38SdC+z/4Xdb01B/rg+z4N\nuqAJObx9Ae9X4YTZLBhjb6eUKHnO+NH5NOeLHI8PyL0GVTcRa9IcD3yMn0WKY5GiWzEKUzamOklC\n75gn7nyNaF1ao66qUMimMGUpPbPqU30npnnillZ4pWs5za3bI3zRgCbKVIXWqU5dBHVQVimja9IC\nG5qXxKr9QrPZwB8cP4+HkzHm5lnm5lS1OsZMz+P5hednFLfTDO1yNMJ1dRLjZAh819/6NEFoylpA\nhrC+sQV6OMT3nJvCd5proZ9qVV3Dmmpj3mXVWZBHDh8Cvb2NuWJBfbu8sgB6QI6mUnP9TK2C7dra\n2QWdUo4VUVwf0jO2dzCfWZjFXDMtWQePE8rjydfVG9i3MTmawQDHfzjGvL/m4XyNk47Thl6/S7+Q\nv0xxvHm946wpyabHVNscDt3aTuDhe4Vkt3etYXxeW8GY7huvwfB+XOsOQzf2OZkGranYf+472Few\nM5q0cC87zr+R7TjP5D5m7dyPNAfBkrjK1/B+gbM147SJ28zvxP3GNRa3owrKYVKuH1MoCcl9+vye\nFadwvncbeb0XlgwmvbfbTxTLuN/In1ZaVNMLnQvcNvwFYDTG9/7q76NxvPUW9tvf/1nst8/+VTfO\ntBapXsD7D26y+Q5aeudyMsG9q2/5mD9kNGHGY7fOzvghrvnGtGbMaP58+UWMq7UC60AnPoD1j5Ry\nu1EP68vfhfeN994/dfZG+W68R+LEfneO5mQ7nC/UPcwHOuTbujn2S5LhYqs1xHeYarpt+KH34Pp6\nZQ778huncd9ml+p+jSbmsIMhjn9M+zBZyXzp7GJuNh5w3YHWiFS3iCk35DZUq1TzHVAQMbOEcnXf\nw3scWsT66AymrGaGba5QfOUwEpYkSfxLPcJ1VUB7xN4OBrcwpnp6hu/QpEDTmqWik5kFp3D8R9/G\nvbx8112r7Rdi+saiTsULrtlxbTmquOu3POZ1C9eb0W44vIScW/NxSmgCo+8jzOzs638E+ujDWMv1\nfVpTUE7zvvuxfjZ7L+4/zNF6bbjrrlvqVDuaS/AeqYd7hC9dnwd96CA+Y3qW+pq+wZlqYIwxM5vP\n8BkVH2Nb9DbOl+05fO/bGbZ5uou6UcHRqVRL6oZUU+D19xe+8AXQGdkHa/4uiCn7Bodj9Be/+EXQ\nvJfE93j66af3bMPHPvEYaLeKbBaOcCyiCtmHh2vtzghj/gzVNdIm7ePRrjTXaszMDi3h+BYFnlNt\nYRv3E70d7K9kRKNE9bSZNtrykD9gM7OCarVc8+S9tYR8YzrBlnkhxXuzf3ISKI6zXN944v3vAf2X\nH/sh0AeWMB5GHuYO7veJZt6xe0Ent94GfWQRfdsXXn8L9MmLGHOPF1QX2sHvK751+mWnDf/qqZdA\n3/Pg/aB/5KMfBr320EOgH6R99DfOnQPdpXqaG7nc/T6G62GsnW/B6Lskj2qAmbO4N4sN36NPNhcn\neI9GhHle4GEc2eng2Nwavw46abnrn8YY86xejO2s0R7Y9Mwi6GYLk82ANkFGlOfnuRv7Bn0cL98n\n/xi6OfG+gnJfzuX2/srYLfGVXTNhy88qEe3xdXFdGoWY74f0HV+aTd438cgncqy/eRP3+QdD9FW8\nzuV+6vUwtzt/AfdK7zp00GlTvc72SH1PHcf7sbxOLpy6Odr25m3cc+Yc+vp1zCXMzGansI0JrSk7\nO7gfEPC3e/y9Yhvjhk/5h1+UZUUIj0Wtin5kaRH9xLXrmK+MRjj2vE/jfMY+4XvuPzmLNO2dTjrf\n+eh8wve9XCMpPWnve3Ce0B9x7JrMft/SEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHEPkd/\nHCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCiDsa/XGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ\nQgghhBBCCCHuaPTHEUIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEuKMJ3+0GmJl5RQQ6iQeo\nMzweVlAXJX/jkaU5ai/Da8ICNN8hy/D6PE1Qe3i9R9rMzAsroNvLC6CPvu8e0G888xLouJPiM3N6\npnmgC7cJZhPOwaOTyQvsF6P7FeWN2PMc1pV4jBckMcg3B3h+M0B9eBbtw8xsvYfj34uxbwM6f3Wm\nDvpHP/cR0A985BHQ3c4I23D8lNOGr/27J0G/duZN0PU6PrPWQB1n+A48mIXt3a9/chLioQX4pD0f\nXUTN0KYTw3lhNBZeyZ9feWRCfIr3/RrlHcZghLY3It80ItvsDbGPE/JtZmbVWg30ffNLoMPaIbzA\nb6D2mqiLTdL0zBztPRsOnTZdvXIL9NZmB3RAhrA9xHk+Xcd5PFVBSwlD1BtdbNO5TdRmZjvYtZbT\na13t4wmdGE+Ya1dB330X9uNciuOw00NfNqC4wvPNzCygnwqek3ScY1WL/EiFbONWZwN0j/yreewN\nzaIA+5qmufV62Nfh9CLoZkD9WMVntBrYrwm9U5lL6AxprAb4HlvbfdC3rl0DfSgnYyBf5wZUJ9g5\nbSqMfXTmnINMOn6HU3CetLctBzQGZbGgcKyB7jkxL0Jb5jalKdpFmpGdmNnu9hboq1cugT595mXQ\nFy9cAH3pIp6/sX4TdLfbAx3HNEfNLCPnFVK3hAHOsVoNY3eriT5/Zg7n7Oqho6CH7CfM7Myrr4Me\njfCcX/3VXwP9737tV0BvXnsb9JimQ05jGfiuQVSigM7B4wEbERlE6OMFKcXXJMHrq/wAM8voHn6I\n/iyitUAlwjYkI1zzXHjzPOjcw1jYnmo5bfAKtNOM4mm1wGcsLy+DfuMl9Jd/8JXfAP313/0K6Pc+\n8qjThk8+/gToDz/2MdCtqbZzzX4hJruJaE1I09E4na9y4Dc3JLXJblqks4xzJHxoY2UN9NTBB0FX\nWugDzMz8ygzo6PKroLdurIMeDNDOGv1pvB/N6Xp7FvTsMdeuGvPoi9LOLujxDrYhG6D/DNtToGcO\nHAcdUEJTD918NhtiHsX5a57SupX8c5Hjeycj8t8Rjl192l3H+pRH+QEaUTqm41Qz4KV1F6e8FRme\nX3WbYMkYz+HVSFHF9xiMqG9pHiTUphq6TktLUqSkwL7sk4/e6KM+ME31H1730viPUzzepOWSmVlc\n4HvS8sSyfP8uZJ1aA+XrowHOn63NHdDVOg2ymXkcQ33OFSfUskiPhyM6zvUSF5ouVgnQAU9TznTq\nENb0xrR2Hya01h9jTL52G/NIM7NDPfSfMxWMmbPT6MtOHL8LdG8XfWNrCvs68LGeMOi7dtqhNsS0\nDg4DzGfqNaof+LQ26+J7nr2Ia7HleYwBZu74Nhrof4sJeRuXSTIKuCPKubjWZWaWFxzDyUapwOVx\nfur4GXR+KdWVb9/GmomZWb2G7ZptY+537NBB0LUK9pNHNszrgjDiuejaQ8GFkhz7Mitz0vsIp47p\n1GjoOJ1flKxbnLWtTwbv+D++597PcNrMRRu3zGMF56B8zoQ2OpqvJ10k2Mg3zrpt+vIZfOYb25Tz\n0vkrM3j84w/iMx57DNvYINflBJJJfWDm2INHne+WIOgXcj0ea/eJwtw9jnOXMO780/8ex+HKFTeh\n/Vs/S7XJA3vvYe3ewNFYOTmxmXcUh/Iu6BbVv7o5GmdAcTiKsP5sZpbR/sGI8okKrVO3yY/8h9N4\n/CfmML+cW8KFTEFx1cydk045l2ZZxce4mFJ9JScdFVxXdPOJlGvO1AjHZSe4Z/Lkty+BvnAB64af\n+chHQd8funlVQnWgw6uYPxjtR33r7GnQ022sEeQpjvf5ty/TE926YV7gb5xHcS7X7+P5Ba06FxZx\ngcZ7Q4OBW8OtUl7FKcw07fW0yGZvUu4+TTlsHKMNRqFbN8xp3VSt4jPzHPPsKyl9K0HxOvRxHjQo\n12t6mBuameXPoT0UN7AjgnbJ4nefwPtvvEZI6XhCewO1Ko6PmVma4D04neAUKadnJlSkqZFNFLRO\nGfTd/eCUcvr2DNbw0hj9pxfiM0+u4Nq5Qt+ifPs5fO/OjXudNhzzHwD9Uy20/2dfeRZ0N8N1a9pH\nv9Qfo59hd35l143b7z2Ca6XFNfRduzexH7o9igF17OuE9r2bVMdYWVlx2pBQgSuntdR4jMd5/4nr\nHn8aOE8ajfA9uE2sJxH66JdOrh52ztmYwvHt3cT3vopph2UB17Jp7jWwDtJqofbMzfVmGzgPxtsY\nX7fC/buOHfUo5qZoE/PLuBBaWEF94zL2lZnZ6ir2eXTXHOjb17Hud+0t1L1dbFNG9WeumedlVTtn\neuAPUQXn6I0A49mru7hXkNP3EQtXcb8jbLoxNJs/AtqPKY5cuoT3nMaa3rmrV0GvLaHfevb1c6B/\n8Q+ec9rw9jrugbx+FWts33n5NdB/72/+FOi/8lN/DfSvfunfgm7U8b3HsZtjZ/ne84druhwMc8qA\nY9rPSmOKx1wEMbOYfFef9lnGpGv0rd/2EHOoMzeeBz2MboMepVxAMBumvAmNkveD6+TLfKqvjpOE\nNPZzNXTbEPg0XmOcv37ofh+1r+CaDB3m9d47CbP8bcmka0KquW1s4ZqhWqeYRWvpwEfDKf+kk/bj\nyP6vX78Bep38xFRr7/ye1ygXL10Efe89dzvXHD1yBLRP78WDwd95TGJA+wlD2u8dDjHXGPbd2NWq\nYd92ac+jUsHjOz3MFbMc32mKvm3wvb2/SykNZbzHRSdNt/EZy0v4DcfuDr5nTnlewYuRgvcz3EZl\njtHRHNj78Pedv3Iby75j9nj/0fn2Gc9332Ey+p8jhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ\nQghxR6M/jhBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghxB2N/jhCCCGEEEIIIYQQQgghhBBC\nCCGEEEIIIYQQQgghhBB3NOG73QAzs9CrgfajIZ1R4PlBBDqJM+eeaZbSHXLQGUrz/QB0jo+0lH6o\n1augPY9uaGaFt3e7lw6vgd64tg76+voNvB+32bDNXsnfulR8usjzQKZ0TUF9nQekqR+5TXz9n1xE\n7cQ2eBmOXxSPQG+kePxAqwL63rvaoJ+7tOM0YZxiI2o+tuHEAo7nT/7Eh0AfOXkA9K//y98E/eL5\nTdCPfOhupw0z2Eybq6PuBziezQa2qb/TB+3TcHPPl4yEGff93ofNJ3up+GjDEdlg7ONTi9RthZfi\nPevkhioeju9+Iy+wT9g2U+qzJMX58OLr6BfMzFpNtJXVo4dBL8yeAu1Fs6CLoIk39HBcLY1RZwOQ\nQYh2YWZWb+A4hmRbbHsF9UtE9p0k6AeubeB8WN/FuDH2XH/ohfRZu1axAAAgAElEQVRbjn0fZ3j8\nzR187+9c3gZ9eAUn9cwUTupWFds4GuD94sSNXU6raaJTWDGPnHClgmNRqZEfGWFs5C6pvIO/mYyp\n33hsR9vXQHc8fM8ja2hvOVnDYIxtHMeozcyaVfQbyRDP6Y+xr3MO6uwhnWDGMZ1iHwc2M/MKHk/S\nhWP1zj32E9znPMf5OPvGwHMiFKcwVhQ8LngPPj8I0L4H/Q7ol156DvSFc685bXj1lRdBP/PMC6C3\nOz1sgxN3qc3F3jHA7YWyeI+/cOwOeuizNzYwT/IvXgH9zDefBx2X+IWYE2niwrmLoCuUT1adNuP1\nIb157roBS1LXh8I96aYexQWP7CFw4g47XLcfwgr6fc712QgLiq8h5U23d/CdqpQS1SO333d3u6AT\nH9vUffEN0KtvYx7RruF75QvToJtT6LNrAa/TzP6P//1/Bv2Np58E/Q//0X+LbVhZdu5xpxLQGFYC\nnuM45tUgJV1yUwqsNYovRc7+Eo9XplqgGysP4f1WHgXtVWmRYmYBNWzqCK6Nxhn6y5CmY5aMQVeb\nuO5dPHACdHPxuNOG8RBtu/cW+t+t534bdOUw2lXt7ntRt+awjfMroL2ds04b/FoDz8nJr4zJeSU4\nP/IcOyZOaGzbtNaquLlB4KQP5AfIHycZXrDVwTnuUx5XCSlel7j3Xox5V72B1+z28aIqrykzegb5\nRi/nPMyNfjnFx6s7+F4Ncr+1Cq05q7zGwvOrER5Pc9fns4v3KabPzezff3skTRLQ/R7mOxcpl+j1\ncQ27sDjv3JNrcAGte4IQ7S6jGl+aoo5j9DucY3meW/7k3IBzqimKgSuri9gmMqT+ENcgPr3TTg/X\nh2Zmb771FujjJ/Ca8YjuSTFhqoX11GRM6+IBPrNT0obNbfK3tG5dWsT3zimfaVMbhgNsQ6eL+hY9\nz8ysID/gUzxtNNAfj2Lu+xEd5/UgxWfPTS5pOWIJrSmjCJ2AYz/swul4luE82tnG+oKZWdLAvrz7\nMNYiVxcwllWruN73Q0weOYaEVHdM0pJ+oNw/pHsWBc61fQeHIHbtfJxrXVy0KbsHDwzXdwNeh/Az\nvs828mKr9Bp6Jhd6KOd17smPoNj/4mk8/F//jttPb3ZxnuYTaib8yC+dxpf6W5fR7/9X/wXlBqt0\nfx6X0jydNE5ZZ/w5pfECXqPS8ZJHisnsdNB2vvCLiXPOaIiD93d/Du0lof2KX/oFPP4LX/iztPAH\nj/kc4+ZyjvnBRkzxhPxS5AQ9syjkvAp1TMPi0b7leoFj9NvP4AU/8hDW8NpYuviPd8U2UDu52dUK\n5hdV2pcaxLhf26gtgc4K19ayGPcJx7R3/dyZS6C/9crboP/D118CfY32jF94HmuV/9M//PtOG5Zb\n2A8J5T2rC7g+fx/tUczM4Xo9DBZAf+OZXwbth24/zOMlFtN6Ih/jeOdU11g8hA6Wc5iU9tTabRzL\nsmt6PcrtaL3Boa7bxXkxN4d7alzbzjK3TlmhNjj789SG27Q/5flcR0RNW8xW3XZzu4zy4oL6rthx\n63z7hWoF53SScc0O+2tAa4rpyN33DH32MzjuvKfB9emM8u88QhuoVnFUpxY+6bTh0dpl0EmM6/PR\nAP1GHmH+vtvF93zuKZyfN6+jHa5M4d6CmdlGFfcAN8nJV/voC1uNLdA17y683wj7IaCauDfCNpuZ\n3djGPY54nZ4xwL4/QPva/ngXdL+NdYucYkR74BbMOl18b4/3AijwhDTn77nnHtBnzpzZ8/p3g8U5\nDLiPPHyvc87tDYzRv/Tsb4A+cep+0C36YCajeZTx3mET58VcG2u6ZmYvncX4eOnCOWzDcfxuYj+x\nvIq22qxiDF09jLad0Fqt3aRvQMxsfhnHiL8P8/k7Eppvl8dUR+xTLHLWQe5KyKcNO+dbPqrzrG+i\n3+nRtwZ98uktignjbbdetnEN9yPCA7iHcfQE5kzHr2Be9yv/9l+C/jrVfN6+gXt1N7dxLpmZefxB\nGO03XLx0CfT/+ouYp+10MUYcP/kA6P/mH+Acv3YdY4iZ2Ze+/DXQux1sZ6OOfcv10KJAPYypTp+j\nfXiem1PVa5Snj7hWjXEioJpG1EKfXxRYmwxpjyQbum3IU/7GZm8fzzlAQvOis4txKab7z7Xp+y0z\nG44wpvf6+F7+cJ/X7Hi9N7GmMrnK4nx7xd8ScOEmp7r3LvqOehP3Kfl+/CEy7/d+9yJeW9O3VEOq\ntW/cBl2p4HqP2xBFOJ+6tNdz9q03nSatreI9G80WncF7MfQdiF9WZPt/iQeY13GsunkT33FnE7WZ\n2ZuUR33qc7h+P3fxEuhOF/1AtYY+eqqFsZB9m2MbJbg1Ceyneh2fubyE9nPjJvrkmHLugmJCzk0q\n2Wv1uN46YY9s8mvufYJ7tOz7ngl963wc9f3nyPt391YIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBC\nCCGEEH8h0B9HCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDijkZ/HCGEEEIIIYQQQgghhBBC\nCCGEEEIIIYQQQgghhBBCiDua8N1ugJlZFOHfaBQ+NqvwAtBJnoEOwrLXKEDFaQza9zw8u8Dzm9Uq\n6EGR4+3p+qhScVrgBXhPz/CaLMN7Lh09CDp89VW84WgE0veo3+idzczoEWZFCjKv4DVFSP2So84T\nfgAddx5o5nGzCmx3LR6DHuZ4j5UG9u3nH78X9O+/cAn0Vh/f0cysis20h5ZwfP/6X/4A6KW75kD/\n+he/DPqp05ugo0YL9NGDJ5w2zNfwvee2roH+rfM4voPtHug8d8cXobEsO7/YU5aMFdlwgR3p859X\n0fVBHhjT8hqg62EN7/mD4Zb+3GjV8P3Wd3BSpR76t4zmYLGDdmJm9vwZtKWH3ncZ9PzJbdBe7QBq\nv4k39HFMiqyL548HeLrv+r/ZOZwTOfnQNMH39Mh4dvvYL4Mh6hu76NMjMrUwiJw2VTJ8RpZSm8iv\nj6nv39jA976xjfrEgTboahXH2u9jm73CnaP8E89JjlUMx1Pfx3eIM+z3akDHx67/zHO8J3WjzZFN\nW4b3iBPUs020l2GMx3tD7CceJzOzqTreIwyxjXGKjUwozlg2RB2gXyooVrJ9GucEZb9RrmIUs62g\n4/sMttWAAkZOx8MAJ3FR0sc+3YPP4dxu/eZV0M88/STol198Ds9fvw76wlsXnDZsbWFsZvvlOUhN\nMqPYPBo7kXjv680sY1/GKSrZFvc135LndEYP5evN3BzD47yazo8pX4zpnk4OS5LH1syMpr1VyJ9F\n9GLNEDtqmKAufM5Z8AEBBxozi8j9BdTwWoD20ayh75qdwvjb72OML1KMZQdorWBmNjM7Bfry2zdB\nV6mjdnsYu8Yj9I/ve999oA+fOgX6+ts3nDZcb2Neffo7T4O+8NbroO+55x7nHncqoZEd0XHPQxuo\nRXg+25CZuQk2hxeP8osG5m3B1DLo4QBzqPzN38PzPdffRm20tQrpmRN7r88Hndugqw3MkRaPfwS0\nH6ANmZkNO2hrg/EtPH4b8998jXLP3XW8IY1FWKVcMd5w2lCklC/kNEcTyi/INw5j9EvVKdTNNuow\ncsciHeNveYya88nhkOIQWSUv36KI8l83FbR6DX+sV/Ge4zHeteqkhng+mazllHOnXHMws216BnWD\nzdbwh5BcNrl8q9DaPPDpnUrStGYDbxIneI9WVBK09wm727ugr1y5AvrlV8+DrlA9LSnJ58MQ52CV\nampVspM4QcOIaZDylOqEVEcMAjeO83xwrqHcIAyollWtg240cU3BOVS97vq69U1ca186/xbowRjX\nRptbHdDTU9iG0bCP1/dQ7/TIb5nZdgdzg5ubmO+OUnzvVarpzbTwvZOE82Psxy7lImZmPvVtZjy/\n0CCaDXzmpo82ykl0QuvgsvpaRudw/ulTrbpSwfdqNDAnG8UYMwIK6NWKa5PNGs6Lu48cAl2jucVr\n0CLDecL5bWbs5N1+iCr4DJ9qKynV1/cdtKYo9l4imE06XnYOF3qobuPec9Lx779NvLwq+BncxrKF\n6fceJtPa3cTz/8XTeL+zXTfQTqp6Tzq/R8nBLz+Dz3j/gziHP/15Wns7fqHknTl3p70fPu50W0hx\ngcqxVbe8Kv4UDEZu3vHL/xqN1PfRtw1SHKxf+1X0db/whf9EjfsBoTLCWH+qjvnF6RzXb+OY+8+d\nHxwX3Togad7LquC4XezgGP3B6WnQn34Y15xmZjMtfEazsgg6zfE90hRjdb2Ca8pmMAs68DDvSlPs\nRzOzZoTPfOr0GdD/7F98BTTXy3Y7eM+M1tqvnMVc8StPPem04Wc+9TjosIP5QTKF/XRwaQ10TnXx\ni5u4t3T83gdB19qYl5mZNaYoGJHJ+NSXGdlHtYn5SBChPXi0H+WHbp4dci2e9p1H514CvX3jbdAr\nK1hbmZ2dAd3ZpT2zkkDWosUvr5PiGANHjXLiJuXRFSpR1OiZVae2aZZTbucFtL9Ysk7aL1R5XUpr\nSt53SqjInqVuvhLSmKQJ+0ccwyTF4yPyp2Nag9QpkatNHXHaUKdiYjw8B3qH1u9VD231YBsN6Z7P\nos+4fg3rcetfx/ubmb14DdeVN+njkXsP4zM3h+hPK1WcX+kY97SrdTTutKRWtZVhGz78xCOgr3z7\nKdCdTfyuozfCZ7zYRXt5u4Nz5diRY04bXjrzGuhWC9eEp6iuvrGBtcflZeyHfh/X750OxudajQol\nZjYc4ni2WhjL+J5bW1ugZ2bQt/G+HqfIufOhkNm1G1iDTUbYpuU2PmN1Ed87cvwQBg0+XJSk6Qtt\n7PtN0nGZEe0TmjM45pyDvX0dx3x6Dvtm5ciCc8+tbbSbnPylN8BcuV6hvTnnWwV6AKXrZZ8+uN9D\n7P1vPmfkj69fvQR6a4C+8aNHV/E42a2Z2Ze/9Tzoc7tfA/13/+ZfB334HvyGrffvcR/m9ddxf6NN\nuUWl5i4IQ1rb1Gq4iNzuor+9cQuf8Qtf/Degf+yTj4H+2z/9k6CTsVs3bDbQP/6f/+bXQR9YWwLd\n62Ff5pSDDWL6jjPhPW03/o5pf6HbxdpiRnO8lWCsrFY4/yFflmGuGZbsTwS29/cAbNjxGOdRTHtF\ngw6OXZrgvOoP3Popf1+V0abHuOz7lX2Eu9dFNbwJpa2yOs+Ecpfz/UNnB2N5TPY8tUCFHsL5HqLk\n+ZN2mUL6Ppr3Pfi7PI/W7/Nz86ArlF9cuYLf15iZ3VzHWH/sGMYe/naZOz/3aW+c9qVHffTRMdX4\nrl3Db3iufPtJp41XN3Dd2hnhfDly4ijozQ3MDes12utp4Fj6tNbKaa3O64DvQnUPWvdGtM6dm8Pv\nlJeX0b92drGfuMbhk/ss/RqNxsb9ZtHbQ022z5KviibeoZiQGEz6DumdoP85QgghhBBCCCGEEEII\nIYQQQgghhBBCCCGEEEIIIYQQdzT64wghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQtzR6I8j\nhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQghxRxO+2w0wM/Mr+DcaeeGBTizF870IdJbjcTOz\ngv7sIwoCukeBJ3h4vChyfEaW4ek5np/j4f94Fag0S/AZdE2tPQV65ehB0J3tLrbBw36iNzIzszjA\njvAjHPKC2sh9meMjjIbGPJtwQknLfOrbsMB+mYrwHp97/EHQb+90QF++tgs6KumJR5YroP/Gjz4M\n+sB9J0A/9Zt/APprZzZA76TYxuUq2sNU023DxYvXsJ11tOOjB1ugL6zje2Yp9lvBJkxdn+d4/nd/\nQ13QeOU0L2ioLDNqAz0zCPCHtjWcNjSDNl7jk03yi+0zlmbRFm9sjUCn/PrOnHLH9dbWAPSZMxdA\nv+exLdC1qTHewMc2WVCnJ5CvGQ3petcHV8n3ZGR8V3exDdtDvMc0+YG1Fs6XNMeOSuj+3YTe0cwy\neo8GxQWPfEdMXT+kOXh5owf6+MFp0K062naF41KJu0wzmmPU5qiC96yFqL2C5zD5eLp/RHPWKwlm\n/WzvObk9pGemeI+1JrZxoYX2do36sTfAmLDQrjrPbLfRRocJ2dc22ujWbfTh+RjjRlBD++L4XThx\npaRPCr6G8gZDe3Oc+D4jpbwppPmWZTjnvQDHIEnQDszMArL39fWroL/1zSdB/+Hv/g7oM6++Bfrh\nh+4HPT2FMSt2m2CFh/brV1An5HtC8o88Bz2PcmB6Xpy6Pr+ge+TkD1nTFLVsgu1xPuHavzn2O8ma\nnRk0YUqxe8xK8kteL+R8VYR9O2B/GuLxlGJhUUHfE9QoVppZFNK8pliUGV6T0TPGIzSy29sYz43W\nDn7hxrYDh5ZBz8/iemI46INmP3/i5GHQh09iTtzZvA16dQljnZlZ98gK6K2NbdBJ4trxfsH3iz11\njezQ2Bc61u6uZXJap/J6Lmgsgk68Gbxh7xbIYoh5oRe4JYHs+jl8Zn0edG3tAdBhDe0uaqHv43wm\nHmOcjodop2Zmw85N0KNsB/XSAmiPYkTRRdv1q3g8DCjnitx8I6A5ng9x/vg0vnGf7CHC2Naew/PD\nkHLosqU05WG0dLZhQr6MawwhXU/38+mZ9ar772dUArymP8JzWpETaPB6dp/0CF7/DDgJN7NbfRyL\nlRaOX7PKPp6aRJ1brZBNJtiIesONbD51VkBxpPA5n9w/nD93HvQbb14CffnqJuhGA+dTFLl9055G\nvzEzg3WCqEpxmZKHLKXaFeWenNDEsRuLeP1X+HiP7R2swXEeV6WaTjLGNrGN9Eex04aC1hDr6+j7\n1jfQ9/WH6AR6U7guGowwVxiP8ZmjsWvbuz28JvApVtElBWWsOx1cW6WU54fkn6ema04bBn3MgXLK\nkdkfpwN8L15bpOQMJ+WeZURVygWpX6p0PGTHM8I2RBSHlhZnnWeePLQG+vAa5nkVp85Cay6qr+U8\ndjwNOPE3szTBvqXUxnzKZfYdHAZZB1wIpQ4q6x7nGjrOqdjENny/57sGz/smE+/J+wFkS71dPOGX\nn8LjT97gWtefP7tjnB9f/Cq28YMfwpeePU43KGvkpIZzYsV9T/06fxCPryzjCTcwvIo/A70B2uAv\n/TKtV2ioxuP9u4Y1MysyjP1Hx5jr2Q4ev7CJ67eE1nNmZq0ZjFn1OuZyUYh5U1TFfKBex7haqaF+\ncYQ5TyWac9rw2YdxP63mYTtrEe6/5QXlFwme79FaPBljXlaNaO1tZv0R1rm//NTLoDe28XizSbXI\nsmLk97aB4vRTp19zzvns4x8B3e5Rnsz7D1RnzwvMy/oJrcXn8PyE6gFmZnkD85xWC/tqisZ/uY73\nDGdwfOuUdyUB2tcgd9cbzv451exub66Dbg8wp63UsY2c+9XrOHa8VjAzC8i5VLmOSLndZ2kf+/e3\n8R1O4FaiNShnDsu+U6C1WEE1eOM27SO47l6p4LuPMlqf0XiVzUdOn5OE9oCo1pQkGG8GY6rtkhzQ\ntwehW6Kx9U2s8/W2nsE2FFTfSrDmtkCvlWW47j11COu851ddX/dbL+C+jH8IbfeJu/H89zbeh+e3\nD4C+eh2v92ho/LykI6YPgVz52I+B7vSxc2899XXQuY8+Px+g79vZQXtpzGD91czMIqyTnziFL/6Z\nz3wK9Ne+9jXQx49jAvq5z30O9LPPPgt6bQ3Xi2Zmp0+fBv3EE0+A7vdx/H/+539+z/Onp2mfu4W+\n7pvPnnHasNvFZ4xj7NtOB21s2CdnRnMvJ831uGrNrSmMKLcJQ5wHmfPxxf5h/Rr2L/sujk+bt9HW\nF5YwPzIz69Aee5vi8soqfsO2c4vsgsaQY7JTiiipifsUI524TkO6deMS6N4ivnefaug7bcxV5lfd\nvYF+H/O2N86h7/vn/8sXQP/kj38W9Cc//jjoM2fPgp5bxTm9sIT5tJnZt5/6Y9Af/+BDoL/zne+A\nfvX8ZdC7O7gX9NQ3vw16eQF9/Mc/8gGnDU988mOgn3vtTdCf+Us/ic948knQL38Hfdluh2qAVHjk\nWpeZ2XiEhZPBEOc813hT2kTxfZoXtGc5FaA9LDXdmt1ohAv0Pt2Dv10a9DC3HI/RnvpUT42pbnx7\njLmqmdl4RN8cUBsK/rhzn8G5nVvWZF8zwfeYTfzosqDvZ29ex9p9UdA6t+Z+H/m9cJ3cK0lx3HZi\nGxu0Tpmfw/1b3ovhfpiZwXl/8uRJ0M+/gH7FzOzNs2+AXlvFfLHRwPUcz0kul4W0JxLHOKcHPVyD\n7ryOhcbmDTcf8ca4v/T6G7jP/eCD+F3QeIx+odnE66u0P+X7E+yPv0E3txYfBE5xHttA/bi2vAp6\nfR39QrxB36DnHH+dJpnvfF9DLeKir2OkNK8mFEv5+4DyjXC+htuE2i+bOBPQ/xwhhBBCCCGEEEII\nIYQQQgghhBBCCCGEEEIIIYQQQog7Gv1xhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh7mj0\nxxFCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhLijCd/tBpiZbW8PQHteDjrOY9BTjRboIvWc\ne8YJXhMGeI5HfxfiBxHoMV3vefSMothLmplZ4OEzvALfq+B7ZBno1SMHQV89f2XPNnv1wGmDT+9d\nUN+mhjqJsQ15gpr7LcjxHQLuJzPjrgktBV3z8Yyf+NBx0FMr06D/H/beM8i27LrvWyfffPt27tf9\ncp74JmAGYQDMAAOCgsAkgrJFUKItVlkussosu+Syy9YHu2yXy6H8Qa5isiGapknKlCASFACCICmA\nCIM0Ob7cL3W/Tre7b74n+8P4A/7/fdw9AESDr7F+3/73nLPPDmuvvfbap9/7N19+GeuETZDzTfNv\nfj75kYdALz3+COirL70B+g+/eQf0FpqDJDR2XhX7/rWvfNGow6s3BvhMqQq6XCG7D7GfqKuNfjX6\nvsAm+Te22yTB8U5z1LmDdbQDLKDko0sppxWjCrZgX/E8yFIa0APGoRn0X68vd0HHMfYHWoGIXTDH\nUuqzlZVN0P32OuhgtoMFuJMgLduj6ziu1hB9dppyLUWS8QjvoWHtk33XfZy3Ryd80JMVrFMnwX5a\n64WgPbObpOljmUmGlerxnKNJl5Nr2eyNQcc0f3wXKxF4WICfmpM0po5KaN0IPIc0jo1tYZlxiHUc\nhjG9D99fd8w6jUMqk/1IjHWcpLF8YAFtvtdD29jYQc0m7rrm2uaTTWbk3GzBMre3d0GnMdqLU8Ln\nrdy0aSAv8FP0m0X+U4SfKXLSBwkcSMfBMUtpftk23t/pbBslXr70Gug/+7PPgv76V58DzbFfyUdb\n6uyiXayP0LeNQx5DEbeE61rMk4janSY4B/Mc52BC8ycnv8R+SEQko1gsylDzmpAL15H63ogf+PkC\nh2pxXL3XG8wfCkrc83mrYL7kOZYSp9T37Kto/C3yI7US9iP7/KIpS8MnQSkA3Syzb8Lx3+mhtuuz\noKeaaG/dtStGHfKb6K/GEZbZnMA4+szZ46AXFg+Bzmg/0uujP7325ptGHdpbbdCTUxOgqzWMeQ8S\nFu1jahQb83ykLaZ4HsVcIhKRXdl0j1+ZAp2706AdC23dcekdGe3vCiakQ/FAMtwC3b/xHdAu2a7b\nWsTnyZdtrV4G7XsYo4mIRAO0q9HWGuhximu5bN9F7WE/ORb1Y5P6bendRh3SmxinW+M+6Jz2zkKx\nX71GY8E5CcoXxGMzvogj8vl0zyjG62Uf+zrCpU08qqNLXR8mZtw1onay1fJ+foRuSCzKOpEJSpph\nndZG5rxoVvEev4QVrwZoDxnFYWWqQ057CcelfgwK4vQI68BLdGfHjBsOClcuXwd9++4O6MEY+z+h\nQe72ekaZYUj7N1qXbZtyT6Q5dkxp/cppj+o7uEaLiOQUnyfks3c66APCGI2b98EZBR9+QLZc4HC3\nu5gn6nRx3R0NMZakUFEiWvc3NrHOtUoJy6P9oIhIf4hjMdWqg56bboFu1fH6Vhvj9mGIix3HbJ5j\n9sPSwgJomqIyIhsbk+acrUf75ITGJuOOFBGLnRNNco7zXF5faQ/pUCxpk69sNXGfLCLy0LnTdA/2\nPfdcmpBNUn7NopjA9bENVsFeI6e5lSW03hYFDgeInJZBi/cEpPl+MZdREc6z8D37vGNfTWucRWu9\nsa8REfGoTnwP15Gmx/JNfMevfRWvf3oZHxgW2Nr/33zzOs77L34JG/nvHKE6lgsKIX9mpHmsfdpJ\nY9Wcw/ufeT8OxCsXaT7+DejHg8J4fHDjtnfCKKC46zXMpx1xcD16IcT93nhoxnajECeERznshPJj\npXJtT11rYF5hPMB4o7uDe04Rkaky7vHe/xDOmTDBuCvPKWYRXCczdn45roluiuWJiCzfwnOYl966\nic9wzEvJJt/H+GI8xn5jbt5aNX57eRn32wsz2C8l8mUlB2MYj+pwooH90O6jvrRr5nC31vEsO80o\nTqKYhTMC5Qrmw2pl1BnF9rlnnkMGZTp/JRsrh7i/90vlPTXv343z/YKPBNKIvlPgFCzFqKsR5Zho\nn/oohY+8w/G8gkWfz/Yox2RVzH3SQYHHJAjQ0qII7ZL3DLz/EzH3pSHtQ1M6Y7RpUzCivRKHEjYF\nl2lCSR0R2djG892vvoz54paD9b52G9v1njPHsA40f3or+H1Ev2TmdS85aIzzJ46A/kaG8+t0G/vp\nkUX8/uWxJ/8B6GoT14BSCfPbIiK1SeyrbcG+CqdxnYhPfxC0bX0LdP867sU5VHirh3trEZGFD3wc\n9EaE/vAvfv3XQbNNfuMb3wB9/Djm7ScmsB+eew7XaxGRRqMB+vnnnwfNe2XWr7/+OuitLcwBP/vs\nR0C/8vpFow7DEZ2BpXQ+UcMcAm8pLZoJ7E55f9+kfbKIyPoufheR8nmtXbQpOhgMBnTuTzmeRy48\nCDqhxO3yjWWjzEoJ14qGhX6g1cRYcbiEtt8Z0Hy8Tfk1yjMJxmgAACAASURBVDUXHblz3q9cRb/T\nmsT4tFLC+6sLWMeU8mErQ7z/1hWzHw5P4Lwv03cm65t4fvE7f/jHoHkOH16YB338EJ7NBVXT15VK\n2O4kx7E5s4S+LqcEwCtXsV0razhXfucP/wT0+hqewYiI/NTH0A9MTuJ3RdNzWIdqDevMMZRL3yGF\nCa6NY1orRUTCgt+gTIfOfy1an/nQbYx+5L5zf5tfaLzjaucroPPY3AvAKyiO36XvYQY9XCsjWniy\n3Cw/4YQpOcyUcxYHHvLtRvP3/XrB/N6BdES2sNXGOGyyhfPc5W94uQ77fK9ZVAcmz3gPib7Jo2+r\n3Az9n5fgfr6W4PcyrZHpB+5+7SXQ31zGOKpeom8uHOy3Cvnw2hSe38Z3Mf5YSjAe9e6ugE4SM06v\ndbFdp586Azqgb12nAuynEuloC+sw5u9aLd5nmefcbgnXEZvOExzaK/BefHoa++kQrSO9LvoRPiN7\nZ2l8/k5ub5vlMo3U6D7fwOXv4Bu5fb86/z5c3cGNBBVFURRFURRFURRFURRFURRFURRFURRFURRF\nURRFURRFURRF+ZFA/zhCURRFURRFURRFURRFURRFURRFURRFURRFURRFURRFURRFUZR7Gv3jCEVR\nFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVR7mncH3YFREQky0FGaQw6lQh0noT4vBUY\nRfJffWR5Btpz8ZncdvB5B0twMryexFhHxzX/zsR3sHuTBNspVop1oOdr9RroqUNTWF43wTqUzOHM\nMqznaDyiOmEZdo5lWDm2O4+xlo6N2rWwn0VExtywBOv0yAK289wHHgX9B7//F6A3BljnmmeB/uij\nS0Ydpi88BLp96w7oz/7pd0DfGWA7yh6Ob+BjPz37DNa5eveqUYcrJRzvuWOLoN+8eBN0lmO78hw7\nMqd5k1l4v2FQIiI8PPRIkuINcU527mCh5bpH5WE/RTv4vIhImJLd09zMMtOGDhKLcw3Q1dIa6HGE\n9m0MUm4ObEq20OuNQe+srYOeOrFBr6BxZOOxyA9QnfIx+WQRySLy42RbFfKZx1s+6LkG+miLfPJU\nFefgnQ62ebqEdRYRsWys93aEtjhKUMcJ1nmSuqk7wrEKQ1qr+P00RwPPXDeSFO/xaU6xL3JdvD8k\n++m0d0APh9hPjoX9WMdhePseB/uBTXSC+vr+efTprTJef+N2FzTb7/xECd9P41ZEvYwVb1RQ9/u4\n9mXxEHSe49hZpMXwrwV+yvgNOyrnkIvu37+V9zbGmpXhfLt48Q3Qv/lr/9QoY3NzE/TUTBN0o1rB\nB+gdOc2njY1t0DH5Ldc146oRrc2ZjY6B3KXEY6yDw2aSo53QlJbIMf1EFGMhtKxKTt7HIuuyLPJO\ne8v/D+PkdWLvGMSiH3KL60Sa65QX/D0314vKyCimHcRYRu7gOuPT4JVsGqycOrrgHdUy2gOZh3jk\nFyo2+po0Qv9oxfjO+Vm0eRGRlGwyCND/PfHeJ0GffeAc6OuXr4Hura2CPnryNOiNuxRDiEi7cxf0\nw0/eD/rEyVPGMweFMm1DHd4LGaZLsXJsrieuh7boViZBW+VpfIBjQ1pfHF5+Up5/RhXEcsmZWWSr\n8S7o8XoH79/F+NZrzuHzfh10Z8zxrxjOzbUpJmpivJA5GOMktI8JApw/XoB1cBxzfuWN41jmLsbU\nwxH2S6WFk94j+7DJPqIx6vHQHIw0wXYPx3iPxwsLrbfkEoS3WqMRluf45l7DJSOpuBwz07qzj39O\nU7y/3adcS8HCM90oYz1d2kPSXOK1LiW753WoHFB5RSZJa1FM4aLnH9x/e2RrG9enccxxLuWFyI8V\n7WF9irN8D43VdSnGIrtwyCdwHiEjO7MK9l68r03omTjFdq5vYuzI/rZcQb9kU2DH7xMR2d7pge6P\n0HdVaV/Dfmc4wr14TPvuNOe9nGncHvl8jttta2/NcV4UYhtsG8e636c1Q0RKJey7VgvznxHlYKsU\n9/OeMijj9RH109ZW26jDaLR33zEcv7JNVsrYphLZ4OnDh4wyD83iGs9b4ZTiUZcWedvhPAjqNKL1\nvKCNfoD1tG2Oof9mHCX8tcHNI9eRU17UvL8gsHL3eYb13sNo3k97jpxy9cbzIuZeil0k2XeIKRX5\n7a+ivt5H/YlzFM9SHd7cMNeFVzfRHoepec8PwphyfF96AefTz3wCO8FvFRSyj30U5uLhOvlTihV/\nlurw2S/i4F5epuBDUb5Pbq3jvn+wimdlsyWcL3mAxpqlZjyRJpRztikuovPXhPLwKe0pogjr0N7a\nwuuhOeF+fYPOQju4/i8uYD64Xq+C9l2MH6KI4w+My3LH9PlffeVl0JvbGPdUKIlg07oRc5zNZ4LU\n7PaOGVd96UtfAb00i+dRlRq2s1zFOk1MTKBuoT5ewzitfuSCUYd2iGUOYzyjiFLcX0ThAHRCZ8gj\nimHTEMc2SczYrpPufe54hM54G+TEfY/2I5x3zDg/a86LMcVeGcVVFuUmrw7x/qbN84TyHJTr5tiw\nqJ5CuWbLPrj7WHPM8Lrn8Tcc2N9RWpCzE84/o92MaA77FDxk9PyQbMSlb1HYhkRE0gx/e9d9mHO7\n/xx+e3Bz/RboL7+IeqGJ86ffwzq/cKfgrNWi87d1zNm8von9sLp9CfT73v+zoB84/xHjHUBRjJXg\nNxU1C/3I1tpt0L0xXrfIl6UO5rfHY1zXqh6uISIiT92P/nX1MpYRkq+amsJ3Li8vg+Zvdi5fvgx6\nY8PMyx87dgx0u43jubKyApp9Qq2G57nXr18HHfg4/o8/bOb5OUe0tYk+n1fLwEd7sXmuujhWThU3\nI13jwyORMcUhgY82ujSPfX+QCCj3EA8o/plDn8A59jttjAtFRGoVXAPLtMfc2cazWqlhTDVxfAav\nU6yxfh3za9HIXENdsr2JScyXnL7/AawjrW+txbOgwwFuWn0Hzwa+9QLORxGRlS2cLxMTeFbge3hW\n0O7i/Ot0Md65vYJ9/cYlnOOOa37zmHJMXcF3ND0a/wD7vjGB82enjT5hbQPL+/rzrxp1ePAczvtr\nV66A/r3f/i3QG3fxHbUq+plnP4g+fzTAfvrCl/HbQBExchRPP/VhLGOEZdxcwZh81MH4d6L1BOhB\njvPk1obZD7tDtCGOAThQjymXORruHe9mGeeRTWxn79hm35zEvY6x/aIGU4fwdyGWZca9xlEW6dEQ\nc/ejEa439hz6P4s/FKE8Op+jFO2t+fvJiL7xXb+Da/W3PvcvQbtD3DtvXn0L9K0exjSDL2MdzrvY\nZhGRI2W01yaGYRJUcd2o0PmdR7abkMtNBnT2RiOxSR+6dgv24nNTOBZPWPSSrz8P8sdiPMeOBjg2\n138D79+g63dDjJlHHsY3IiLlSTzfP3zyKOijp/EbjOYi+ttKGc+tjyweBr1J3zpFvP8s/KZt7++I\n8v3mmfkRD76TvwkyKmCOnfnL3nmQ78fVHdxdr6IoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIo\niqIoiqIoPxLoH0coiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoinJPo38coSiKoiiK\noiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoijKPY37w66AiIjne6DzMAOdpCHoMOqDDjzzbzxs\n10Lt4Dtc1wcdxwnoNMM6RHFEb8iNdxp1sLFelVIJ9HA0wgccqrOFzzdaTdC7o23QSRYbdYgirHcc\nYjvtBN/pumgStuVgFQO8/0wL71/0U6MOL97eBZ1n2Hcf/ui7Qb90ZRX0a9e3QKc5PX8c++Xsex83\n6hDScK1dugr6jS20sczCdkYJ2kPJx3ZXPOzXnQ6NrYjcWcN+GDlog9wuG7teMqNrsY45PV9oodQu\ni7VNZdI7c7wstVoN9LCH/djp4VwVEUkSqifXO99/bt3LLM63QE830A7aXbQlsz9oEEQkTXGg2h3s\n96sXr4M+/uA50K5DxpaTLyFD4BpkCftHkZh8j0tuuhXQDznOMW61S7Y5WSOfTsUNxmiLIiIWrXhR\ngu1KSVvU9xZVarOP/dTexn5vVLBfeX45tmnrZR/vSekWbmdGY7PbwXZvbqHfWd8dgj4+GaCenTDq\nNAqxnWnKvgbrPBjj/S/fwn7h5yfKODBs81bB33E2qlhvfqZCMcDdu7iOtG+8DvpQrYzlObheWzmH\nS5kwRr3ZgVrsUA+2r3NdtP/hsAf6z//is6B/97c/BfrObYwFREROnFwCffdmB/Tu9g5oh+KwRrMB\nOrHQjzgOjkk1QH8sImLFOI4u+d+Y3plXKnidnrcsnJMh+SG+X0QkMX5Ce7RoTtqy95xlDMv8vmwV\n+8GIN4TnOdWJpn2RH0jJqef8ThuvW3T/OKOYN0Z7sF3s18A2x8LNKX7M0XeQeRhxuUNrXynrYnnk\nTy2yYRERi/YwS4ensY60xK/euo3XA/R/uzexDusrXwVdDtD/iogcP/8I6J/5e78E2vPxHQcKGsOY\n1gvLRbtKI1pTc9O2vTLubZzyJJZJ73Q8fEdGPiEejbH8AO3UCHBEJB7jXoa2hMY7PYodkwTX/v7t\nTdCDMdYxK5m2LR6t9Rm2Iyhj39Um0Park3OgyzWMwd2gCtqxTduWhSdBdlaWQffjAdaJNmy83c8o\nx5CEFIuOzfiii0udxBSmN6roPxPa35cC2mPa5Nt8vF6wfZMSxz28LpD0cXsjtP2TMdVxM0QDm62a\n/eA7+FvFoxwR9YtPsWBI7/QCjsvx+Tgz18qM5l6aYL0bOFUPFMOYYg2L+w87MKAcXxyZMRWlhYz9\nYxCQIREO+VfOv6UUF6SmWRk5N4cMwaPrQQP9RquJcR7vq8eUf+v0zTzROMR2D0dozOyht3fR72x3\n0TdWSujLeM/LuS0RkWoZ+9qj+RPTM76H90+36qCHQ5yfETmBccFe/SbF/r7PdcK+Tdy9bS5NsO9j\nWn8dTriJiEftYpsKKAbyaZ0KAtr/DHBsD89PgT57bNGog082GMfYV65D+1LKIzvsgCmJxzkO3zHn\nGXu/3MgjGo8cLKiLjVBtP+0U7J04ncDa4+vUyWSuFo17zu80tFklI/+7zztddH/y7z+L97cm8Z11\nTi1R8Z2eGQP/yXP42//0Vcp1hgWO/Afg1ZtY57V1vH7kcMFD+40dzw+Osx3e9+L14xewzb/yj/CF\n/+S/MfekvYH5m6Lsx/JL3wEdjTGeyHvXQD84h2dAt2qYnxMR8WlfUi/h2rs9QltNeA2zcd20Mox5\nLMrJjCjPKCLi0/r+yudfBd14CPfaJz70AOjAxnVxY+MW6FYd99J3OytGHdY3MBcfUUzCe+mU4iw+\n5+E9JEeHSWLG2d0tPDcOae8U97CfdlLs+02Kszi35Vcwx+NOvmbU4egzvwp60sP9ehziRjezsM6u\nR/lRqkREubAoNM+n+BsA3s9V+1iH0TouBOzCua9dD330zg7mpUVEMtr0JPSMS/Ng++XPgd4Y4Aa9\nTrHcA9QvfkHONz+G85dzHxbHlwcI3rfmvLui6/xdSG6b8UrOZwF8xkgbz9je+9xzNML5Waazsrjg\n7HVpFv3IAp05X7yF5w0vX8d3XLqD+5IJC/3tZILtPhyYZ4bPnMJA6WIHy7izeRP0kUXyha65J9wL\n/jZBRGQU4Y9T5Lta27hO3OxjzrsueN2mHESa4P59VtBPiYh84CT2/VdW995T8j53YgL7lm12Y2MD\ndNH3E4cP41g89thjoBcWFkB/5jOf2bMOJfqWKYxwrE4eRfsRMff8LuVSKrRu2LRe12uYW+kKnZnV\nsB+cEva7iIg9wjoEJcopeAfX15GbkVoT4532Ntpuxjm62Nww1ptHQM8fR7sq0xgk+Vl6Hr9LWSld\nxDpTjqe/hWMuIhJSTsWh7wFdymlv370Bun0V19DYw7myVZoF3c3Ns4Fc0DZ/6eR9+IyDa/9vfutr\noHsjrEMS8zccGINbDm8wReaWzoBub66BHpfwme0djEU7dLiQURIjF7SHwdDMXYYUZ81THnBl+TLo\nHq1tjSYmzfttnNPHF+ZBl31zLJpTOF5/72f+XSyzh3b+G7+P/RCGFA9baOOZi+dT2yNz/e3Tfsan\n8bIpgRTSXIvGvBbunVcsymXzOpDQNzdZ0UMHCJvznBQfZMa3B6wLMH7EZ/o9nOd8plGuou3w9wwW\n1Tke0z63j/NBRKRz9S3QQQ9jmDGd3/45f29J+eWzTbz+D06gnbxrEes4UXBUykcKoxjfMeL8f47r\n8O4Q58/aLuULbFqb6H0RLROr2+Zonp2hdeMK5j3mS/iOk7hNMlJ+/D1NTCFxl8LZW32zTp+/jDmD\nf/H8K6Anm9hPj5/EffNDD+B3ndXF+0Efmkb763TRXpOBmS9wyF54n7yvFzG+5dvz8r7fmhb+ypOb\n5tH3802x/s8RiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqLc0+gfRyiKoiiKoiiK\noiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKck+jfxyhKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqi\nKIqiKIqiKIqiKMo9jfvDroCISJ4loB0H/2bDzbGa4yTE605slOkHAeg0t0Bb9HchSYx1GI/G9HxG\nb0hB2VZu1MGy8Jk0wnekKdab3xEEHuip2WnQ7TuboMOx2Q95jGW6qYPaxnf4DvabZVG/Wdju7RDL\nP1RtGHU447exjPk50M0Hz4L++v/4B6AHOdb5wUm0h498/GnQ8+fOGHXYfvMt0J/79k3QHeo6n2zQ\npn44f+4I6EM2FnB7Y8eoQzfCvjo2XQedkI1GSR+0JXg9z9nmaKyM62L8ORQ1SyybyshQZzbZqFcC\nvTMcgh6MIqMKxlT6EWNxHufx0bka6OU17MMk5Q4z/6aNbaE3wH5/7Y1roJ/84DroVg3rQKYkkqLv\nyh28wQ58o07lSnnPIqcr6Hs8B9swCsk/Cl6vlfGdJ2eqoF9a6Rp16o/Rf5GUOMV3VGmFTLAbZJf6\n+eqdbdBnDuEcjxJsk+uaY1kuYbv6Q1zv4pjmlI1lpDRnX7uN/XC3h+WdaOE4LLRw3ERE2rtog6vt\nEeiNPnZMP8H72YIrPvp09lQRtaFUCYSxyVcl9E6PbHR7twd67cYt0IfO3w/astlZosyLHFlGBpVj\nv1gUN5gtP1h0Ozgf/vkf/A7oL/3ln4PudXdBz81MmIXGGJv1uziuOS1qswsYb7QmyN9eXwGd0ZCk\ntunbkhzHMbbInh2cUxnFuK6FfiCycc6FKc7RpGjNNFwHOitHyGdTnTk8sAxbzEmxBzduMeIJXuxz\n6ieOURybNBWYFEwXD4uU2KnQHUaQg9rB8R2leL8TUwxU5LNtHC8/Rx9tZTg2IWnPpUbQeut7WMfh\nAP2viMjswizok/fdB/rSm5dBz89Nga618PkBrTu3b2HM8J6nf8yowz/8xC+Cnpk7DJrjy4OEndFe\ni2w5pj1GkqGPqDQxlhYRKdeaoC2yXdtBu3FozeL5FY+wEuwD/JK5zjoe7ZVDtO2c9r4+xYJWzL6S\n5sYY9znj3S2jDn4LbbVxaBF0UEP/WZnA+8tVXEf8Eq4BLu1jbNf0+WItoJzEfWuydht0r4frlEVr\nADv1nGLPeGg6u40ujkXZw3vGEc6vZgWvewFe98h50vZNksj0dY6P7QjJPwrNcdpKy2iAeq2Pdai6\n2C8lx1z8vBwrmtPe2qG9hFAsmOa8v6cYmvIcSYHbikJ8pk55CatgnTgoeNRfEa3TvIdxyU/Fxp5W\nJCK/0uuhXwgqOEd9j3JV9t6+0SVDzAri9yyjMaOYqVzDd05Nt/B2iv95Dd3pod2GYUHOjqo1HlPs\n6KKdsQ/v0550HGKdUnogywuMm/rSofiDY8XNbcx32dQIziNmtFba7CREZEy5yza9I02xXVGE7d7p\noaPhvh6NeS0sCC6pa7jv6w1cV9jmbPIjM5OYH73/9DHQjRrmC4oqYdnkZ3ifamMdMlpXuJ08L3if\n8HaZbHNUJsWrBw6PNJur8z1eFxHx2LiwTy16Z85lOHyd1zy+39r7etE7qE7i0tpOIeuxCXJedP9+\nbWrNmHX6edy+y80d7NzffJFyTT9gSmWtiwW8dhGvH3nsHRSy3/i7PBY09vw8xXE/8Umcbxcvs4GK\n/O+/y/uPH/HEu/KO+HIH82k+mepQcN2s3f4O6CMVzDOIiCS0JlmUw5ui/didMu57xxVcZ5MK3p9j\nmCWxvWTUoTyFv21dx3PJV9rLoBszp0CffhfqUYLxReTiHjRKzbOvqRncQ47D10FzCJJTnBVREoHj\nKCOGKYjtchvzY9Wpo6Ad2r9FY8zJSopjl1OuK4swxh3uYn5VREQon390CccmymisxviO2RruDXwL\ndUr9khbEJxz/57Rw9K+hPbR3Mf6M6fkO5aGrVTyP2trEXLiIyOQk7h98n/Y4FG/6UQf0uIdluh7a\nYMmi8ibN/I71MczRZbSm54XJ54MBnxXwPsUmv8WxdVGoEdO+hDW/M0n5zIjtEnVMh5C9oWlXVQt/\n29rF7x0+9Tksczl/F+hsHnPBa8uvgP5JD2395049bNThSop+4FvPfxv0wjz6kV/+h0+CPnEC61Cw\nK0EKBqPi48IQuFjvfgPnX335KuhyBfPscY7zxyF7iHLz7LTsYs1dwXZvbuJ3PBsbG0YZ383yMvol\nXgOKjmmuXsV2tdu49u3u7u6pn3vuOdDbO+gLr1zB7wtWV+8YdRhSLiSkvEariX6o2UL/GdRwvbXI\nt21uoL35Y3MsVldxXvQ7OBbVkvnMQSHawLUjptjg0Z/FjU2/i/e3O+YaeuQIztlqFb9tGdD6xLmK\n6SZ+RxVFlLOJUbcLvumIKE8+NYtnAzOz+A4Z45hXmhhr3gnx/k4XY48+zQ0RkY9Mou1+8jDGVBfX\n0PY/HaBv4+8duB84t8Xfo4mIDLrY106Gttyo0Eaa8jwZf+ND9sHfVxStfYGPecKf+8jToK8s4zcX\nf/bN50G/66kPgn76kYdAL7/6KuiZeex3EZGP/sQnQE/M0DriYEx17uEP4TvIv44pTxiH2E+dHTrQ\nEBE7xP2JQ2cBOeWZ+R3RkL5loe8DvID3BebqyL9Z/G3KQc/Z0T6G7dW2KI/KedaCOcakdKbX66F/\n8ihvXirhmuYLrlkViuXufOk10Pf17xp1yDZw7zOijyRucbvKGLN8/DDa2i/S57MLdcrd0/s7BYdj\nI/LJu0O0vbtdLGWbzihyyjtmAcVZJcptdencpUPnfZFZx3qGPnm9TecJdAS8RJ821/gslXJ4/Mna\nNOXwTrXMOj2Cx9byueuoP3Ub6/hH30Z7eOvKKuj/8JGvg36YzsU7Y1yvr8W4FoqIZDY1ZL9psU8O\nw1w4jA+R9rnfxPh2yZi73/tZ7ME9vVUURVEURVEURVEURVEURVEURVEURVEURVEURVEURVEURVEU\n5UcC/eMIRVEURVEURVEURVEURVEURVEURVEURVEURVEURVEURVEURVHuafSPIxRFURRFURRFURRF\nURRFURRFURRFURRFURRFURRFURRFURRFuadxf9gVEBHJLQ90mkWgsxT/hiOTDLWF97/9DJYZRvhM\n4lAdbPzBckhnKWjHwa7zPCpQRPI8Bx2nWAdLLNQWttPx8B3VRhW0a+P9yRDLFxFxLayXQ+10HY+u\nY5lGG2J8Rzseg+5XsU0iIvP1EuhzH3wU9PW1HdArm13QVRfr9BMPHAZ96txprHNk2sO3vvYy6Nc2\nQ9BkHmJZ2O5aNQD9wfecB93Me6Bvh6Y9pGxD9LdJpRK+oz/ogw4qWKdRH3WW0Attcyws+onH17JR\n5xZ2TG6jHofYj8MB9n1umuSPPHNzk6BPHZ0C/crVbdDrnRh0muEYiYjwLy6NPf8VXBriOFn7DhS9\ngXyTW0ffJCIyc2gGSyDbq5fR9/gOvmOzg76lO8J+8Es4n07O1PAFtvm3f2+u4ZwakD9zySfPV7CM\nQ1Vs97Vt7MfX1rDOPq0LFWqzY5ljmSXYziTGduYpzrmYRtd18R0Z9UOUkt+gsd/Ywj4SEdmgschp\nrZogH9+gZiUpOqdxhG2yqd8PTVZAz03R2IpIFGKZjs3rKfk28r/bG1ugs0EHy2tQeETmZOVYnohI\nznMzT/bRB9tB/vf/7T8B/eLzz4M+efoU6PNncW1/65XXjTI319v0C/a5S4tcg2xz5dYq6O0hrXk0\nX8o2zjcREY/sP6F4kP2KRYtzIhSfkt2kFsYClmvGE4yTo9+QhOuN/ZILx6PUD3z/O7JV9rn8TtQ8\nZ23SHq0ZGS8iIlKi8XIEfXLo1akO5Bc4JqLYfxCzrzJ9dr2GNlavkg8mnx6m+FLfx3c2JzAmaJOv\nmp3F6yIi5x96GLQXoA8VG2305tVroB1/BfShI8dAH7vvKdA/9rd+2qjD/KGjoC3q3CwzfeZBISOf\nMI5pL0Vzw6thzFSdnjbK9Gv4m5XRWt7DvdJoQGsi7Slc0mmCczoOcZ1/+5ky1oF8nU1jbDkUj9B8\nLJXx+ZjcVJqSHxORaHcdtLMwB7pC8yUoY7zgUJ1syjk4LtbJcnyjDpZHMc8S7gGTDVzbsuEG6HhA\ncVeMmrZe0jOXHQls9sHY9xTWS0phE+dBxhH6HTInqdjmWAxDfKfLWSTyp0mO7xiRC+gl2K/zZbRh\n3qOKiHgu9SV1S7mClegN8R0pzaOGTzEELTy7HXPdCapYRqWG+i4O/4GC16tBRGNG94/IMP2CeKZH\n+Y727i7oiakJ0EGAviyhNXY8xnfGpCslsw487qUy+r7mRBN0v4/+ktvQHeAk3u0OsY6huR4Ohljm\ndg91QutIo4qxR6WM7xhFOBpdytHYjrlPLtM6sd0ZgZ6cxH7Y3sGxCikvVKI1pFpDnfEEFpGS4PiE\nlNcbDbGdlpG7xPLiBPua970FbkbKVG827OFwIHvdwGr+fQAAIABJREFUUKvgOnP6NO5vDi8ugLYp\nH/t2iVxPztE5dJ0KoJjLojgwpb7nHPDbz1DfZry/MR45WHA4wF3ErmS/6yIiXr7nPblDaw6vs5Qv\nM6/T8/vVUUQoLJKcnzHqTO/w935nzubNOeqCfJhHU/Bj78Fn/vlrqHeigon8PTCimPiLX8PyPvKT\nZsf5dZoAnIuifjP7AWXOwSBdr8zg9V/5z8345PYKvuRzX6TcfJHDU37kufE9mkWa4vqS9naMeziv\nXqF5Pj/GuKnSxXzHvyHHxDGQ42MMNL9o7ltWbuK5Sn2IMUonxut/8du/C7ovH8U6TFOe3sIYeMPH\nmElExM6wb0oe56x5P4fv4DiJ7+d8Wskzj/ijMdZrRDFMmc4o+Hze9nAxdF3K8cWUV+dzSTHPn1q0\n/3I4b2Th+K6PMT6doXWnTn3vBrSIiIhLcZBHZ+MbVcwzx3XcTA8oHp3hnBzNoxMnMTcmIuK4fP7O\n3x3geJcq2I4K5SCWyOzLN3AT6j+Ke6i330HnS+tUSHhw14mphSXQvo82kcS0pwxRc15JRCRNKNdP\n/pHnLNtJnqBdVXcxKWO7aPtxynsQkZnDOF8mJo+BPrdM53l9vC5BA2RUxjpNRGhXeRPvFxE5QYHb\nB554F+i2jfu3/qgFOuZzzxz9NXejmXUQcX3KdzqzoJvkN9wjeDa/5WKecY7G9rSsgfaa80Yd3hji\nnBsFeC5+eAltMKZ3GPayD56RkBNx6EyD7bpUQns5dvQIaD7WbDRw/z81hW0q2g46Hv56aAlt5vxD\nZ0G7E1jHuILzIIvRPx9u4lhVA9MmZxcxn95Zxb5emMN2HCTsmOJ/G9eety69CXo8xvnZ6/O5q8i1\nyy+Anp7AMdjZvA3aKeGZ1EBwTMOYvs/oUxI8MzfSp+57CPX5C6BLFbTV6UPHQPsN7IfBbbS7nPaD\n76qbZ28/fwrP3ip0qHGOck/vpvznH1t4FtSoYz8FAfqArfamUYdwiH2ZljFOs41vFunMg75nsClG\nL5fRl475sEFEXnjlDdAPHsL55lN88+BjT4D+1X/8n4F26HuJly5eBH3q3ANGHZ56+kNYBuXwOluY\nq6w30D+36Fu/tXX8XuDl72A/99bN/U7NxjNn2hrIiOKIUQfnWkg5Wkk4zuBvW4wqSEbfIKQJPpMU\nxOUHCf6+1rjOqad97i96xhHa+yY4jtN1nINHXdwbOZuo/QF+R/pkC+1ked08L9iic8QVMpWnD2Ol\n/z5uGeQ+DHmEtmLG92JXuljea3fNuOvmJv7mU8fNNrCSrRqd59H9HQfjE8/D+HUU0T6YPn04WXDW\nc6aGfclpi1euo75Bnzg+eRTrPFvDOrB35E9X3IJ4tUXv+Lvn8aFLQ6zzFzD8lBV0bTLYxXXoPZN3\nQc8EWMDnN83vON/McE0f1zCGFhfHhl0Re67MmGfcD3z9e4t/337C2lO/E/R/jlAURVEURVEURVEU\nRVEURVEURVEURVEURVEURVEURVEURVEU5Z5G/zhCURRFURRFURRFURRFURRFURRFURRFURRFURRF\nURRFURRFUZR7Gv3jCEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVR7mn0jyMURVEU\nRVEURVEURVEURVEURVEURVEURVEURVEURVEURVEURbmncX/YFRARqdaqoAf9DHQUjUFbtgM6y1Oj\nzDjP6BcLVJLiM66NfyfiSg46t/H5wPdBO575dyZZhnVwHSwjTugdQu2w8brtYbtt16PbI6MOtuWS\ntox7vpsspzplWKeM+83HOvUGI6PMD7UmQJ954gHQn/r9z+M7Euy3B5rY1+9/7wXQ5YVZrMOrLxp1\nePNWG3QQYN+Jj/2SUjtPnVoE/fDRFugbX/gK6O2BORa+jzYSR9jO4SgE7ZawTgunAtArN/D+fjsB\nbRWMte3Sby7ZvYvjWbHxnQnNtU5/CDoakw0XmBtXi3We7W2j9zoT01Ogz51G2zr+xiro7X4HdJLh\nHBURiVP8zXFwHBfm0F4r9QYW4KIPFvapLs1rKl9Ss065hbbFvsdz8HotQD0uoT2vd2PQ24MB6N4Q\nr0/XS0adPnY/+opccA7m1I4mmr9kIb5jlep0p4/9doLmQ7WE/VZk690BzutxjHW0HdSjGOtcomYf\nbuEP19s4Zwch9vNOge8qldAHN5s1vIHW5NEYy1jd6oJuVbG8MpU/1UJ7jBNzjR+NsZ+mWxXQi1Oo\nx2Mcq8tvXQP97vYW6Hod1y3hmCI3bd7K+B6q9zso4yDx8ne+AXp+YQn04gL6QodipKOnTxlldl94\nCXRM84NjllvXcJzHMfqZ48fPgL5zawW0bcSSIuKhvboJxX8Z2hr7wjhHnbAZkG8UywzV7RznrRuh\nP0wtnJOWxbEclmdYomGb+9tqbjyD7eCYxCO/EbE/tDlYoHVHRGwX+8bJMbYrZ9gvI6+JBfCcpVdm\n1PfD2PSPGdWrxHuaDsafFZf9ALXLQp9t0XpbrZH/FRHfw3pGEdZz/tAC6JduLGMBAT7/93/5F0Gf\nOPMgaNcp2D7S+Ge8jzKfODBYFJclGdp+5uN6NDGJvs+yymahMfoRt4xlWA2M48Ih2npMe4okwknv\n0JjnuTmmOe3HPB/vSVPyQ7RPzWyOFVEHVAfLQt8qIhKN8R35COeT55/FOtD+3KV9jE22a9ncbtPn\nW7Q2BXUcv9IsrlXdq9ug45D8Ro7ldXHoJIzM2LBRptwImoeUAxorahbvtTZ2UbsR9nNC22QRkVGM\nhfgBaovyFhHNg9UQfVvVpoZTHUulAq9BfedaNPdSfGefti81nEbi0hqSkB+zbbMOtSa+oztCux72\nce4dKCieCSk+j2LyM7SOOwW5ibV1nNN1GqTxCAfRJz/EeSOH/A5adnHobdMzpTL65DHt/9a2cAJF\nCV4fDHHOr2/1sc4FCZKZFr5zh+xop4f7t+4Aywg5Hqa5UqKc3WDEPSPSG+I7ee++fHsD9NwkxiMh\njX+U4NidOIq+03PMfhiF2I5qBe3hzure/cI5vCii/JpLOVzHXHcsjqEpLI8pFsxT1AHtISeq6Pt4\nbxGNMdctIpLTehonOF5+hv0SkE2lRtSFdXTI99l+QQxAMbLFeRPOXR80uEs43c/rJG9Tiv4ZKi6T\ntUPjZryT1l26n7cUZvlmlYxneFtC78wpb879kPM2lvvJ26eNbz8F6thpvLpYx+s77X+7u4yvvIq2\nfuUNs+PuX6B+4LHgOIzjCe6H/VLgFO9MHTPb/I9+FTv7+RexEmubFDwqivDqYLo2SolLlWKDyQLb\nnSJ7rdCaxDPqKOW2rlIO5jrH+zGu7Ss3XjHqYNt10At0PjBMcZ73Oz3Qz3/j26APncL93S6d79m+\n6cwaKcZ2CxO0N9qhOUl5RD6+yyluqtK+t1Excwo3N7BdcXoV9H1HsZ84VOdYPqe9s+dgLBAX+PSd\nu3dBDw7Pgz7SQiubrGEhAwo3LncoL5Jhnc4cmjbq4FEOwKHgLirfwToHWKcK5WhzHhvaYKSxGV/a\nnHegeNCKcR5MT8+AfuyT/wHoZ7ewXx/4vf8btHO5wOc3qQ4n8azQ8goChQPChQ8/BbpURp/w6svo\nR0oUB/u+mSAJOYa38JnZucOgW9N4Jrl89TJeH+G+pjWBe4rtyMxVXdo8Anq8gbnfYBLt6r1LOP/q\nFcovxzi/ZpuPgj7zwaeNOlSr+MzD5MOTlL9XQH1r5Sbor33906CbE5jHP3cMz3FERNojPHf8yu03\nQW8F6B+zmfeBfu4r+F1HdQp9wNxZfL4/etmow7/+V6+BnizhHDa+udlHM3zW/4H3vM+45/QM2thz\nbz0Pepe+ufITXE9X+5i3WDp6FPT5xz+A+sJ9Rh2OHD8BOqA8BH9TxTkB43sWOs/i/HvJK/C35KQT\n8q9F58wHBb81B7o1gXOeUlPS79N3dwX9OT2L57k//bc/AXrQxTP1jV30ZZ/5zK/j9Tt49trrYN4o\nND8vE5d88ObaDdD9Dp7FRUPM2S1NnARdJt93bogv/YWjeA4mItLifXCK62wlwaj679TQF36Jvhup\nTOMa8fGf/jugv/U8nquLiDz/3F+A5m//HIe+F6QcDn9HyX7n/MnjoFfXN4063Opw3IX+skPnWRfe\n9W7Qk5MYpzkU5z/61NOgX3wJ10oRkZzi+N0dtMHV29exTmQvo+011LuY67x1/QrWMTfzp1YV+zqh\nuG5IMUKnM6Dr6H9T45svLC9JzRiAv4tI6Z6s4JmDhMVJlP3+KXju4sIcDOXSA3xols7f3j+L9p6u\n47coiwHazjNnsLxrq/i+b26ZY3aR6v2Th3Bd/S8fwet1n8og871EZ4J/sowd9+oO6qptrpmPTeI9\n902jdig/1qOjspAGI0hpcaLvRFI6Y6zS2E0W5KdHXXwHbXukP8Ayn1/H+1+h5z9+BPWJOazEYfrk\nMi8wsCFVk1Px78LQUb5IdRpRmSF9G+iRPkJnt+8pY25AROTNt3DNdpp4TufPYyw48rEj2WL5LMn8\nnJX7pSj+5T3p3t/wfD9fnuj/HKEoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoyj2N\n/nGEoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoij3NPrHEYqiKIqiKIqiKIqiKIqi\nKIqiKIqiKIqiKIqiKIqiKIqiKIqi3NO4P+wKiIhUKiXQaZKCHvT7oJM4Ax25eL+ISMW1QJcCH5+J\nE9BZhmXYtgPad1EHpQC0Q+8TERn1I9DcLrGwHS69w/WwTD/B4fLKWIehNzLqYFG1bDHr+d3kGdYp\nTbHOeY7XM+rHu7H59zYXM/ztqDSxjG4M+lAF2/WJx46Cnv/A+0EnE7OgX7n+x0YdNhKsgxtQP2So\nbcsD/cH3Pwr6/NFFfOcYi+tnZj836tiuhx45Dfry+l3Q26M26OlHJ0BXz6O9tO/i+Ptlc3rPn5rC\nOh2qgA7qNG98nDc7l3ZAf+7/eB5fYA1Bur7ZDy6ZSJ7jPVmSG88cJIKJSdCnTp8A/eiDaAc3N7BP\nNzs4X0REIuqzOENdq+E4e+UyFmC3qEQyaG+AmvxEnpp16vex3inViX1TqYRzzh9gHRolNJyY5lhv\niP62M0AtIlIKcM60qjgny+RzA7LNaIRlsi3znxv61Mg0QX85Dk1b7/TxnlTwHo+mdUL9miY4FtNV\nXF+PtXBO98b4vmapYD21yT9SncolLHM4QF9UL2O/N8p4P6+nXP7dja5Rp4zW06km2jQtXbLTx36x\nNrZBd3fQt9WOYAGWhf0ktBb+vzfxD3tr25ODjE39MT1ZA91eXwVdaqBvnJpivyRy7BT6y+0tXCdX\n76yBrlXR92UZ+qWVa5dAxxHFPD7OHxGRwKWxZ2PL0X7HgvYeku/KbSzPkr19pYiIF+OccB2cYzmV\nwebKRbInMj1TUey491rNV10LHWRm4R2OEbDi/HAcc75YFEfbHvqSNKKYJMF+y7wG1pn8p2Vhvya5\nGeN2KNYfhOgrYnpm2O+BLlXQd/V72Kb7HrmAL8zIF4nI+p0boGsNbNeNa3jdqc+A/uBH/y7o46cf\nxPsdXHiyzBz7jIzM5vHOzbXl4EB2QbbamMTxcIM66gI/k8VoVyNaoyx6h+PiGCUOPh+NaY8Yom1X\nGugrRUQSwWeyjPbCdfTpaRQK/YB1pvJdB3+JC2wki3FOJn3sh2xMvrCB64ZFvpF9Rk5xWW6Zc9ym\nvrV99DO1BdzPDbdwbcuiG6DjENs5ojo0K2Y/pBSPUrOkXKI4jeK23R7FoyOcwxV6Pi/y+fTOMYfZ\nNvbd3QHqcIxxfT1gn4F1olSMiJjLrU021OlTvclV1aqUx6B+Go+xzs0Jc92hJV66u/hDYB3cfWxi\n5Iko1tin6f1haPx2dx3j8ZkZjAV3u7hm+pTTo6khno9jFpEtZwWxi0MTite4YYTGHhp5RCzP97A8\nz0O76g7MfTPnKg/N4jqxS7HGTpf8M3U+L9PDEb6Tc6EiInkPH5qYqILe2OyAbtIaUK3gOsK5z8Cn\nXKagLxURGQzxHb0Bdq5PG+HZScyPtXd2QTvklxKK8yan5ow6BCWMy3Z2cK8R07pUDtDmKmXUG9ub\noJt17CebHbqIOCHlgT0s06UYICKH6XEMbVPMTfcXRfkWO2GKiQ/6Pla4eRwe7He9YA2zKI+Tc7qW\nNZe53/P73F9YJ/otp3ONHF2TiEvOhfrBonzafnXIC80I31GawDKbFWpouyAv8wOwRb7wjz5vln/y\nSdSlOt3g0PrI04knHY/dPrGEZZvXH3of+vWf+QS+9H/7LfKH6b/dflPuTe4n26PpJlXSPs1Pzt0W\nwXdwLFamVeiJHNfZOznGCzHt16wC52bnOB+ujzEmcUq4Z5xxMG9UaW+BDqINfJ58W+Ow6cyGFO7N\nBdiOjZT8LcXVE97e63CZYgPfOKAQGY5w/9XuYcWX2/RMgv1QpjO9SkD7YuqIMMDYUEQkuX4LdBRh\nxzzznkdAL05gboTPI06SUb56B2PiUoZjJyJy/hie4VKRcmOI7bgaYSx4vso2RjlbfmGpwL/SpoVd\n8GafziAE48XOVToT26aYtky578ScF8kcjQ/ngKyDuy4MEjrPI9vNXdrfhXj/6tq6USav5XGCe93c\nRVtuzc2DjugsdbONe4ZM0CYqNp3likhC32Hc2MB8WWRhIDezgDbQGeGcL5Fvy3zcD754C32hiMiR\nOfwuY4H28xklcfpdfGezjvuxp9/7LOjxJr6z1MbnRUTm7nsYdKO1APqzX/4M6B7l5NZ38CypatF8\nojWlNVUQwNpYr/YO+t9r166D5n3pfvj0jcbwoQvGPbdHmB+NI/SPm7uomxTX90JqQwf31hF9L7O4\ndMSoQ5NyAgHl7Dxa2/gsKIxxHmV0BpLSGuI4vFkxzyNSOofjb8sOEkNqW075NIf28ImF/R2HZp7o\n+PGToJ957xOgu/QdwJee+za+k8cjonPQDOMj/n5DRGSTzr18+nalefwsllHFc5jjS8dAT/i4efvo\nAG1/oWd+V5K30RdlZKvpAOffefrW5aE6vnNrEteEn/rZnwI9fQLPwEVEXvr2V0AP+phPjcb43Z0l\nOJ689sV0HrHVwW+AXN9cdx5770+APn5yGnRtiP51+hDWifOpHL8eP4n2dqdt7jUGWyugKzZ9uzTA\nc5lwgOtrSL4xopzvaIz2kIRmLns4pDMP8ukR9W1EcUVM+dLYyK/TXC7cc+19os/nLAeNom8m6A7S\n76Q/8J5kDW3pTIbjOEf+7OwcPv/IAuo761inP30D7eBawfL040fQ1n75Ibxe9fEd9HmZ/Ovr+M5/\ntYzXyxQL/PgS6rN1s6Mr1Pm1Gu3vy7Svoc1XL0LdpTONVfqmOKDvec/SluaYXdBxCf4WOFjm48fo\nfsqFfnoF6/Q/XMHbf4Hcwk+cQj1RNu3No37jOz52HH/ZGeP9v3YFr3/6Jj7/OIa/Mk3noCda5lge\nqeFYfWkN17ILPja8MXcc9LqF3xzv910RuyU+1ysshaS133d37wD9nyMURVEURVEURVEURVEURVEU\nRVEURVEURVEURVEURVEURVEURbmn0T+OUBRFURRFURRFURRFURRFURRFURRFURRFURRFURRFURRF\nURTlnkb/OEJRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRlHsa94ddARER285AV6se\n6Cyug97u9rCAPDfKzLIU3+FaoH0f35ELlhHHeL/tYPm+jz/YtlkHO8e/PUkkNe75birlgN6JZYah\nD9oro84C829drAzbkWRUzxz73srx/jRN8HYrxjo0sR+yiZpRh7sV1H/y2c+CrjRKoKdbDdCn3/9u\n0P7SYSxw4w7Iq3c2jDp4dSxzEpstYYztWjg0D/rDzzwOev2FL4J+rY39mts4NiIicYz3bO3sgD7z\n4ydAZ/UzoEs1tNlaHfvN8xzSOJYiIj7ds7uBc+nupXXQb75yFfSNi9jXg8EYtEXzzPNNm/RsvCdP\nySb3nib3PHYd/dn04UXQ73niAdDXbm2D/sarOEYiIjH14SDEeRtGqDOa97lFDs6qonbKqG2cL/ko\nMurU7w/xneR7yAwkTnDgO2PU4xjrXCfbsi28PopMn7zdw3oOR9gvLnVD4GAlm/ROi9rQYh9M/TwK\naZ1h2xeRYYztjshXBTQ/PB+X8ZCedxxs40wF/cg63W+sESJiU0PTDCvlUsfNTKGNl3r4fLs7An2j\njbpewjYNBmhvIiJzE7heJim2Y2sX7a/dD7FOFXzH2vVl0POnToF2ajS2pnuV3MW+tewS3YHvzB1c\nHAuKvKdZmJ8FvXrzBuhzD18AncZoB3du3jbKPHriJOipqQnQO1voL3mS+iXs826vA9rxMVbILRxT\nEREnR1tzLZwzqYXrfxTRmkdxliUUh5Fz9GOMFd6+Ce0/pTpR6Gdcz8naeKXO2RgL4mzDAeZ8Ga87\n1C5ybeJQHG3RfHIK4qqc9g8uNSTzce3yoz7oNMEYKHLQd+UxrhkWV1pEejH6lsvX74Kem8B6j0L0\nZz758Gmy6RMnj4PeZhsXkc7GKuiVWyugz114EvSzH/950IeWMP70HLJ7GmrLMWO7jIzGtvGePD+4\nf4+fUNvLdRxz28W9UZqiITmZuca5tCd0aT3JU3wmHWE87lL8ktOOPw7RbrubqEVEvAq2IyhjHTKq\nd216GrSVox3FY6xjOEKfP+jgui0iMh5R31C8kfZxPrhL94O22SfEWIdUsN1egPNPxFybXR/9hFPC\ndtfmMX6IfBzLTruL96eb9L6CsfBw7SpRrsQPaN1J8XpKPpyGSoIKxv0O+wARySw0oozHN8WxcW6h\nL2wN26BtG9cljwLcMMGxEhHxyAkPKF/T7mEdJ+u0RuBQSJiggdCyI0HJdPpbO/hMRvuVAvd4YIgS\nWqc5DiB43S+KJXqUS9jewXW51x2AbtTYVrHDHSMWp/0i10lExrQu2wHunRLy2dUSzrce+d9eH/VE\nA2MRxzVTsJaD88eysN6tBvqA0RjrzPtojvPG4d5tevudlC+gfWqZ2t3exbGam8QYeukQOpq5qSbo\ncEQbbxHZ7dO6MKYYmYbP97FODcqzxCk+0B/i2IyGGBeK7G8zcUh5D49ythG+Y6eLY3NzZQ3fx3kY\nEZlqTYIOKCaIaGwC2r9blPMTti9KbvM+QUQkpzywbZTxN+Io4a8PXgZ5mLj5fN0cVsl/wDIsl3LO\n/Lyxl9o7FhQRMcJz3m6x5n7hMqmOwjlpTqmY4Yaxp3QopRIY2xRqJxfwPZJQruv/+oI5P+YXseGf\n/I/wenmRxoLGJrd4PaUXGEvV/m0K6ljPX/pPsJBr17Dj/vIv0ZelBblJ5eBTJWPzKFbjaCF8B7Zo\nmDPnEow5i5zIcf05SY7iEjkeq+Df/eM6DOk84SI5tx06M7QzXKv5zMQJsbzeXdNPUNgkjRK261AV\nnVtnROe3FNv5tA67FK9EBbFdntFabtN5e457XzfEd+6s4flqUsI4vNnCs9OFlrn4vfmX/wL0VzOM\ni19/Hc98n3niQdDHFudATzQwnixRm77wjdeNOqQRxs0PnD4K+s4Qy7gzxrj7kWm0OV7aMhorh/b/\nIiI5zaaI8hw3b2Ff343QgN41g2fhkyHmFHKP9v/vxbEREZEu5Tcpt5I/hPHnQYKWdul2MAdTraFd\nbvQwNzUxOWOUWa/gOGcJPuOUcV/S7+HeKSjjO2cOLYFu1NHWu6vol0RELi1fAr1DdmX5OGfznGzA\nxnxaRnvG+DDOx3LVPP+Nczzb2abzN4/y7kkXz7WbKd4fzB4B7Tax7y99+dNGHeYTrHf1GObRHzj3\nNOjXXnsR9MIM+pn7LzwM+tod9Cu15q5RB5fOjENORv6A8Wm1imN56sHzxj2XvvMt0E8+jv516+vf\nAd2ib022N2gNoJzD9Ys3QXcewe9EREQWJ+7DHxIsIxzj/nuzjXnDrTbvlSnf7qN/PryA80ZEJKB7\nLN5wHOCY16MzyXCIc3Y3xTNGzhvUm+Y6EA8xR3P5lZdBr+3imLbXboA+d+YRrNMY19TOFub88oKz\nN5/yfkeOngX96Hs+ArqeY07mfffhudeogvnpmQxjslEdfYKISPvVi6Bf/9Ovgq5som+7NsZ2Xc7R\n50/TfrAsOFeK8oY25QkHA/Svu9tYh1IJ28V+ZHsXfdl2B8fS88yz2N4Az9JnH/g4aJ/KrAdog6Me\nXs/oO82JCfT5c0sFBiFboKYmW6DPnMR1ZGMb37m+hW2gz/aMb18GoXlOs9unc7mU9wK838cyM9pz\n5fRO/pZKLNNvWfwOI+d+cH2diBibTCPdT+e1xvcOBcQUH969eAX0IxM4Tg/NYR9fWMDyOvRd1L98\nDe9/YYz6qQVzX/uPMcySuTLW4WYX3/HbF1Gv9fAdP3UUrz86i+8M6Cg2KMgjNmto7+UKfR9Dnd1N\nUNdKeP8atWEHp6i0aOwen8H3FxzfiUvzIaZv80I6x3ziCM1Jyij81i18yf95A+9frOP9T6Mberue\n9M13Z4zPlCif2iRzqFJseZ2ONJZ3sY7TmOKQOn+uJiI/dgzfeWkHy3j1FsYAT7jXQR+aQx9+NzXP\n1r+bnHOjBV/Fcb6o4OulffT+HODjW0VRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVR\nfhTQP45QFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFOWeRv84QlEURVEURVEURVEU\nRVEURVEURVEURVEURVEURVEURVEURVGUexr3h10BEZHVtTXQ5aAE2nYt0I16BXScRUaZlp2idnPQ\njoV/F5Jl+HzgeFgHB+vg+aijKDTqkGVYh1yoTvSnKZaDP4yjIeiUKpljk8R2zb91yVK8KbfpIWyG\nBCU0iVKjAbo6UwZdmcGxqtbwuohI9+YW6NX95EwcAAAgAElEQVTr10G3Gi3QXoCVshp10HlpAvT2\n1S+AfmUN+01EJMux7zzbAR1Usd7PfPhDoE8sToH+qz9eBn1lJwEdJmRQIhJUA9CdHaxnbRCDnlzE\nvi9V8HkHm2BiTgtZvXEV9J//sxdAX39jE3S1hS9p1LBOlkVjZdukzTrwM0I2GdB8P2jkQRW028JO\nOnHuLOhn3tcGfetuxyhzdXMEejxGW7qxgmWMez3QpbSPdXSb+AIb57mVkR/JTXtn/2SRs6mWyMfS\n9cMzNdArG1jnMc2xkou+y7HQ34qI2GRaMbWDLS+h6yH507KH82M2QJ0mWAeekoOEOklEIqp2TpWi\nKghPl4husGOzH76bxYmAfjHrZNO8djwcuyqtydEY18OtbRw718Gxqvj4vpTaYFmmfbkWjc0Ye3cw\nRp/sUBu4Y1eWb4G+r7MLulzGNhY5N8up0g8l0tRQrtMBY3rhMOg4wjHaXLkBujdAuzl84pRRZmdn\nB3R3F/3hifNnQN+5fhPv76Cvcyi282mdTWJzIeWlt1xBX5UM0fbSFJ+wMvTPQvGIFW2jtsw5aVEA\nkMZUBvkFi/xhTj6bfWNGDtzhG0TEIl9RrmE/jEN8B9cpy8ivUCzAvo3bLGL6IovibJfmWOLQnAzR\nHko+1jkSmvcx3i8iEudoI2sbOL55imXMT2FMe+joAuiZKYxxd7bRF9WaeF1E5ObVK6A3tgagf+F9\nHwO9dBjnFvv4nNcBkmwfIiIZrZe58J7FfOag4FUpRqJ9ivh43VjXeRMqIlaCduT6uH74FbSrvITX\nOR5PKC4c7aJd9dqoRUTCPtp2HKKPrtRxzo/auIeoTGAs6dLe2aEYqtBCbN5vY51G23dBpxHavl3B\nPWbOPt2wfXMsuA62i+12g2ksI8M1oDS9iOUFtO/1aX/nUqwgIrU59BM8nbwy1olNqplTXyfYD34J\n62CsUyISNGZAN44/i3VongB9tr0KerS9Atrx0IaT4TrotVf/zKjD6OY38Z47ON6cewlKNA8yHEsK\nV6U1hdfj2LSHXpdyQg7ek+wddt/T2LQO+wHt5Wiu1GivF6dmf/ZHOAjrmxjnbe9gnNeood1MNNH2\nSxWMxccUJxT92zAOtYv3rOydKGUnLcp/tSnHk0TY7lqZ6ySyvYvxxTBEQyr5uHfirXjFxzIDmtO8\nT2p3MXcgIpLQ/itNsQ4L0+jTE3I0g8EY9NQE5o2mJ3FtbG+bk8V1OffEeykcG7YfL8CxqKJ5yChE\n3zYOsc4iIn4J35nE+ExA1wOyc8+lfTLFx/0R9v3yHfSNIiKeR2s+rZe+h31pWXuvp4ZF896jYF+b\nxNg3dkL32H8jjhL++qBpalFzc24+b1OKtvl8D2sqk9/J91vkc406saspGrL9nuFU0X5lcrs5pNmn\nzSJiGKxNKZYyuYW/7h1GZ2j6qv/5U6iHCTbk3/tPsSMaS3ufBRmT9PtpFZWxeBLj0f/6f8XBa/xX\nODif/wzePyxot3LweMHHdXOKrrdoX+OlqO2CvZNHGxWLNr/sBjyL87+oj9B8uCoci5u5Kv7NEYwX\nohTjy16IcdLVXWzn69s4x+ebWKelgpx1NsKJvhlhHHXuwQugd1YxHtje2gCdk4Md0plIHJn7t5z6\nisvoDTBX71MOezhxHHSVzjUrlLvqF/iuddp+90J85/L1G6DHNBYn5jCOqtC55OoAx2btJp45i4jc\nfv150P/df/Efgz5VxX453sB2NqroLz3aS6dd3L/4dcz5iYi4dZxryQ7G/g+2cf/wXEp2zTnalMa7\nif2QfwjzByIi+V18p3Wji/oP8OxQnjSKuGfxPD4Twj1ls4n9PTkxCbpEeSUR8yi0RN+SDOlcakx2\nU2+gT/ADHNOJFtYhKti/dWkvNKJzlbKFdarbmD+Zps84XltBO7w5xu8I4p2CvOFNPMNw6DuOMMMy\nqxT7PVzCeGP71m3QXgn7aeb0SaMO3sIc6M0rl0DXqljGA8fx7Gix+rOgj85g3x/K0W+9vGmeT4Q5\n5rPEWJt+sO8deD94c/mScU+ZcgJJgnWqlrGM48cOge66aD8JBeElyjHw9zUiIu0NzAN2evhd0JXL\nr+E727jWRV200aVFHNvpWcy/3hig/xURWTx0DH+wsN4xTk0ROcw/3LNMzx0D7dhoEw75qbUVPDed\namB/i4jsrGHe/Qu/9xug4xL6x6yO63QyQt8XxejLeiP8NjAamGexVTpnsVw6v01wUHs7eM6fbuL1\noI51HpUpt9XF50VEXspwPv0vu2irpRzruEUb6a0M55e1jba/u47lW1HBN4+GG+Fvs/CdzYlZ0EMa\ni206V88p0ejTeZaIyNWLL4JOop8DHYU4J3vUTncX31GqoH9ObVxDOpsUm4hIOEI/M1k9Atqjes+2\nsMz1Ji5+m5sYI9i0F8lzc1+cURyWUf5UqIz9PwOhc3TjbNaMsc2f9j6bPWiYnyvwfKDLRn+Z6/LW\nJtpr4KLv+NBpvP/hJSxjMMaX/rOX8fk/3sRKXGji/b/yoGkorQB/e2UNx/XPb+D95+jTvk+exjpW\nqGM4JdecRFv23ILvAEiPYiyzH9GccrHM1V2s06u3UG9s4f1/6wJeL/N8yQu+1SLt0/mdRzd4Nfzh\ncQyRpBfj9U/dwet/tIL99Oi8USUh1yNlD58Z0DvKlI9NyJGcr2GbpvhTloTKM4+jZL6GdXh2Efv+\nT27iOycprl+qYA7jr0a4d+8k+FLOT7yjL+QKvo/CQr/3GPtgf5mnKIqiKIqiKIqiKIqiKIqiKIqi\nKIqiKIqiKIqiKIqiKIqiKMqBR/84QlEURVEURVEURVEURVEURVEURVEURVEURVEURVEURVEURVGU\nexr94whFURRFURRFURRFURRFURRFURRFURRFURRFURRFURRFURRFUe5p3B92BUREXDsA3e2N8IYs\nAemXHNJmM/I8B+35+HcgWYY6z2PQlo3X3ZKPz1t4/2AUGnUQKwOZJPhM4GG7MwvrPA6xzDRNQcdh\nhK9zLKMKpSbWuzpVRt0qgfaoTraL/WBn2KbpGOs4sU1jJyJXU3xHOol6Z9AHXZmrgP6z578J+kp/\nDXT3hZdBD3Nsg4hIqeqBjmLsu2Yd3/nU+x8DnW1dAn29g/3iBdiv0xP4PhGRhROHQU+caIGuLmId\nLA/tfjjGOpd9bGcgeP2NK98y6rA9xnZ0aG4tPoh1OH8O61xLJkH/1V9dBD3qYnkZ2YuISIxmLjb/\njZZDNxwwLKeGP5RxHMtzOI8feexB0K+8ccMoc7ezDDrNsA8vXcc5c+fGHdDNI8epjjhHRdCec2uM\n7yPfJCLS3u6BjmP0f46N7axV8B1lD+tQIl90Yx3L3+ihLzK9oYhL74wztjW83qzgWlNyUdsePm/l\naO+7Q5wPrRKWPzanh5g9iSRURzelMlOskx1hiRNl7MfJGq4Ro9CsQW7hO6oVtFm/hP6v2WyA9jwc\n23CM9pNTv91Z3wE9NpcV8Wi96w1w/Ach9n25hHWol1HvbndA99tb+Pw0+j4JmmaleG5bFfOe776c\njfe8fq/z5FPPgr7YnAD94je/BjrntYHWJxGRtbvou/o0x07fdx70brsNemN9F/TkDI7jqI/355np\nSewptIWc/MJ4TL7IcDM4B0sWGnhOa3nOdiUiNs1Jh+ZDnmFczPeLze1iX4bXbaMRIjV6ZyWgeR5h\nO7KcfQvHm/gOn0L7rCDGZUo+joWXom8JyX/aOd1vD/GdLj6/ExXENAm2M6T1sDvAte/Cw0dBHz6+\nCPrWteugF2gtHPRNh8h++/DpC6CXlo7hA9SVPLo5xW4W2YtlmX9bbxvjQ33FE/wAEdSq+EMJfZ1F\n63KW4HhZnrlnsGyKN2gMHLILi/o7HmKMxPsUl/ZaSWqOT28T10EO6cfWAK+HaJthH/d3Hu2lXfKd\nSUEA5Dh4j0t9NdxBnz3exXjXDepYXoDxiWHLBfuWPKG1yKG9sY/vsFzUWYxjwXMhitDZeWnBupNh\n5zgB+k/H5fHDOsYjHJv+Fo6tXUcbzjNzMLIQx7u+hOPr0NhMHDqLevF+0EmE63E0wD2nPzVv1OHm\nt3FuDZf/H/beLNbS7LrvW9985vGOde+tujV0dVV39chuNltqkTQlWZRkDTEjRoYiI0oQW34QhABO\nHgIjiIMEQZAgQIA8KA+WLAlBJFiOQsUyJ0XiIIrdZA/V3VVd3TXfunXn6cznfHMeaAT6//dJFUlb\naNbl+r397/nO/va399prr7X2d6r+BO9RRH/reuTDexTXU5zP+dPhoTkXRaoB8djbuNSOFQ2yk5T8\nRu6gLfsujl+S4tiJiCQxztEBxeNr9zZBl8iPFCmeL5bQtw0LD47FRUQc6jf7hYzyFHJdQmVDWZxF\nH7C+RbZO8ZGISEgFkjGNy3CCY0fhjRQC3kcoX6T1GRTMGDseUm2RPufcy3OxTc73Wk1cr8Y+5ph7\nX6WCY0fDICnFpxH5y6Mu+lvLxrltNLH+1u+TfxaRziHuKxbtQ1GE+dtMYxH07MwMaNdCf7q1v0t9\nQJsXESkVcI+vFDEXKBaxTddD++B1lSVUyxGKMThmE5GU1qvr4li6/jH/d5Zc9DU577N8BME1zGk1\nTYc1XYO3FEpTxDK+T5qWFH+f2/9u2jC+w8/N1z90XMizTDuRItOyi9hGufjh5xTdEa7B/+W3sU+7\nHRyY3/xvcKBnT6MPtv4GauCc/q8+hmv6n/6v2KdXfgon4/d+Cz9/5w3sM/sZ5dHECnFPO6C9eo98\nf8nFHMSMJkRiipt8qjY4pBt0djpLQc6AznwXaf9p1qb5W7T30RhjnIT6wHmpQ2vSy/DzzhA/H6Zm\nAjC/jGc5Fy5gjabZPAG63bgH+ublL4Ee0blzJ8LRH3POKiLFAp+rOPQ5zufREcasXTrPTSiu2ruP\nfc4zPksSGRVXsY3RGujDLdTFEo7lO2O0UbeM/nfcxbht59ZVow9P/exP4z2KuLk1T8yCbtA53dlT\naHOOT/XXI4wn87FZs/MWMT4MT+BzBM9iztLqYu3bErZJmu8B7Su/e93og9C5s/0a1k6s0fH16+t3\nboAe0bsIlSrG2k9fugR6ODLf+/jgJtrusI+2eHSE9RPOleIEbdsjf3v+cfQh1ZIZyL34ONru29dw\nTbbrOKel6BC0FaFtB1QGssjPREdm3hJZmK+v3+qBrrbwuQJMEcV6+RdA33wL312oDPZAd/iwQERq\nI5zPMcWS9778BdCnH0d//Is//yugPYqhzkS4p6z65jsXn+9RH/J/u1yJc68S1QDTHo6ziEiNfNfB\nwQ7ok0tzoJ85g/azsoo2+ua1u6Bn2niG1qiatZZ+B+959+43QL/16rv4BTocP72CvjLtbIF+/e23\nQYcc8IrIp/42zu/8CaxFdnrTkqLjwfqtK6ApxBLLQrsaDaiuP0E7FhGZ//hPgp45+Qzoiy/+KOi3\nruL6+NP/549BD1L0fcV53Pe9oTk/c1U8O6tTXWd/ex20Q++sXb1xC/TeJu5/507hWpgrmXZ1/Tq+\nB7U1RH+aURKbkW2mGb27MMJY4b238R23ZhvPL0TMmpxN5xPNFp5ZF4sUB1Lcx/vStHd8mBa9DzO5\nd4uuwOecP3MGtBWj7xrQ2dEH7/0V6EN6j0lEZK6OdcO1m7RX0Tj5Pj7niTm0n17viDT2cTwlrkvo\nXaeMzlFyql0ax6L0Bz6751cSph2r5nyeT1Vc65j/2+jTzqcffL3xF+Maj/baj59F2/nICs77dQz9\n5HPXcU7+cA2d8DwFGL92EZ9hjo6YRUS+vI5t3tpB/TPnsI2ZEp914vUFj/Ng7GOPXlmi12tERCQk\n+6bXH8T36d0CCt3e3kB9dQ3Xz2KT4lOqx/bwFQ7xpyyQItU6OXq0bYqRKb+br6H+sRXUIzoT+zyN\n020zZJZn6dVll9c5rekz9ArajIPj9Fgdrz/ZpLml9nlfEhGZofT9cXoN7tIB1W7Ifhop+s+TRYwr\n3u3jQzj0zgO/yy9imKyYb68g1pR3lx7G8faOiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIo\niqIoiqIce/THEYqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiPNLojyMURVEURVEU\nRVEURVEURVEURVEURVEURVEURVEURVEURVEURXmkcT/sDoiInFyeAT0ZjUGPxyHoMIrw+nhitOmX\nfNC5lYJ2HAd0luHvRFzfA10o4FD1u338forti4i4DrbpU5t8jyTG50yMNnNQTgH1yrNtow+FRgVb\nSCxsw8JxSDO8ZzjBPq36eL0dZaDfn2D7IiKJh88ZJdhmy01AT/wC6L/o4PzeuHId9Pa1bdB3NkdG\nHwqFEt6zhuPyykeeA31qBsf23X/xedBfu0n3sHGuT58+ZfTh0//eZ0G/E30L9CjDNvtH2IfAJ5ue\ndEHf6bwOupPvGX2ozJPNnMexLjhN/IKN1+8eHYAOY5w7i35vlVumPYhFv8miS5Jp3zlW4HoQOwBp\nlfDz1gra/wvPPWa0ePnqfdCDIc7LcIA+9b0rN0Cff/oCaN+vUx/R/1m47CUeDY0+HRz0QNfJh9ar\n+Jw+raFeH/ucJHhTF10Rm5GUA3N7ixL0b66N3/I9bHSpXQUdxzHoYox9Gk5wb0rIZ4fk0sPUtPWU\nniRJye/TV+IYP5/QPTxaw4tl9CMzNfQBY2pPRGRIfl4y1MUitjk3t4B98HAuuh30Xbu7R9Q+ykqB\n1oyIWGQvAxrc7hjXQEZ+xXfp+0O0t8HhIegZsj+rgM/8b/4IMufpjTFukAnew6qZTT7K/J2f+wzo\nV175BOh/5uM+3N1fB33nxvtGm50e7pPPvvQy6CTBeS9QnFWqYizAcRaZtoQ07yIiRfrbxtY+6DRE\n27Ic9PEO+R0vR7uIrCJ+X8jZienvMvpDbuyzeEEuHANz++gHMsOYjWUq/cEAdIzuUGzaR4TWIMfM\nGV0f2Di3IqbPtmzUBWqzQEOZ0NwEOdpDnOH+W3ZN/9gje+BxyTLs9+4++ZaZBuqFedDb93F/tzy0\nYRGRn//sr4J+6rmPg260MD+wyB5sskmLcgOe/twcBrHpjzlZaZaZedJxIfUXQfuUx/Caz0Lcb1LK\na0VELLLFPMLv8B7oFdEuXOpDnmL8YtPaKDUo7hORaIz2P+jQGid/a5F/9Qrk++ieEcUWpbK5r0aU\nh3LsR25E4t4W6Hz2DPbRTkk/JJgUkTzFfuYZjmXGDtShuSDXx3tCFu+AjkJ8ZhER18FGPIpxbZ9y\nCVrjKbWZhmhzgxDn2p7iZ6RP19x+F7RzgPZRbmMu7AbYZm8X8/lwF/fSZGjmsV4F89RWC5+75uJz\nRTGOQxihLpbRb/UHaA+DPs61iAibaUr7rW2GDceG2Rkc/1GI42PRWsgyylEGZs0upe+MJ9jmvY1d\n0HXyM/UaaZqgagNzOa5tiYgkMe1PtH5C+twR1BHVQ7jW0W6gPz7qoj8XEbFdvGdvjPHuJCLfRfco\nFnEtxJSj0pZh5NUiXGkUwx9aOflCuvzE4hzoVgPjm14PawMB+S0Rkfm5WdB7h+hXXA9j5JTK2fuH\nHdCDPtYoWi2sO3tT+tDtYF7a62LeeuIE5rmnVk+DjiLs850NjOPyFG0w9sw4//72JuhKGXMmN6A6\nCmmeb9vFzzOKCTiP+E4btHnxhB/3mp2H69ZIx7jUxNqZEixzG6ypbsNt5pyH8D19+ty435Q+eRS/\nUxsWt2k890M+f9i4TesTtWkX0dZqtHdz3jqlxb9xRiH6x9//I1xjnT4++D/+73BgVp6gOuWUnPPf\nFl6yrRbe8zO/is/w4sexz7/1P+D++i9+j87lxsc4ADrG8BLdIzvZphz+fI4xT2vKXnBI+8euh7Zz\nRLFfSOe1cxbaf4dukeYYR+1SmVXErPUznAvHVE+2qQCSJfhMKdXyT57FuqSIyHPPY/1z94ByazpW\nnJ3BGGeTLogGdDZOOarDibGINGoYuxc8jHt8yoUHYxzbSYLr3Lb4zJhq+UHL6ENQxXuUmlg7ifZu\ngj649TboShlj+ZRimMEQx6lQwOtFRJ48fRK0TWeXtQrmE1cEbfZigLGdJDiXWQdj3Dwxa198/m7R\nOcrBhSXQg9cwDrl3D2sGw308n7XoMMi9hjGxiIhcpe8YFxzf2M4hb9c9RNutUT2tUcL6WL+HsbmI\nyN27t0GHlL9xncj30Y/k5E9jh86+qMYahuYaf/MDzHU65A9TsjuJ0AfUV1dAny7hM/D58FHfzOeT\nEvZreA3Ham0D/cheE237zJN4z811PBsKKpgH8TiLiFgd7MPB1l3QlSHmc+7da3j90Sugbcq1bzs4\nzssd0x5eyTEn/Epo5vzfCz7tnTmVjdfXzHrZ05eWQTcTzK2DefSPM3NoYzffwvOKjTu3QJ84heMS\nOGbs59n3QJ9uYMfHFzCXPjrCz106b+1SrWWfajNhZPrbty9/APoi5effeAfn5sf/9qeNNh5Z6J23\noIJznlAdvhZQvSw262VLJy+BfukTPwG6vYyxxuGY3h+is1d+v8Km2MS2zfcARn3cZ2++9yboRh0P\n1Y/Ix7+6h2cFd7dwj5xvYgz264/jWhIR2b2Bz7VQwz1zNEHftNdBv5FE6D9PX0CfsX7jKujz/qrR\nBwpfJUtxfeTG2RvqUqkMulxG3evjJsJzJSJy8gy+RxTR/N5ew1p/cxH9kOvjPa0SvTcSoQ1++8Yd\now/nn/sk6PADjJFqRWyzKDj2tSra/flTJ0BP+H3U0DyTjinWS1P2h0YBjSTVNFhTbSjPTX/L7+Jx\nFJfzedUxw+bCJ5HzWXXOY27Gvc/Qu3eTbdyj/uAWnlF85Tqu+2uHuGZ8mpW//xj2+XEso8vn1owu\nyVfWsd+//iR+HpDtXN9E7fpoB4fk5u8MsI+vU3jRM0M/MTwDje3Ls9jmShX1W/dw/RzR+d3jdEx9\nA18Bltvk6lpctxSReoBtLjXxmgq6fXGoNlkMUDeKOHefXsXPr1AM/joec4qIyEU8kjB8ekBhOx0n\nyWmqhd7G8FZ6NDEz9P04NcepQGPHr+Lx+4hrR/iHmTZdUMEG+PyK16HNucp3rgKVGf7vwe+hfDfo\n/xyhKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKMojjf44QlEURVEURVEURVEURVEU\nRVEURVEURVEURVEURVEURVEURVGURxr9cYSiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqi\nKIqiKI807ofdARGRgmeBLtZLoEtBBjrOPNCjBLWIyDiNQbse/Q4kRe3kDmoamTgOQU/CBLRl4zOI\niKR5Tn3ARj0f79nv9fHzAvYxLUxAn/rEArZfMKczT7BfSQ/HMprgOCUD1IGDffBprm4PfNBhFhl9\nGEx6+Afsgrg0dE/4I9DXI+zDlX3U+fw8aLswNPpwuINj2zs4BO03cGzf/8L/CfoPv3AH9Dp+XVwX\n57IxXzf6cOfuNdCjlTHoBLsgrotj2+t2Qb/7rbdBeye3QTdPm+ui2SiCti/iPXZvYyfefgPv2eum\noMc4VWLT760sx1wXtvDfUKdTvnOssPD5csF5spwAtFObAf3Y46eNJk/Mvw56bb0D2iX3t7mxC7qz\nvQN6roVrSvw23RGfYXxIa1xEDg4GoAu8RsoF0P0hroedQ/z+cIK2N4jRkcxU0JanuGTJM/TJbIuL\nTexTtYxtRmP6Pu1NFQ/72CFn15mg7kXYnoiIjcNk7CN5hm045EAH5PMDG7/fLKO91av4jE5IDlpE\nxgn69TTGfcKiPhaKuIdXmy3QR0c0twN0JAGNge+Ze5vt4t8GHWzDJT+S0lwnNI4etecFuA6F/HEu\naCsiIhb7vwj9pwxx3eVH+/j5nNHkI40laBezs+hXfuM3/nPQ+3sboP+rf4Kfi4h40QHoeIL7/bCP\nY97v4572xDOXQN9+H/flXoi2bvtkByKytYN96PQwHhQL15hDPr9koa3mOa1Zirtyy1yTvI8kCf/W\nGcfesijm5X2YHKZFrmnarpzQNVmK/bSoj5ZDC9um56T147IvnNKJzPDp6IMzGhYrw89zHieX4qaQ\ncgnbnAvaemQUY0c5X7h+Yx10rYL+cn62AXprBwPOSy88afThRz7+adAe2e14iDGw7eHgeh7Ghg5t\nRDxO07DJxrIUx9qyj+/v8VNyAWmEduMU0EiCWg0/nxKwcN5q0fpKxxgzuRToOX4FdEadjIYYJ2YR\nJSEiUmpgG9EEfdegj/5yQuunOoO2zFWHlPrUOzLzN4eey/Uz0hwfYJsZ1QMcv4qX5+zspuTSGbaZ\n52jb8Rj3nTzBcbJd7MNkhNdHQxz7ctnM3yz2PbRvpBHWKSwqZLA/tn28x3iAcZmTY59FTB8/vHYZ\n2xhiLlJfPgfaLeHYH66tgY6PMJcoN83916lhv1tNfE47RnuhJoVCPbHJL3Xo+hLF9SIiMf0poLUa\npub8HRfm5mZB79MAd7u4hicR+ojRBO1UxNxfODcbjfE765TDtshPlZYwby5VyqBdNgIR6VMeEnNs\nQXYyCbFPozE95xh9RoXySYf2YBGR8RjXHLsm1i7FitUqxhLDIfapUuIc18xjbq1jfJuT2xlQHy2K\nFbKYNkOa23oT6wndDu5DIiJFiqmqJfQD97cxd7IptqxW0c9MIuzTgOMhy5wLz8M1fPoM1l4uPH4e\ndClAmxoN0D5KJbTB4RDHJUx43EQOqe53a+0WaM6NSwUcJ8vGccgtvIdNBhVMyXdsyn2ZzHSPxwuK\njYVNhV0J1zCdKbEz/43a5Nppzvfg7YXay13Oa/h6s0viUf7mUR9Z+3RP6pPlkuPgPrsPHoPvQG0U\n0dhqNV4zP3jGGFGt8nP/Gv3n2n2cnM/8Cuqf+Ls4Toun8Bndafb1PcLZh0d1w9XT2Of/7L/FyUoz\n9BF/+NvmWVCaTqljKD9QfIviiT7tD4wgojsAACAASURBVDyDh2Q4lSkpfkb5WByh/RbpnkVyBHvk\nC7tUf06n1NEZrsFxvu2RrpCvK5Gv2htin5Mc9TP1JbMTFuXSIcYwJ+YwdsuyJujcw1itvYA1BK+P\n+VsyJb4slbEPlQrm5709jKtHlEtlZA98FhCGdM/IjO0sB89TeWsq9PZAJ33s05AC0koV46ofef4l\n0M+/9KNGH3784x/DP1Au/V6KvXqP4uaJi7WXsk8xwgks5meH5jjklE/4tLpWTqI9JAH28fLrmGsf\n2niOxyU7PqeZds0PE5/++M+AvnrtHdDPnX0c9IVVjPcrtpk7faP4BmjPpzWd0r6YkS9LjUnDz+l+\nA8pZRUTu3aN3AWh9fHQVazKnzuFzeeQ3bIoFjvbQb60srhh92NrFHLKygO+reFTrr3E91ME+L80t\ng/7i6zfw+1XT121cwfUx6uD6ePm5p/Hz+1iXv/K1vwBdoZrc3Tf+FLT99n2jD6fpLPT6LI61Ne1g\n5a9/TrrVRH+9euYs6Gk1hbyC/U6LeB67egLnd3Mb89Z7t6guQnWNeID2MNjBMzURkWj7G6C5BtQ/\nxHVw2MXnGHWwPurRubfnYd5qrCMRuXMHc/6dzm1q4xjX7BZxzbfnFkHv76HPyOnMan/btG3Px5jf\nb9T4ApBBEd+L8jOcs94hzk/cpXr0lBpNQjXqaB733dXnPwJ6OLwK+vIaxRqUTlbpfcQv36M99jud\nAHmqhf3cpLOCXS6Y0OdJjLbe38d7fvXLGD+JiIRUkLYctOWMYuqYzgoKAe5lzTrWjbg2Gk45K9rq\n4d8OLYyJbt/fBH3rT/4c9PYezsVMDWOw/W18P+BoZOaYfcq1BwPsU6eDtWkvwdr1uSX0rycWsNYd\nUx1xEppnJDHVPyO6JqN3T/gc3Ci4UgzA71Vw7CoiYj9kY5nylWMFn3U9DH4Hw5+yj5YrOI9vHqH9\nFTzci/dLuC9Gh2i/pxp4jxq9NvrHazjP/+x9s37yaUoz+/QeyO9exTbWRqgP6X2xPvmyMd2Sz0Sm\njjL9sUjm/QwN7Y0dvMkd6mOtgl+4jKGl/Amd1x3Rklzgl4xFpEpb/S+exWuemcM+tCjU96g+UAxQ\ne1Sz+OQ8fv7mkdElodevjXGzKVFOHlJefa2HDVzdwz3iRzGknjqZ9EqHVHy8KKJ1c3+Me/78GOP4\nAzr/5WWak+/L2BfKlPeK+AJ2j99Hknt831RRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVR\nFEVRFOWHAv1xhKIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIojzT64whFURRFURRF\nURRFURRFURRFURRFURRFURRFURRFURRFURRFUR5p3A+7AyIik5D/koAahagz+tzzfaNNt0R/s/B3\nIFmM2vcdvNzJQHcOh9i+g0OX53i9iEhu5aAdzyNt4RcKI5B2PQI9THCg3ID6nJi/dXHoGqeZgs6G\nMeh6uQK6GmMfYgv7XKJxy6k9EZHCBPtl4VckyvHzO/SbneVyEfTV+13QmeA427WC0YdmrYR/IJt6\n4/0PQL9zdxP0V9/De/ZDvOfps3Og24sNow9b3jboYXECuuRhv+N4DPr2F+6A3rjaAd16GfvUXDDt\noVQog7bPoB33RgPQmYM2l9D0ZmxzNtqHG6DNi4g4LtmtjW3Y9Pmxg3yFRWtKLPRdllcH3VpcNJo8\ntzoL+ugA/VW7gfMuGdpKZ28f9GyI3xe/hX2ycT3l/AwiYuXoa+KENflxaiJPcZyyDL8/WwlAF1xs\nYLuLvktEZBxhGzM1HOuCj+vBSrGPtTJe36rjOFi0Znd2e6D376OP78Y4DyIiXorPYZF/S8h+clqT\nkY3jsj3CZ57QVlWivXKSmuM2nOBNZhq8l2EbxUoVdJziM3jkF5qGfWKfPc/0CVGCD1LNcNzKVWwz\n8GnPJz9Tq2OfC2XUlkN9tEzfJkkfZD7YRb11H/ToHurKk2aTjzKei2PE1l4s4t6+cvIs6H/0G/+F\n0ebbb34D9Fe/9K9A9/s4B/PLp0Bn5PtaLdyrgxLGQJs7h0YfDnu4T6Zk37SlSc3D68s+2uooxnHy\n6PM4M/1EntFCttFXsZ+wKB5NKe4Sas6xMtJmH1K6R0prkPc2y8HntB3a6xzyExb6gXBKyhJmtI5d\nbCOnfahA93Bs9rekc4p5p8Q0xSJeU03Z5+Ln7E9v3sF4s1yugX725U+B/tlf+HtGH8oVjBMy2j9T\nMffoB8JhCY1DbqxmkZT89mSCe8k0P35cCEq471q0PpMQ432L1o5dMPNYydHeHbrGpnhlfIS+Kk2P\n8J4+5hgZxTfpBPsoIuLSPfwA2/BDnPPRCHOGUQ/9caGM4zQZoY2Mx2YOyTlBkpC/DbDfhQHmRlmE\n8axVaqO2sf0sNfuQZRyP4tjxcvCKtB4jnItogH3iPYSfUUQkovWU22gPXIXIYrxHQvcIqfiSUOiX\n8B4zpY1oiPMbjvCeGYY4kjq459/75tugXdoj2udWjD6UaRyKLu19GbaRUq5RLaNNpzmtKxoIxzXX\nZsGj+aEak8sJzTGi2UTbrpQxD9rdQ1vvDzAvShPTrni0PJ/3esrvdnGN1ysboMs+3qNVQ7uzcnN9\ncWwYhmgHQYB2wDESP1e3h88dJ/hMnmvGM1GEa9Km5zZ3UMp7CvicR0e4Hvt0/amFptFiGqNPv7eD\na7w/xnGxHbT98Rjz3F4P+zAJcZ+qUa4mItJqoY3ZLtWmaCTsAG3Q83Gf6XbxGUZj3DPm57GGJyIy\nOzsDuljCsS1Q/dO2eE9AeypVMNfwCtjneILjJiJiC87FcIw29cHt26AziutXlpawDyUca9/F6x1r\n2r+ZRL6N5tu2fyCOEv7mcAPS5K14UT5MfxfX5HwPHmJOQyiv4Tq78U9hTSlfGH/z8wdr6pNFPld4\n2+Q+cB9d0ycL5YBWgLpeR79g0fnQtDzlwyahfeb1yxhvvnMVB+qP/g8cqP/4N1D/+N8199NajWLk\nh/bqexunlHL7wYTz7u+pOeUHhCOK+bn+LDTvIU00ldj/v1b+Oj7tMSHVSwY21bjZlrgWxe54SujN\npQc6GpUC+b4a1eDKFazJ1Auo+5S3FvgMWkRsC/fuhM90yf9NRtjmwvwC6PYsxm4O1VvX1teNPuQW\nnYXG2Id9ipOSnAaKYt6Yagh8njclhZTxwT3QntBLAPQl9uFsDt0enrN0Xn8V9J0tcxzefu8y6Kef\nehb7+JFPYh9PYW2ajS6jODvfxRxIxsaLDpIJnQ/M43wmPs5Vs4Ab7n5/B7RdonM7Xibfh08+zm78\noyvnQD+1uAz6YA3P3O0u5i2LjRNGm8uz2ObtLTz3z2jN+w76hHINz53abaxVFSl+z0rmDC0tYsw/\nN4Pnw+df+DjoUhNzH65Vpl2001F/DfSd9btGH2yq81TbeI+XLuF6i2P0I7Nz86Ddj+C5zDfu4fVb\nN183+rC9jv1cPHMRdHMG71Gwcewv/+HvgK63MX+LbtwAnYZm3XCJ3uMpNqjI9pAFxvn8Ky89Dfrp\nF18AfeUGniWIiHQi7NfHXsR3COZr6G+/9oWroBtNHKfyLuac0QTXRXf9K0Yfkn30+Xx+VSf3eHUd\nc+F6Hce+XsV3Eooh7n0HU86x+zn+rU71mJ0B5e/HiNvvvQV67YN3QBv7OL2HUKCzWhGRMdWPMzoj\n4q0/pyxkto126Lq4/sIIfaMfmDFVo46+7eQ59L/nn3wO9GiMvbr5Pq7hwQCfqVJGf7vrmDaSufid\neg/fF1tbx/URURMuxW0R7evOPNYf9o4w3hExY+QCvRdp5VzTxlgjF/x8bhbX/IDi28PDA6MPH1x9\nDfQnP/ky6J/9mU+Dfu0K+qqrm2gfnR7VmagWVq2Y/taNcb+VaAskn+/u0btP7TLGuwtkXyuLqEcj\ntFERkcEAfVeHzsBC8sccM/PrpDnF3BzH2VPev8rpOfkd1R/Eusi/S8whefB5jG1zHd0s2sXkj+7T\nGcTZxx4DvXoB48NKG9dUo4j7z+/Q+0Hbu+g3hrnpe97vY7+/8hZec39IdUHKvT0P+5DwPfj9CSok\nLTqmHTk01q0qfmmOvvNGl85daPKaJdS3emjLdyl2CGkf2s6mzD195+51vOb8Fvb5fIDj8soyXn9u\njsaZ1hcf798bm33q0pkvHWHwEaOMaI++T+9ad1K04T+7j+3PFHEcT7fMueR70qt+MqILdhN8P+B+\nsAp6TGetlpAvNPyWWVDiOILhkf1+fJ3+zxGKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiK\noiiKojzS6I8jFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEV5pNEfRyiKoiiKoiiK\noiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiK8kjjftgdEBHpdrug240qaMfyQCdRBNoLCkabjo86\ns3PQsWT0DQvUaDTBe8YpXY7tibAWcT387YlXwnuOCvugQ3+EfYxjvEOGfcypz7aFWkQkSxLQ6Rif\nw6Lfx1j0XPUyfj6sFUE3M2y/POX3NqMUzSwN8R6VBWzT9/D6VZx+sfYC0J3BEO/Xo7kSkbiLf4sH\n2Icrgz7oqIDPkZwug6472Kmshn2+Mrpt9KF1sQ7aK+F8ZTmO5cZfbYLevoz2ktL871/DcQl80ybr\nNLb1FXyu2cfwuRdu4LiN90LQCc2NU8L2C0Xsk4iI4zigsxz7mWW8No8Z+UN8CU+bjeujUGsaTZ45\nvQz6rcv3QJdoHpaX5kD7ZM95jLZo87q2KyDL7bbRpxNzaO9rN7dB9wfoxyseznujiHZSDbAPjou2\n5vuoXY+MU0TmEhx7z8d7WDb5VJqLmRY+0+lzJ0EP9zdAj0e4XrrRAK9HF/+dPtDeZJFBcJ8CF/vs\nejh3Ma2vxMJntn3cLMtVc82urqANVmo10ItLaH889raDc2eTOfFcjic4T5MR2oqISEJuwvfxng7d\npFLCzy0ah5m5WWzPw7giz3AcrRjnUkQkHx+h3sB1OLx9F/TB7gH20Wjx0cYmXx9R7MZ2kaU4xh/9\n6MeMNp9/9lnQm/dxn/zWN78OeuXkCuhBB8d8N8Q+nTv/OOj1rW8ZfUhTXqO4Bovky2oF8ivkT31a\nw1aKfbIsM64iVyZZzvEg+oGH/haa1ktGsV2em/tyQDFuGlNMIxyT0j1IJxnHAviQiWWmLFFGY0lx\nc8XDNnKKswI0UYnIBvmpA9uMs4MS+orFJdwPxyOMUY8G2OrzL30U9Gc++2ugLz35FOhCoWT0wRhq\nY6jQr+e0L9g0/znFYRY77dyML3OKZapVjC+Pc2xXrGHeyuMb9zHHCHu4f+Sxue9aNWyDlrgkIa2P\niOYkxbVgkVH4FbSjLMIcVEQkDTGG8SmWDBK8R0pBzag3xj7G2N6APvcLZtzmUpx2cID9TLIO9qmE\nfayu9PDzOvkE9jupGZix++Pcmn1V7mOMlA5x34kmeI/JBNub5vPDIY5dSrWRjGoEyQSvD9lecozr\nxvTYcWT6umGXcgMf+1mbOwXaLeK6SKlPEcdVtHdmFtZiRESccJv+wvsl9ttxyclTvjNE9yxlyp25\nLiIiEpCZZmQgvJcdJxoNzINm2g3QG1t7oKNDXH/TYgmOBTmfm5DdcAy2toH1Ec/Gz08uYJ8Lvuln\n+kOq+9EUzga4poMAc6cx9dFzKT6iPgdsRCLSqGEskeXYpzDC9TcOcdH2+BnontEI/e1r72DOIiIy\nV8d9weH6KdVDy5S/VSu47zdbaB/ffvMd0OE9s2b37FMYh3t0D65hVKgusrzQAt2ooq/rDXCcTiwt\nGX3Y2toC7XroR4q0V21uoF+ahDhXzSb2KU3JHxfNuG4ywrhhMsa9b0w1hSi7A7pPNYj59gzoOcp7\nSxXylWLuRTElH0mK9zh2OBSbObQv8pBx7D0t9TK+Q21yG4Z+yPXcR4+c2bTTH3ZHHrdBn3ON2egD\nfc7PzMWsaX0iPy4FtL1Kk2oKFvq3R3EbjmJ85jfeRH3zN9GgPvOquWb/4X+Jf1taofqpEdpR3EX6\naIT6934L2/vSv8R96DjnescZm+vN9HnKxxU5n0uaC46PJn26JjRyHT4bQ1viEoxNfsSdUqOhrVso\nbZECLQif8pa4MA+6KBj7Ndu4d9dKdAgtIgdHGAePI+zEAcXJnSOMPyp1rLNnk0PQn/jUS6At23So\nG/d38R57GKsfTR58th1QXF7wKd+nPHjEQbSYtcWE5saie/C5DOd3HJ90U2y/c9c8j71+9y7oL/3Z\nF0G//JsYh/+d5gJor0LPRQbmnFrEz90pQQD5yAk912sWxtE9ylkeX8K6R2tC5yTmEYWJxev3h4fO\n7Wugayt4VjB75izo66+/Afp3vopaRKRP/jAc0Rl6H+P3NEH92AW0m8UF7INDNfdi2/QzP/HJT4Ke\no7yjPoO+bExHBdfX1kEn27dAHw3Q7gYD9FsiIhM6C4vHmG/15k+ALrcxDykEGHM3ZzB/s33UgyOs\nr4mIeFTHcwuYv7dmcE3X27i+bnzpT0AHI+yTQwGxlZq1qklG7y9VWnSFceAP6tzyGdBPLOPcuTF+\nv3dkLvqY4snutTXQ4yr6uvg+1lLOP/E0fp/yf2eM73BlYubzxRblUCmOy4KFOeQv/zjOlUc1uzt7\nqN+5gvPP9SIRkWoLT1iLRXzun7qI9nCcCEoYnwQ+PrvroR/xSNca5nsnM7RmfZ/Pe+lsgGpR7UWs\nFc8uUz2ti7HK/XU8TxcR6dC6j0KMkfi9uJxP9Fy0o0IZbWSGbMZOzDV+cxfrPrMtHNuPnMPnTD30\nXcsL6PPPn17Fe8Z4z/e3zZqdeRxHz0lnp66P9pAmGDuUaRxOzGPdqNPFPUBExM4w944PsRa1vk/v\npvTpfZwCnaFRzS9w8PrVk2h/IiKLS+g3ogn2M55QPZVqWVtUu16do3ed6GzpxJy5Lu5vY635LsXc\nMb28wvlRZsS3lA897J0xEcmptphSDnXc4zyP3kHiM76U38Ojs7Ny2aypbG7ugLYdXOd+QDEK5V9z\nixhf8rxX2ugH5jp4vyvvvGv06Z0O7nMx5VsO3cSj3KpZxj7PBrhGZx30C7MZ+vSna2aunZAziihE\nvbOBYx9Sn9tVHPu/tYyfFyidq5Gru0pp0HDKuwr8vsNWjPfcOcLn+grFyF+mcPM/vYjXP0dh3uuY\nqst6aI7bDoUszQKdS9NXOtSnQ3oXhg3szUNcE/4tnIdfLplxG5cxNjO0n04dbfbCuWdAZ/QOyKSD\nh63GeyVG2fDhnorfv2Jp84sT3wX6P0coiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIo\nivJIoz+OUBRFURRFURRFURRFURRFURRFURRFURRFURRFURRFURRFURTlkUZ/HKEoiqIoiqIoiqIo\niqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoyiON+2F3QETk5t3roEfzC6DrjRroNEtAx2lqtOla+Gjl\nchF0UsDrjw66+PkkBm05Oejcxj7klaHRh7A6Aj1yQ7zAylBO8DmyHD/3/AC0a3ug0xD7LCIyHkeg\nnRzHxbbwej/FNpIS/n5mlE7wCzk2YBWpQREpuD59BccyinBcHLxc0tky6LMt1FueA9q3qQER8UIc\nu719nO/xGOfTcvC5bbInx8LPXcF7OgXsk4iIbeNcRMMx6JtfvAt665tHoLMU7SESsskdvOe914wu\nSBChjS1ewD4V5/A5aj6uG5/sPiL78AsPti8RkSjE545oraUhPtexI49IkzMiv8Bu2i7WhDl1egl0\nUERb2N5DW2pWsc2TSw3QC8NVbK9JfXJKIL3KjNGndqsCeo3sNSR/VXXRlkq0jC0H/Z3t4DOmCdr2\nfJ3GVUQsF7/THaLvmcTYRkJrbhzjM5TrLexThs/k7qKtj9ID0EUxbb1Aa6ZEvqhGroU+loGNbXpF\nHLcT89jn6uwy9nmCa1xEpDKPY1mp1UE3WtimRXMT0dwMh7g3xvQ5z63NDykilQKvG7zGEpy7JMVx\ncWg/LZSqeD3tnXlvH+/nTgmf9vdAxptboLtHuO9MpsQux4mcYhjbxjlySEuGc2Tb5j6a2jjuP/vz\nnwU9GPZBr9++SffAMW/NzoG+c3sNdKdrxnYW7//0GBWf4oecfB/5GZfHxSVfZ/RAJOZtRGisMl7H\n2EqW83phW6RnkCmbOT1XklE8SM+Vc8xikQ+ne8Q0V67De+N3vgXfifG5HY98ekZxNfnLjNak0acp\na/bkXBP0ix99HvTXv/4t0LMNHJdnn3kS9KVLT4F2KYbOMnMc+G/m2qGxp62H16o52zROmbl35dSo\nZaUP/PxYQQNmrOEaxkPpBGOPcd/0MxxAV9oYj1fmcB+O+jjng80NvOd4ADqjPTIOTduOaa92A/bZ\n2Ealhn3MyI+Mqb2Q4o1a24xvXR+fi3OhYpXy+xDz1HjQwQYpbxULdT5ljec59jOJMbZLU3TIvD4m\nI5zvcEjtpdiHow7VC0Sk3MHnKtkYw6QJzWfMfcDnilL0K5GLfRiPzFhw/wj3V8dDO+/H2IfJAPfT\nMeW9fH3RQvuQe+8bfags4nMEZfZNeP04pn0pRG0nVCcp0n7sTfF1tDdZ5ABsY/89PlQq6MuaTdz/\n2jOo2WaSkbl/2eTr2DclZNvsbwdjzL3ubmLOm1BcUC6a8XtE9yA3IyntkU3ydROyZfYigz7afrtl\n9qFaxjU9Ip+8c4g+fEI1nfUtzFMKgU8a1+vdDcxJRUQSik8LPvYzNuJ0nIxaDX14qYj1gjOrWK/4\n82+8afQhfRvvsbqC31leRl3yKP4pYZ8bNawbFkpow/0B2qiIGa+USzg3B5TvDUfoR5rtNuiActbx\nGO1hMqH6qogc9vCaIECbO3VyBbTn4XOPyXWt76F99KkP02LLFuX3pQLOp+ubNddjBdXajcKmy8Ef\n6WkJHC99bsPjz0nzPYzv8+dkCP6UTvE+x204D/mc7/G9PuO0ceJ6qId+vFjCuNmxeqCTY5hzdHs4\nJr//2+Yzbm/iYP7j/xHX6LnzOPicm+92cD/9/d9C3/a7/zPqyZQ9XXkE4RyePjZKdkYDZuWA0isZ\nW1wXQs1uhf2Cy76PzhT5YxERn/6WUx9CwX3Vc3HPq1E+PxjiXt1uzIJeWTLPRK6vYYzRob19eQY/\n//RPPAG6mGNM+/5VzK3SzjroEwUzB9mNcP+PyAcnVBcs0lmSY5Rk0U8UC9jgJKRCpYikHD9SmxYZ\njE1z5TkPPo/NyIajxBwHtuOZFsZqy7TnL9I5ZUJnEn4VYyLzaGfKPkT1UpsSjhdsvOcXc9Sejbmy\nzwlLzjW/72Iv5Gt48R4j8hrO+d42rp/Zs4+DjsqYQxQt852LaIBnPGGIOspwPVRqOL53PrgCml8l\nyEcY35w+87TRh7kWnueeXJnHNmtoq50O9nG+huurexdzzrBPe7+LeZGISMmnGg059WtX3wJdW1gF\nfbCPeem77+E5zv6Y8jmjByLtKvrwCfm2m9s4ludKWE8NaL6tnM6OqL7dtM31VWnhPmA18bzJpbG7\n8NgpvIeL55LvXMUzxZeewvZqU5Z4ceEi6N7eJuj+HawTn5k5Dfr0DOaY1ytco6X6QOmM0Yfxwbug\nC+wPKTewctxfowHtWwO08Y0e1nh39tFmRUQWqS58ZhHHdrnNCcnx4annXgYd0ns4IdUBEjpgTGLT\n1yUj9BtvffvroPujQ9B7u2i7/O7Xiy88B3p1Bvv8p3/6OaMPl6++h22G5KvozMPY9+dwD7BS9CRz\n9M7TaB+fSURkRLXFmSa2eXEG32l0yQdU62jL7Tr6ofGIzoamvFiV8VkpvRdXKNF7lAmuBdvF5+b3\nbQoBfu57Zu1yY2sXdMXHeOTaDXzXc+MAJyNNzoLmnDIdbIMe9dB/i4iks7gf8rgcHGDNbkR2v9FH\nmz48iXvI8gL680rJ3HnqFXo/isaK3x/gd1W+V6ZFdXyee6zPXqdQq+Leze+bxZQT8HlOITDPAO/c\n26F7oC04tGb4nJFngLXtYY3Go1zqybqZx9ynVs5VOBfC65fm0S/UCjguP34B7blA70G5PWwwMF/R\nkQnlRpdx2OQyLjnjPZGfPYefv7yCtrxI5eYNTIslxzBe3hub/jLmd8ponEK2D5rL6yP8wu/fxoHY\nohrd1+iYZZSbA/flLWxzM6JaPtnwX9BzDund5xl6V3pMtZmbHvqpL03wehGRcII2eP4F3JP//Z/C\nGkW5gXvflWvXQA/ew/06HdM6I9/IZ24iZopqfM7ld2uKkT4E/Z8jFEVRFEVRFEVRFEVRFEVRFEVR\nFEVRFEVRFEVRFEVRFEVRFEV5pNEfRyiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiK\n8kijP45QFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFOWRRn8coSiKoiiKoiiKoiiK\noiiKoiiKoiiKoiiKoiiKoiiKoiiKoijKI437YXdARKRcK4LePtwB3Rv3QZ9dWQLtFwpGm57r4T2K\nJWxzNASd5/h9x7dAZ+4Y9LCMfYyD0OhDTqPrioOfJxnoJMVOFIoBaFt8bDDB66NRbPRBcnyOOE2x\nTzb2qWbj5138WHL6PY1bwYf0adxERFKb+lXCe+QptpFGEegwxbFdoj5MaFz2RuZcjIY90ImfYJfq\nZdAB2Y9r4T3CGJ/Bp8lOBZ9BRCTt4D3f+4M10HtXO6BpKiTN8A+jCJ/T9rAPtoXrSkTkzlsT0Lt3\ncB2cOoXrZHyIz+HGaLNpgnM7GaPOpphkNiYbiT26wLShY0VG9mmzrdA659+weSVhZhcXQC/MNUDf\nubOLXchoHlO0zXSAPlditE1xathD3/TB7Rm8xrFxXschGkfoo/06Nj53Qn0mly0J+dNwPBGmPYvj\nwm12B+jnJcO78D1y9tnVJuj5WbeYVwAAIABJREFUJRzXM3OHoA/30C+JiBRzvEfRxnsUaXl0yafv\nkXl94uIi6OXTZ0CXm3OgK7b5m0nbw73IcXFjsB3a2yxsI6dxdix8iCLtdY6D33c88hEiIjQOvDdZ\ndA/bw3VVrlRAFyhG6PcG2Mf9PdC+ZY5TuI1xwaCH62gU41pPaN0dN9ivRBHqIMB5HwxxzEslnCMR\nEZf25hdf/BjoxROzoP+n//6/Bn3tnXdBnzl/DvT2zj7omPZ6EZGCi3Pvs4tmX0f7ok327ZIxew4+\no8XOTkSiDNdckqN2clqD9P3M4uAOn9O20FZTWsMiIjb/jdaEzfegeNMzMhDsZeCgTsVcLyl1oehi\nvz2bfQ/fkuaXnsljXzclPKmUcP/r7B2BdlP8khVgm8snz+I9yVdZFvs20/dYtG9YbDT8HUp6jGHh\npIgumDYObCHRGPdT1+fY5hhB4+XSGhcbfV2xhbHI+PDAbDKNSKP9J2OM33mPc0qY1/S3cA8LKJ73\nS+Y+69iYR8TjEWiL4gXuo1eugu4cdPH7tL6qDTO+zTNsszWD+4JFjqRUx3taFq7xjMbVpmcUyzTu\nJMJ4Mgpxr+K8NQ4xEJtQbNnt4DgOJviMk4npb0v7ON8xLcqMSjpxwvk/6sEI+3zz9gbonS2MV0VE\nul3st0t+xyW/49K6cCiepceWJqUS/ozRBbFP4EU5PTeFGUZdIgzxgqqL+3Oa4zrwDM8mYpMDDGNc\nB+ExzmNr9TrouVmMuVa6GPf2+2gz9zcxHxURCaMH1xJy3n/Y79BaGE5wze93cf2OxlP2UNojh5Sj\ndgbYxsoC5rghGR7nhxk9RG9oxjOVAtVx6PMoMuPRv85ojGu6EOBaccluywXT5/Nzs60H1OZME8eh\nUUP7SCjvWT25Avq5jpkH31zbMf721+mRjcUJjsv6ffRle0forzke6vQp9xeRQhGf8+AA92iObxcX\nMdcu0v57dIRxYaeL/nUyMmsWrot7+tIS1r9nZ9qgM9p/OQ8e9HHc9rs49v3RDaMP51ZPg16cnwdd\nOu7/zhLVN4RjO46t2fVPiSeMRIQDarrlwzV/n/rk0ufelD55FPPzdzCEfXib/Dn3mdOBaVsm5zEJ\n2ncmU2pDP2TEsVkg+OK/Rp87prr7P/gnOPjbe9jG//X7uAd8+y+wvVH/wfuQ8qjCtkQ1HRvjE87/\nptWq+E9FyvlaNdwnY6q7H/UwZ+Syk0u+b9rBdtHDfmYe5oi9BPtUoOcME65lYn7HtcqlBbN22Rvi\nd+6v4d775MUnQD+2eAF0rYFx1snmOuj3NrZAXyhgPCIiMo5wLNfexVjc93EcOP6IuIZN9bNWk84Q\nORkTkYiOlxKK3Tzab6t0xm/TRmHRXI3GOM5pPCXOrmLOP5mgv1vqYxtuxvU16gPn4jRO+ZRxsKlu\n6HHNrYN92KHn2nzzCujB3En8vo8b9nezNr+fKx5VWnNYXLh7B+PxwR6up/MrJ0D/1CVcryIi3/r6\nn4G+n6JdlStod40Kju9aH/OU/gHmDNEEP1+MzHcNnAjrRP19tN2M+hSNMPd5/iyeCb756jbomxPy\npYFpIxEZ28Ee5nMbu/hc53L0G1zX39q4DTp20H+fqZvvO7iHOFZrPt7jiXM4/4GF+ZdTa2GfdtDf\nlmgPaBfNWDRfPgU6pDrwz/zcz4H+kZeeAb13A23w9j6exU9SnOs79+8afWhFmG+XI/T5ToZnXs5J\n3De8Op5rv7WDNvfUEu0By3gmJyJizeO5887b/wrvQWcF3THuATGlxlU6B/yFn8a1eOsO1rpFRPb2\ncOO5s4E2ubqCcchxYmPtJug4pAHlui3HeVNyszzENfzBVbzHO1ffAD2hYm8eYDxz9d3L+P0B2mmY\nmX6mVOMaHNXdJ1h7zGk/K1Vwzn06N+3deB9vSO8OiojECY5VRjHzQhvPeiYFvKfloy1n9E5HTLHD\naGzWqjh3brWwLlQI+ByTtMtRM70/4eDnHufyItKl9x3+8ltvgf75n/5J0M119GWDG/jcW13UxTL6\n70Uxz8ws2h+5BufRuyQ52VR3gPbSo9p1vkDnGca4iQQ0ny7lOxw7mlVe87zhQUw9aeB7UGx5fKO6\n7/DC88+D3t5BX3LYobOtJCR5z2jz4AjX/mOPYX7GZxJZ9uAzdoZz61Idz1V6FhfgRH71PPqGV5bI\nPkv4nWqDzpDpDDijc8uUArGMz7mnPBS/4rl+hN8Z0znkahvXxydO4fUVH/XTJ1E/toTtLZ9B/c/f\nNZ3V+wPMa7v03lxO71NztYv1B3SEsR9h+3YFfdd8BeNXEZHXqSDab2I+x2fCRzH6v09efBz08y98\nFDS/79iis4NmE+NdERE6wpJyFfdbdiRRjOPGZz07O5hLjNbpXIZze36HSES+V//4/XDMTzQURVEU\nRVEURVEURVEURVEURVEURVEURVEURVEURVEURVEURTnu6I8jFEVRFEVRFEVRFEVRFEVRFEVRFEVR\nFEVRFEVRFEVRFEVRFEV5pNEfRyiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiK8kjj\nftgdEBGplCzQ93Y2QId7KehiyQP95OOzRpuRFYN2HPwdiO9hG4GPQxFZQ9Cxf4Q38LBP9pTfmVj0\np6rjg+4mE2wjwC/YtgPazXCcep0R6Cwx+5BnCfbJykDXwxx02MB7hDaOowg+t5Vje55XNvoQODi2\nVhHbqJZxLnLssoTdCPT7hzgXfo6fJ8s4ziIipXoB+2Dhc/pegF9I8LlcB7Xv0PU5tpdP8JlERN7/\nqx3QnXW0McGpkDTDe0YxDkwc4jgGNo5zyUX7EREZdHE+h0chduEIbcrLsVPpAHWCX5eMHsLKzHFw\nBefHEuxnTnNz7IjRXsVGPyBsW+xb7IIw5VYb9MryHOgbt3ZB07Qa/tCmObAStIs8R20H5ro/e+kx\n0O99+33QSYr2i9Yu4pJPlhBtN03It9EzSW76Q99DWyuXcKyjFJ97EmEf2zEa/OYWjuvy0jzo1kwL\n9MtPrYL+/Dc/MPp4d38AepXMYULPuUn+cmkV+/Dcs0+CLlSwTzn5Lss2wwKLNrMkxtnKUrRpy8U2\nXNp/a3W0lzRFm87pfjy1IiJJkpLGPlkOznUhQL9jk5sJx+iP+x3sg2fTnpDh/UVEDje3QU8Mm6W4\n4Zj/PDWn+MD3aQ7ILkrlCmjXMW0xJb/h0j63snIO9Gd++T8B/Xvj/w304dEB6KBUA332VNHogxX3\nQY9HaP9RhItyTOulyPskrReO0xJqT0TEytExeBSr5RQ/iIU+vujj2IfUR5viTXHNuUgovmRfwmuM\nt/Ysw3FwaBeoUPjgmaGdiGCjZbrItdBnk0uXCcXArrEmsf1Wq270YDzB/fDenXugeSrGQ9zzd3e6\n2AeXYmLesL8POOYVWpsO+Ut2usb2mvOOLWLRWAXFEugk5Xzi+JCMKZ+jPcyh/cct4dgEsTk28QD9\nTDjsgU5T9E0O5TG2j9p1cX6GR9heHJmxZUYxTzRB7RXQVtMULaWA7lTcIvbZojVvT9ntU/JN5Ro2\n2uvi3m3Z7IfG2F5EuRfl2nlu7u0pjcO4j2s2HuM94hGO7XiE9jGO8JkGA2x/Mjb7sLONuW9CQzWh\nnPCwhza128E+rO9SDaGH9man5hoPaH48h9Y8bRNkckbMUy/iBdUitj/TMPcdl/Yu3meiiG5Cvq2c\nU95rca6Mz51Oq+9YlH/7FBNPyX2PC6USxu9zC5hv9shvjSdod3Fi+rqtbYzDuP7heWgHRo5Ke49D\nRsFeheMAEbNmd9THficp5z0U31IfaWlIoYR7QJyYnegNcGyimOyM7sE+wKYFViqiT2/XcU/o98gX\nish+F30Zj51HQdJME/2xTfHrJMT2LAfXxulTJ4w+DIcUU9MewGt2exftZ31rH/tEucQkRB8Qx2aM\nnSbYh3q9AZrHtlHDz1OywS7tGQnds0l1HBGRRqOJ19QxR4rpOca0D6Up3uOog2uzWa+Cth3Tb23u\n49hGtMefmMP1f+zgPNThmhxvcpw7Talp8kbIWxA7j4d+zn16yP24j9Puwf3mrZj7wG3y52xa/Pm0\nEynOQyjPHYzxudJ/B7nScYDj8K/+OfqJq1cwlhwO0b+OBrjv6LD+cOBQLsT7QcplBDKMbKqd4Jdm\nqhg/XjyBNevtIe5hwyHWxPmcyaF4xHLNPSwh//jKU1gX71Ot9p17WMsdjmivpr1/cWYJ9L0NzK1E\nRAYUV104g3t5nUqNX/36FdCFziHqDNdw/dwl0CsXnzD6sLF3A/RoTDklxbROgjFrRIEzx+Ecf7If\nEhERi/NtHHtuc5lqbnyPUYrtBT76umbR3FjKJRzs3gi/U6U681N0zlygzSyn65P7aD9W1TwjkyLG\n4sa5B9VgQ8oXJpRX2VxoJPIpW75F6zc3ov3jex476aHtL5w6C3r3g8ugWzWMxV98DtebiEizgHP4\n9ctvgT6coB39/V/8JdCf++LnQX/j+nXQFsVk21ubRh+27t4CfeniBdDzc5gDlJv4XHc+2AP95h3M\npQ45jx2Zeew+1ZI2t7GN3MX651MVzH1qc7geT53EPPX20UnQrm36mYBy3XIV87Mnz6DP/vz//ceg\nNyhXmqV87SKdPVXL5lnRtQCfK6jjPU+dxe/sHuA4tSi3frpNhyB9zM3GEb1fICJphv61T3ltNUCb\nKjXR33a+dRX0nIt9WF7A/XtE9R8RkVOncC8qZbind97/E9ArK2dAv/f+bdABvWu0sIB76aXTpr+9\nfxfHansT7XZtzRy744JNNc2Aaqj8voVDOW+lhOMrIlII0P4zdwb0ucfRP/Y6WBM/6FGcR58X6PCg\nXUc/JSJSrGPtqFTCuCym9+JmKE6L0Mxkfx3tbLfbAd2cxfcnRETyPXyOA6pdVT06z6X3Je5dx/PC\nfT4roncyukOzZsfncRUaB4fa8HyqI0X0HhLB9dRCwO8picQxxrxfe/UN0C88jT7Azbimi8+dxTiu\n9Tmc/8aieRab0P4YTHAcgiL6Bc9HPzRIuXaJvpPPrO0pdRSP3jPidxQYi98HMD5/sJ7eJsP3OL5x\nnYjIJz/xKdAHh+j79/bwfczdTcyLPv/FbxhtehSzzM2h7+HcNyTb4RqKUVOhKTl1Fv3njbffNPr0\n6h6dK1IjS22y1wPc83a7+PksvedkU2hnUQGg3TDPxgZlXHNXd3AdZz6uhzotY4v6wDkJv6NRDvDz\nC7T1/6OXzdjw/gjv8fUb+KC9A/wOh7jXRvgMTzWwvb6Fvu3SJ34M9NITzxt92trF2K83QN9UpPzv\n8eVToGfmMQ6TAtrr0sIC6GoFa/++b9ZNLCNXp3eC6XyB312ZncWY4NTJVdBHR5iDDaj2Y7w8IyLZ\nlHdPkAefDX43HPNX8xRFURRFURRFURRFURRFURRFURRFURRFURRFURRFURRFURRFOe7ojyMURVEU\nRVEURVEURVEURVEURVEURVEURVEURVEURVEURVEURXmk0R9HKIqiKIqiKIqiKIqiKIqiKIqiKIqi\nKIqiKIqiKIqiKIqiKIrySON+2B0QESkvHYBe+8tboAfjBHScx6Cdom+0OXeiDbrhNEC7Dj56nKag\ng4YFulWogx4l+P3eZGT0oeDxX/AefoBt5LEDuuRWQQ/7PdB2hq3ndm70wXGwzSzDPgzL9J0KaivE\ncXCr+HuaerEAutkoGn0QG9twEtS9owH2KRuDLhYD0N5qGXSyReN2LzK7cAH7aTnYB9vCNooOPqfj\no/YsbC8eoU3efxNtVkTEyiugF58/AXqyOwQ92uyDTodoL+dWZkA/dnIB9OrirNGHf/naW6Dv3Eeb\nivpoVFUXnzuh31NZgkZOUy3WNBdj02+yyAQt65j/ZmtEvoJ8kdhoWznZprAWEa+EvmJlBW0hlyug\nhxO01yRGnafkXJIQu5ChrYpj+uCFS5dAf/SV26CvfvMqaJvGIaB1H7nYxyjGNdYs47iVy6YvKldL\noEs0lo19fK71XVwf/R5+fnRwCHpxvgU68HF9nD+D8zIOcVxFRP74r26A3hhOQGc0NUMat0+dXQRd\nLpO/pHFLEmwwn9In18e5sG28p+uhtslP5IL3KFXRF6YZ7fER6uEIx0BEJGKbzdH5WDRQfXquPEfH\nMwxwrkb9I7xfiDFEwTdtfruD9jKm53DJn5YDHNfjBz5vSn7FsnDO4gTHy3PN/cPmTYaY0Dy/8mOf\nAP344xdAb+9sg76/hvHnV774p8Y9wtE+6m4H9KuX10DbtOeR6YnrUoxkYZyWJqi/0wbav53jPVxq\nI6dxSygOCxzslEfxZMx7gojE9BwOBaUexZ8emTs/Q5li5noJ+5hmZozr8/ZJ4YMfoK+ZDHD/Jfcn\nNtlkQL7t6WceM/owGuG+cLCDOU1Qwb1pcWkFtOPh5xk/JxkMx/EiIimtHYv2HsnJz/P3eX45LiP7\nyacsQ8v4G+UPlpEUHRtyGrA4xjwkp7VAKYYETcwxRUQcF7+TjjAnyATv4fqU55D/zB38fDxEu+X4\nXkTEo30xS3EvDscUS5Jh+LR3FyiumwxxPU4oxhIx89igiH0q5xjXJZQCJiPMMZMJ7u1OUKM7muPA\n8UU4wjx1sL8LOhrjcw262KnDHuoROdP+yMwh+xNc99sH1OYR1yGwzVGO41ggP9Io4vW8R4iIeGy3\nAc031TXYrbgZ2ktKfiYoYR/rjWkxEt5zElM8yilTSnEY7W1egeoBtG78wByHLKbYRWivqxxfX+fQ\n+DSaTdDLS8ugE4pfRlPi+dEY47bxBDWHfSnV7DgubFUx/ytSQS6KzXhmSH2YRHgPfo4dWm+lAuYE\nAQUn7Bs93gREJIxwfRQK2MZME59rv4t99sj4K5QXt1uYx+ztY+wqIhIluD5SzpVC9DsHXfSvnQ76\n11YTY7Awwu8HtG+JiCydmAdteejjLXrOXh/3jUy4xkfxC90vpXxSRMQroO+pV7APPuWAnCf3uzgO\nCT13s4Z7/uwcPrOIafcu/SGkuM6lcdnexVyl18MYolLCPqeJOQ5xjOu1P8Cx7g3NPftYYdToaFIc\nY5JITwmW+W/cBt/jYffkxMcwnId8/7u6J8qc/BfnCOa4cPu0Ch+S24uI5DZ2grYJY10r34Fzyt1t\nc50rysocnhsNqNTQHeD+wW4nmVIn4tzpcIz7INegfXYTLucUVOulfTd1zJzBpX3ul/7Wj2IfQtzD\n/ukffgH0kHKMxRkcp9mZOdD9gemJdvYwTppr4hocU62/4OG5zt19/P6PnsF7Ntp4/jCeEmcPBhhr\nUfotvo/3tGyMm+MUv5Cl6I93D9AhT8sh+bzVcfEejTLFiykaWTjBfM6h/XaujXHVZ19+2ejDXBVj\nt5u38HyqYb8P+mif3iHYPQO6OotnO3YVawpZF88GRERyOqOyKQ52KfetUC7w+EnMs0ounUlwQW7K\n5phTnCzWD88O+tq7eB7+8suvgG4vrYLuXb8GurFwymhz+QyeL5yn+tgTF54CfYJy5b/3H+C5/ugP\n/nfQ727cAx1PqYkPemhr25v3Qd+6jmccDr3HMaZa1IRy50GE6+3KVTzLFRHpU/2Lz61Pnkb/aVu4\npu0CbjzuKdwzZgXzmqhjnscl82dB+wU8C+WzoqeevAj6yle/AnqfcsznW/Ruygz6re90FOeT6+bR\nBPv03ls4V49ZW6Cb5ykHLeHcPfv8M0YXXn1tHXQ3wHPrX/+VnwZ9fw/3+Fs710G/9IkXQH/8xz4G\nun7GPCPZ3kT/mvVxL/NK6F/b8+hPn6Q6NB0dSZqjbzzom+tic4L5dY3y73aF68DHh7JRu8DxKhVw\nL6rUsaY3u4B+SkTEKeM1SQ/tqkd73u72JuiFZdxD799FvxQJTvLINt99yeldhFKAcxphmV4WZ5ZA\nzzXRzr66jWvlLu2hzVnzvSr3CNfoIKHz3hjX09pNjC3euYPfL1AdcZbjuinvaHA9lJN1j844cqob\nWZTL5/ROBp/V16vmWgkj7Nfu7h7oL3/tVdCXnn4RdJfORPqHOC7FJdxvgyrGqiIiWUzvKlG/fT4j\no+fm92smIdpg9pB3GEREfKrBBZS/PLzKgbAn43dXvp9G8mMe581RLbXVxn345MpJ0K+OMa66u47v\nhYiIPPHkc6A/Tu+WXL+J726traEvSWiNmjOAllFp4HvMZy4+YXzjvTe6oF9/H3M+l97JyMk3jSP8\nfJZqdkM6oOPcfLVuWvPAxTbvdOm9EKrzrW3iemkW8fNnyOW2MWSSgEM/KtcuVsz3JU5UKfYr0Nkn\nlbQPKJz9HJqL5PQul9vGWPKXfu0fgi7UzH1kdw9tbmsb9cYm7p872zsP/HxzC/1no44x1uIC7n0n\nFvHdQRGRZhNtsFjEOMIm/8n1oHIJJ2tlGeOIjc0N0JMQ498kMVdJTufY/O6FubK+V4+r/3OEoiiK\noiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiPOPrjCEVRFEVRFEVRFEVRFEVRFEVRFEVR\nFEVRFEVRFEVRFEVRFEVRHmn0xxGKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKojzS\nuB92B0RETr7gg/7U+kug33p7HfRs5SRoW8pGm6NhDDqTlHSCX/BRz82UQIe5hd8fOKCdSmD0oRRg\nm914ArqMjy0xtWlnEfZhgs/kunh9nmdGH/gacXDK7SJ+xy2htkoe6EapgJ/n2P5kiM8oItIf099c\n/E2OVca5KdWLoAsF6rOHfcxqOFf2ALWISI7dloKHNlP08DtVF7WVYZ/DQ3zuvct7oMd7odEH38cJ\nr9TqoNtLy3jPVWyjmGAfmjQXVQ/bb9erRh8urSyBvn17F/QkRjvPaa5sj+bCR802mItpkyI5ShvH\nEntw/Mh6fdC2h2tM2PZs+twiLSLi45pZXJoHHRTRNg56aFtHvRHoKCTbi1Bb8SH12bQ1vzEL+rGX\nnge9d2cLdNgbgp6bozZztJtxiP41sNFWKyVze3NttMdRiL7pRB2tr+3jXHg+jn2ZfNF4iONYrqCf\nKRVxnzh/cs7o4/PbHdBfunwfdC9Cf7nYxjYXGzhuFo2bWPiMtk0rzprym0laxrmNbUYR7k1xMgad\nxLiX+QH2mcxLOkNcI32yDRGR8QTbTFLuJMo4QXsJI9S+i/ZSr6J/DSf4TK12w+jThPxfj8Yl7NM4\nOOZzHSeyDCfBofiDP/fo84gNQ0RSmueAbMmjfdB10J7bbfRLrVYb9L1b74G+evWK0YflBfxOhfyr\nT/tmmlPMk+MapiUptoXjYk9ZkmUP23AdHBefFm1EthnScikXcR8OaP1MEnNnHkzwbwk9p+vQ/JL/\n5XGaq6J/bRbxGUcRdWrKPTIbbegnf/6XQX/rr74O+sYHON9sX/Nt9KetprnXDQa4j+QUxSysrIL+\n7H/4H4E+f+FZ0OySOYqy2GCm3JPdPjvELMNWbYrDuA95/uDv/5ueUT/x04R88HGCxz8eYSyQkV15\nBbR1xzHjOov2pJxse9zFfTKlOfHKGL9UZjDn6O9jrBGOcL8SEXEp5p+McQ5tyjG9Iu6bfH1Gzmw0\nQB9vx2Yf6u0K9nNA8eoQ92a3hGs0pdx7vL8G2im0QFuumc/z/IaU1+5u7oA+2j0CvbONem8TY+g8\nxnEaU5wnYsZydRc1uU9pr+BeVzyB+Z/V2wcd7mIeO+FNQkQ8D8ehSIWM8izGtEN6jmh/G3Rg43wH\nPrZfr5u+rlpFGzrYx3FIUvxOtUD7ToADVfCppkD1npyDSRGJLYplXByHevn4/tsjOf27KhblDNUa\nrr+FBcxHOx30WyIifVrTB4fkmyKK92lzKRVw/FsN9H08g2FixpYTygk4FuB4NSTbznO05ZSvD/Fz\n36P6nIgUArSrMq2vehVz/aM+5ebkpxzaQ8KUcrcp23i1jPcYUa5NjyVRgn846KE/fqyA/rvRqIEe\ndqmeIGbuHFTRR/e6XdA27StFygtyim/CTg+065r1gkYN+1kIcC54z+73sc3drU28PsdxrFVxXJLI\nrJ+O+rhvjKmOGKfYZk5l/THVclptHMdKFddq5xDvJyIS+DiWHMtsbGMd8djBtsGunfIYca0Hfz71\nO/w5t8H6Ye2hzh2KzTnAFzETTb6G2+B7Og++3ijuGrUns0uc61jUxxL5R4euT81ESFGU/x/+wS/8\nBOg/+Ms3QV9axVgupv3l5ibmECIinTHFbpwrJ3TuSAGG7WJO6ZADzigWHw3M+JLrt3/0F6+CfuLU\nAmjfwxgopVBtf4yxHMej046+djt0pktjd+EU7v8vLWAMNBdjPtecx738/2XvzWJty67zvLG63e99\n+uae299q7q26rI5VJMVWjYu0RYqSLUtUQ9qG09kQkACGg0B6SB7kpyB+SGAkcQLDCpAgcoPAsiVR\nskRRbMKexSpWFavqVt2+O/3ZfbP26vJQBsL/n9vnkGpQukf/9/bftfZcc8055hhjjrlOVWuOzq09\ndy+dU/6XkV5cwLo212C7GbbJe9KEcsVoRo4beDgXAfn0pRa+d5ziuIVUJx6NBqBrAfbh4hm0WTOz\n8488AvrRSxdBb13Huu/mG38MetzD3O7co8+BLvdxnPxHNpw++DW0MaO5WKXzpTXKHz9I71XdwnHt\n53h/yIm7mflktxw/+SduZeTB5fPfxTk+d+o06FNnzoMuNs6B5vM+M7PWAtY/PvgUnnuWqnS+S3uK\nlRPoh/7B3/8V0N+7eQP073/9G04frpdw/bz65hXsI+Vdt/ZwL7V6EutEbTov7tLe6aDv+ttaHfuw\nfgLbvPDQo6A3VvF+L8M2b17DPp4McX2Nh+55nB/iOU3QQD8TeLi+VlbRn7bJ+OfIvxbPngC9ewn3\ni2Zmg308v717E9/j7vU3Qc/7WFOIxmhj5QTtq9bAZz6yiONsZvb5P7gOutS6BvrrL2MfTi/jMz75\n7I+Avvyhd2F7FPKHNff36LOPAAAgAElEQVSM5JFHnwLdPsCxvnMD98Lfuob1n8kYr2d0HlWKsLbd\nbLhn65cu4zODCdU1Rug/jxN/4+f/Nmiu2dXIL/E56mTsjk27wzXue6AHPfQT5RLmcfP07Vaytgya\nwryFZTf6cG548XH0KyuL2KYVmEtwjW9KNZiEctXR1M2p+Ly2O8Y2JwnqUytohzuUK2RUrRwO8TuB\nJHXPBuiY26p0DhOVMA+b0vcTnAekufuM76dec7+7XKZ8I0lxLBtcV6T3GnbQxjwah3oVf1+uuT5/\n1EVnNBhibliu0rd/FcrBqE44jnGc+DsS5xtLM4uoXlTm7+Y4x6L9zOzv5r7/+p8Fx/tLOz7PLpM2\nyqWvXXsZdH/grvNPfPxnQX/kwz8Omtfc9g6eCQ765ENp78Qz4lGf2zO+f1g/j/uW5i6ebd7Zxnwj\npjXaI9/Updfmsx5mpzOraEffmlC36fMXC2J8z3/1Fv7+d27gMx5qUn2AHr+KqYA9vDbjDJG+G/Gp\nkz36tuXVNuqXh+RH6Hzi8hMYh9ZOX8DnsT2aWZPOA06dxG/dH7uIvozt6/Ztmvu7+O38/j6es+zt\n4fnv1atXnT4tLmH8XFvDvGplGWsSrRb65GoF18TCwgLoU/Td8+7ePugh+W8z97sSdoh8BvYn8ZjH\n9/RWCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBB/KdAfRwghhBBCCCGEEEIIIYQQQgghhBBC\nCCGEEEIIIYQQ4oFGfxwhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQogHmvCd7oCZWRLGoP/K\nTz0Hejoogy78edDVctVp0y8y0ONkhNfpz0IWF0ug5yP8/ShrYHslbKBZW3T6EBf7+Bu6HlgOulIp\nQCcJXm+0cBwmfbyeG/7ezKxUxikut1CHAd6fTif4jBH2emswwB9UPGyvjNrMrFaLQBcR9jusYb/D\nKvWxjO/tB/gMz5uCziKcSzOzWoTzE/kV0HmAfWp6aFP9WzjfO68PsQ8x2sfKUt3pQ3/YAV0PsN8b\nAbYR1nByphO8fzzGudrcOQA9fOMtpw+d/TbocoHvNc5wHPCJrr1EdN3z+O+tXHvge3yP73F/c5xI\nB2g7UQXt2ypoO16J7dn9mzYvwDaWVpZALy+ibV2/uQf65p1d0I8+inbSXF0BHdRT0EWA+u1uYr8b\na2ugz186C/rOlTugd9to340I/USW4DP7KfrsImXrNGs0a9gG/SbyyfZI9wcYq9IExzGlYTh9Ad8x\nCHABlSM3BL/rHI71K3dwLnbv90FfPo1zXQmxz0nMkYeg9Ze5YcT8EO0rp+sZ+Y00w7nLUuzDeIjx\neH8PfWO3j9eLGbHNp7nxaWzzDOfWqA2Pfj+l+/c7GOtSmtw8d/s0TFDvtHGtT2K8YTxlD3u8KAoc\no4B8f5zi+4cUYDzPXR8h2bfH8YJyP8/DNvkZRjGw3+2CHpMtmpkFTcwP2hna98Icrpd4jH2KE7Id\nH98z8PB6mrn+tVbGHKbI6Z4U12S5hO/tUxcqNNR+iuMasG80s2oFfWx3hO8Z+jT2FLpKAXaiEuDv\n51oYC8OE17RZPMGxDwJ8kaeefS/oWr0FevPOdWyQXrNRx7m8e/Oe04ekj3ZMocnOPfIY6MtPvAd0\nKcJneB7bODLD9Th27dg54dMmiJ+Zp+5YQ/vB4e3/h1bxmZEbk48LUb0JetpHP+IE1hzHpnCiqplH\nc1TQekppjtI2xqxwim0WBRqmR/Mx7GBuYWYWUI7iVdD3FQXPMeZ9vI/1At634jsmM/LbgnxPMsX3\nGPcxL6tQ3Eho3xoPbuMDIsyP6ysPuX2g2DXoYM5y9/WroNtbuP+fUAxYJV9HKbwNZ1RnahGOwxyV\nPkJysMES1krOP/YwXs9Pg+7dw3GJxziuZmYh7UeCEG0oJrsOYxz7gHaNLXoHn2JfC6fm7Tbonojf\nO0cbq9PegesUTp5BeUs6o1QWUB4SVbEPR7jfBxqf8hWOR9UaTtriEo7VyZPunmQ8QVvLc1wf7R76\npijFPjTqaFcR+baCYlEpmhHfuBZxRGkiJztJOGaS36qWyJf6rpGUy9jv0Ee9QLlnrUL56pT2OTQ3\n27vol0oz9qD82ukY8xtn/un+xhz6ndX1E6BDSj77XfSlZmZViqfjEfqR9gHWu/i9ylRXGQ/x98MR\n5vXzMxxNo4b1ggq3STW5/QOsB/DgLy8tgy6RjY5GbvwtMtwzprTH5PeYZrSf5z2Whzba6+A4Rp6b\nh4Q+/ibLca26db9jBh8YkO93NjaOnlHT5H9jVxAc9Qy6Hh3eB2crze2ZuQVd2jM6fTpyXA6vp7nt\nueNU8F6ogn0688gc6GYF+7Q/OnwfI4T4/6kYBpi1OtaZ/vOf/BDooMBY8O++9C2nzd9+EfdGfaqD\ntgdU7yW344e0p4zxmRnVUZMZddVpjDXpz7/0GuhShA8dTrGPCdW4h3Q2enYD/dRbN+ms1Mx2DjC+\nV1Z5X4vvdXsX21g5j/u1L//xvwP9ZOcS6IeexjqTmVuGCMiFry5hrnbjDp4jFjmObVFQQkL11oU5\n9yy0MKzBVXOc/2dP43nt/3vlLujU45wI+3RifgH0XANt2MysRLnciSXcGxdUc33rO18DPc2wbrhw\n/nHQa02MSwUPtJlldA6SU+1kn/adI5q7iOo5/0tnC/Qm7d/PVd1c/8I65qQP0zr40ltYE/h1p4UH\nl82790F/8as4x5+s4J6gtbgKOsvw3NTMzAswiSrXaM9He4qioL1ViLZapX3JM5dxjb/w+htOH/hb\nkP4Uc6CtDu4Z99q4/9ps4/V4gustoj1js4V7NTOz1VU87z17Fs9Cn3jsPOiVBfQTdw9wP3fnLfSd\nrYdwfe103b2TN9nGZ6xfBF2j84swwrn54CX0CRX6ZsNfWUf977/i9GG9wH6+svYU6NU13CsP3sD5\n9E+gLxyT32pWcdySAfljM5tr4m9++ec+Dvo58vknr+OeMPsOnnnkl7E+OpnQnnHGfjAI0WY2NnBs\n15Yxtk3pXCehnMGjolNENYl4xiFJm2pMQ6opxTPOmY8LrTradjzB2DPu43rLSrg2+CzCzGx1GW37\n7JkNfGbro6DL9K1evc41FzpzDLku69YmMjq3TxO0k3iCed9oiPfv7mPNpr2Ptn/29Bm8PsD2zMym\ndODXmaCO6Sz24nkcp6vbPXwG2WWP6m+ci5qZtRroByoUu0I6F53SWHpUy+QaX5xgLjpJ3LOBOn3r\nN6UcujCeKxzLh86iP90eYyxcJH/bbKFNm5nt7KGv6tNYrq2fBH1mHdu8dxtzgnGMc5mQfc06Z+Vz\nmIjqvvztygyzPhTnrLZw/Rb/y9F3HC+cLxGptDToYW7w6ve+C3plCe3EzOwDP/Jh0Gv0Tdtp8hX1\nKtrnoM/nHjwHfC6FV6cz1v1jz7wfdDrEfUjlyqug+9s3Qd/fxtxvpUa5Im1jm1TTm2+439vu0Scz\nmeE91QDX0E4P3+v6hM/GkTeoT3y2U9/HNVm56XTRqYNXKdYsUz66SR93JVV8pzsdjCN73/4q6J/b\nRr9y+hTmw2Zmkcd+gt6jgv5wfh5zx1MnT2EfKLbdu4ffWN6+jXpzC9eEmdntO/SbO7gfrNUwpi8u\n4n5yjfYBCwu4N280aI/VwtrAaOR+f+XxoRZZiOsPZ3yfegTH/ERDCCGEEEIIIYQQQgghhBBCCCGE\nEEIIIYQQQgghhBDHHf1xhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghHmj0xxFCCCGEEEII\nIYQQQgghhBBCCCGEEEIIIYQQQgghhHigCd/pDpiZdUYx6PNrJdAfff59oL/yzdugCy9128zvgx7v\n3wNdi6qg1+sLoOdLDdB+Xgbdm+agoxkjGVoN9GIUgC6m2O8sG4EeRBlob5yAXqhinxYXmk4f/CgC\nfaezD3pviM9MCnyGV8X3rM7j3PgV/PuaKHQHIsPXtiIsQE/TKd4/wnEJcnwHL8JnhiXsUynEuXv7\nodiJcToE3SrwGe23PNSb2KeIxrXZwmeWSnjdzGw4QpuLxwegKxm+Rz3E+0feGBvMcG48H/vcm+Dc\nmpmFYXSozicT0EWOc+WlZPcFXg9obgrDPr39j/Rvzi0F/8OxIpmivYe0Bv0GzRvZQeG7a8zz0L5r\nLfQFp9bnQF95awv0G9e2QZ8/cwv08toq6Ca1b55ra1bgGgtonk+cPQV658Yd0Nev7oBulNG2lubr\neL2B4xSUcT2ZmQUVvKcS4T1DikXTAtf9YIya11w5RB14qIsc108xw9Zr1O8nzyyBbg/RfpbqGAf6\n/Rlz8X1UW/jMlPpkZEtmZmGZ7vHxniTFcYsnOPft/Tbo+5u7oPOMYp2Pcx0Ebp/6Y3xmRu/BY0+u\nzMolbLNCQTwM8XpOjqrXJ39sZn65Apr95zjG+DoifdzIKUYVtCQ9j+bZsSs3twvINjh+hJSDFBSj\nco5pHupXX78CulRzY/k0x3lL6D3f857HQd96C3PW6/c6oOs1yqsoJ0pSXB9mZtUqxV6P1zHKJMc2\nCorD1RKO65hifTEjLLP/8z0eW2yj5KOuUFDgueoN0JdlM9IJXueVRgv0iZNnQC+ubIB+4Wufoz6i\nX9nZwTxtaxNzaDMzv4y5fkFxZZrQOFEMz7LD586x4YLuf/smvOfwJi2nG2gqzed1Ri3w783MPI+f\nQrEmPb7+rlTF3MKjmDYd9FAP8XpUnZGv0D4jqmHOYzmO97iDthqPMZ8PaI2HZcwdigL7aGaWkg9u\nLGIumWa05ilu+ka+cop9GsXkZzz3v9lQn+AzfI/aTPE3ZeOxH4COmjhuw7uvgQ4Cdy7y0jz2c4A5\nTS1Bnz4O8b3OrGN7c1Xsc5yhZt9pZlanbpXL+B57E7xhwvv5GOc3XD4NenFuDTTbrJlZMuyCTg3n\ne7K1CTqifW6N4lZURRv3ae6isrvfGWJ6aRMMl9YKsY0S7R0KH5+ZZRwb8f7Md3MAj3LickB2nLs5\n63EhSdk2KY8LqSZDY7W0jHsaM7NuF9dPt4e2l2Toh3LyO5zPewHaTeRzrcqNRaXSD1cS5fyVYyTH\nQ84TA2cc3bys0cDaUkB2traEMeHeDi6OMS0OjvPLy4tOH/rdPnUKffaEapetOYwJTz/zFOhKBePM\n/i7WG8zH62Zm0wnmYdtb+JvRCPu0uIg1XK43jIYYA2o1jn1ugjuk35QruL+bUi0nJxtdX0V/6pM9\ndHroS0uR6zOKAH0PhUubpNjmiGK+R+9Vpn1utYr2482qv3HNifZQWeLu044VvM6DIzQvshk5jXF+\nHdC4Uy3JfcZR7R2huX0zs4g300e1QZp/Hx3RZ16kM8apoDXjkZ9/+N3LoB87i/b8ldcxjhzv6rIQ\nfzp+4w+/AfrWPsaoghbxJ9/zLtCtOtZfzMzm6axyGGOOwss+5rohxR/fp7NTqitE7KfMrSEfUG1p\nt4d9+sn3XAL9B9/4LujtPt7v1INztz7caeOZRmToq2rNR0FvnD2LzzjAc+yX+1hzuP0q5kifauK+\n1swsKTBnaTUwVw8pd59OMRcsaE9pdEZSpjPFaog5k5lZ7wBz/dUTmD/+zLNYP716D88Lru+hTS5Q\nfvnMeazxRTPOD5IJzo9P92RTtI+A9gbfeellvL6K9rL+3veDLu7ivtjMLI2xD/FDON9fCjCn3aWF\nsk/vUK5iH/N1PKd75Q7aj5nZ+so50F+/fRf05yhf/HWnhQeXv/NznwL9f//b3wK9OIfj/2Pv+wBo\nP3D3i5wJ87cCvC/16MzDaA9hVItyau4zfF2phOuhQTXxlM4T5mjfGse4h+CzsDLVDecXcJzMzDY2\n8Hz36aceA72yhGt+SPuWQQ9te9zDcbmztQd6Z8fdgzQ3cD2d9DH7q1Fc4s3Vey5jn8dj3A/mEY5r\n/8DNLus1fI/LJ7GO+PUruCbbA/TP3QL3/xcfwj61TmAt5c0Xrjp9eO5x9OHvfehJ0P73MG70xhjb\n4kcxx56S3zKqfc8Vrk1Sic24+uJTHbFC+9JygA3wOWBKe9Bp4tZ3/Ihq1XRea033G6rjwjPvfi9o\nrkVkVIvKMjqr5qKrmY1GZCcUjw52MG53u3h21utgHO/3MS/gms1wRh9SOk+Yxlg3StkO6Izy4AD7\n8Pqb10FX6Wx24wTmFmZmY6oDlRN8xj6t6XcvoA+Ya6Ef2d1H3zac4DusN9zzidYirtGwgm1yzXY4\nwvxmGqMeDtFnHLSxT1wzNzO7cBbrXZP48DXJceSDzz4D+o+/i/nyPNUZI3cYLKVz7n4PbWhlGeei\nyFBzVYTP3jl2zjwXp7UVUfzk6/wNAh+juueqdH3WvznPOLyN48bhJxRm1976Dug3ruC6f/Y9P+O0\nubFxEjTvKdk+63WMiw5HzBF/BzULrve+l3LUoI75w2svUW6Y4Xd35RZeXxqgTw8muJ6e+bEfdfq0\ntIrfC772+lugezdx7xQV6PcndJ7bndB3I5RTV6h2OqSPjucb7vkdf4vSSTAXaIf4TcdOjL5onOC4\nePSIeBvzuq998wugT5/6206f3DXL1+nslM4L+KyoSnnZ6soK6IcuPAx6cwu/CzUzu30bvwW9v4n7\n2HYbz8Fv3rxJv8dvn6pVHNdqDTXncZynmJllXMXlcSOnPMtHH4X+zxFCCCGEEEIIIYQQQgghhBBC\nCCGEEEIIIYQQQgghhHig0R9HCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDigUZ/HCGEEEII\nIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCiAea8J3ugJlZuzcAPVzaB33ywqOgW2/i7zvDe06bwVIf\ndKlUA72d7IBOD8b4zIXHQed5hn2o1kGvNqtOH8wCUA8F2Idr+9dAd6cp6Dk/Ar1SXwTt+/i3LYNx\nz+nBVm8Iepzhe1gd26hW8T38kgfaw1eyqIp9LEd0gxkPg+V+RpfRDCv0zGmO9tEMKtjHEOciCmfM\nRYHvWaZO5TexjfE+9mm+NQfaK/AdUpuiLmKnC0GYYx9aJdAlw+thPwFdL2Gf/QbaU7G2hH2ul50+\nvPbGHdCjGJ9hHs13gZeLHPuYkw5DHGf+vZlZUdA/enSd1tqxg9ZtPkXb8ScTvL+K1z3yC2//Iw5i\nROt4fXUedCnE+9vdEejX3rwL+tSpE6AfadCaI1s0MzPyZ/kQfWytiW2sn8NnjPp4P5tFxOshRB2U\ncH29/Y84dqUI1/kc+fGA7Ltk2IlKBdvzM3zncQ99chZgH7vkn83cuajRez2y1ADtkU+fjNH3BPTM\n1MNx9Xy0hVnjNk6xT2mOazhJ0GYH3Q7ovT3UMdlGkuI7jGO0+Sh0UxXud0j3cBtxgs+opnS/j32K\nKJZVyVbCwI11jRr+W6OOsYr9LY/jcSMvOF7gHGS0XozG2Pfcv9/1ad7jmP0j2TP5W48CDsewcxce\nxudlbl51cOMK6O0uvsdzCy3QnRbG4mAL+1BkaBcJrelshp3EFCeqtERSGtqCfH5IYxsF+IwJBe9m\nw80n2gP0NSWK//Uydmqhib6lRq6mTH0sCnyJcuT6pniKY7W0sgLao9i4tr4G+if+yo+DfuXbXwG9\nt4/558oGtm9mNreyCvq5938I9MMX3w2ac3ej6c1yfO+U/GNpho/m9/ScO+zQ61mK64CXHveZnzcT\nei8/+Aux5fxzIR6gnVjB48lzTtdnNUq+qVxHv1Iqox0UKcb24QH6rpi6mNO+qNrAeGVmNuihnwkq\nmOu11pZBR03ch8RDjP2T+/dBl8qYQ6WFOxLdHvrHbIp9qtQo/ywwDk8GGCOSGPuU0TODMvp3MzOr\nb4D0p9hGmWL/wwvY5nIT59KnfRCZg1VLbuzL6J4pbcgP7qBeKdAe9m/fAj2+dwC61MQaw+qpM04f\nymXMP9vUZj7FmNCq4NyVOW+L8D0rFGbyzI19vT7FmRCf4UdoU0WAz8xymm8yOc7LZv1XRKoUcEsB\nTs4wnlELOSZwvm5kyz7lxjmtr2KGtyvRnM01m4f2YTKhfY5PtQjK3zmGhpG7j66UOMfBOiLvszOu\npwVoKSnFVLbDwQj9kplZq4F70EoVfVuQ428e2kB/26G60ZjG6QT565UlrA2YmY1or86xvlrBuPPc\nM0+APncKfWW/h76y8Gh9euTYzGx3ZxfvoTVZrWH9YLGBfime4Dt0+ziXOa3qjBNmMxtRG0Gnjb+h\n+Ly0sADapwRoh96pQ31q1Nz4y4UP3juXqRZ94gTWUeZamDPU62hPA6pRdGnvbmYWkd1GtHaCwN0b\nHCtCTobJt3MAIT/gaDMzn3/Dmu/nNo+4zn2kvZWVZmScEfeB2nD6zM884p14z8B9nrHf5/06v/fK\nJcxZfuqTp0C/fOMN0L2J62uEEG/zyp0t0Hxe88VXcW90bRNj2lLZ9Ss1qlc0S5iTdAYYB4e0L818\n/P1clfa9NYw/6QTr1WZmc7TPvNPBzXB7jLH+lz76fmwgxlr9H72M57e7uzgO1TLGZTOzwKe8inKQ\npVXMeceTPdBf+c4LoHMfc7e9IY7jtfvbTh/2KLcLuG5OOU88xbHknMejWlVIG9mk33X6MJjyeSmO\nQ38fc5BqFfOik8toY5944iLod186i33mM0czS6iGkCZ0XkDjEJEN9ymv3tzFuQrWMO/yE3c/GBV4\nrswxOk2x3yOqdf7+TZzfT21gLGytYp+/fMs9W026OA5Xu2jn7z+H9fDjxN19tM2TG2g3X/7eVdAH\nY9pjztjHFpTDlMr0vYKTG+L64/Nvn9Ynn2e05nHPYWb2/PPPg06oJpNxIYko6FsErv1GVIevVNx9\ny9IS2mKN1jCf7QxGuN42Tq2DrtPePMnxnfZP4u/NzCpN3AudOY1jefvWTdDVKj5jvIDvEC7jXjso\n4Tttvx/PEszMurS/Wt2g/dk+fot08WcugX7u3e/F36+gz/dKdIa9fM7pg9E3Vqvr6JuiJ5/G+6lM\nn9Dem2vZW7vor7evuvXTZh37XabvgHJqc0I2m1DMyMlfpwnWPcLI3ZMedHG985nxZOza0HHhX/zG\n/wx6OEA/PxrRt2JjjPvsQ8zMUqqZOOe7PCe0nwzpvJfD9Pwc2mk8cfvAZ2Fl+l6iSfWOUgnzwE4H\n33tKdlUtsI8XzuL+0szs6rWboBOqWd87wPU3inGcigzfq1FC//vkGfTxJ+hbLzOz6wO096/cxu8i\nPQ+fmVCOPOX1RWfSWcL1UzefqTUwnxmNcWzjCT2Dcsk6neNMRug7y5XToGfVDQMf52txGWuRcUx5\nHddXKR5zDpZS7JxxXGUBxfgS2SSXQfibhaPOVvl6MeN+/hfWOR/OHjNyillpjnnut775R6CHI7z/\nRz+COZSZWZnPW2kMG3WsQTebqH2aJ+ezDp4kup7PSNv6fVwju3v4/XSSoI9eOoH+a+3UOdC8/1uh\nTi7O4Xr5zGc+7vTp8hPPgH7ryuug//H/8E9AF+F11GM8l1zM6dsrOoPe28X7q7TXTwL3e4mDMfqi\nNtXik10cx4LOl7waJUnkCBKKfX/wx78L+q89/zNOn+Za/I334Xl6zuduzv3Yp0oFz5Y4j5+bc8+C\nTp9Cn9vpYK63uYn1orv3Me5sbW2CbrcxB9vbw30z5xAztu4OzjJyys4zvpk9Av2fI4QQQgghhBBC\nCCGEEEIIIYQQQgghhBBCCCGEEEII8UCjP44QQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIcQD\njf44QgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQDzThO90BM7PpZAr6xv4roOeXT4A+eaaF\nv7+z77TZajVBn2igDsclbKOfge5Px3jdL0BHJRy6E6V5pw9esgh6r7+Dfcwj0L5fBX1vPAB9q9cH\n3etPQKep0wUr1zzQYQWvF3jZch//XsYPcJzKNXzv5XoZtBcETh8mQY7/4GEbuYfj0Kzg9WkeY5+L\ngjTOVYJTaWZmi94atnkDx7q/hT/yfdLYRTPDPqQJ2nA/wbkyM8uzBHSEQ2djekad5sJGOLY5j0MJ\nr4fzOHdmZu0J9ivNeW5QFvSeOY1tlpPRefz3Vq49MJ5ho+k0+Y/ceTzwQhyjvMA5KGJc116G9m+B\nO6/syv0I9cIC+sxyCfuQ0KK5ehN91YnvXQO9vLQAeml91elRQc4lS9BWwlod9MmHHwEdd0egdzbR\nzwc+2pYX4jtHkWt7IY19NsV1m9PfC8Yxjss4xrmaTnFuJjHFIvaHZXzn4Yjm1sxisv+A1vk8SvNi\nfIfpBNsMQuwDvYIVtGaDEO3PzCyhZ2YFjktBvq1z0AO938ZYltE7jWJa87Qm8sINbhOy2SjC9whp\n7Mulw/3neIzjlg6wD40qrruMnaGZDacUN0ro5PMcnxnT3B03QlqTHCdLJRxTz0efkadkrGYWUlws\nlTmPwjbSFOfE8/B65GMfPv2Zvwv6ymtPOH34n/77fwS6yNBXtbfQD8Tk+2qUN4UB9mlCC67waAGa\nmdG/hbTOR2SL0xj74KyHDO8PaP1k2Yw1SP5xaWUF9Pueexr0wb03QM9X8B26QxzHUqkGenGu4fRh\nj3zLyZOnQC8sLWObZUyCa8110Du390B/8Mc/Dvqxp59z+jC/hLn+6dMXQJcrmG+yH/CDw/PuMMT7\n2YbNzDKaP15LVhzeRqmMz+Q8232euza5TacPnG8eI9jPcOj3aX1mE4x50wHavplZVEP7z6YYmznu\n+mXej6FdFVNcwzH5CC9wSwJBhPf0KLaHZfxNs4I5Tm3lNOjREGNAku6CHk/cmNgf4Xtm5B8rLcpx\nxtjnSgPX/Ij20lmGdlpfmrF/S26Ajiq4Xppz+IwTC/gelTL2edinmED75CB013hS4Hze2cXYt1jD\n96YwYz0al84E5zLZQ18a9/C6mdn84hzovLsFerXWwfupD+kIx6FawfeuNvEdOz03jy/5OHb1EHXO\neb5hJyKf7Ckn/1Bb4JMAACAASURBVBvh2Beh24eIYnZOecQ0pWLLsYL9POUSdH00HIIe9NDOzMxi\n2rfUKzh+HFt6PrZR0B6BQ+RwjL6zWiXDNLNShfwpvRfn/Fwf8Sk3zTO8HpA/TmfE0DH55G4f61sL\nTex3hd5joYW5RpfWW6OJtcpqFWOMmVkYol+pVPAZJ9YxZ+J66zSh/RzXsmhy+l3XzzQa2K8p7QUy\n2quzfZRp71UlexqTPTRaWCMxMytTPO0N0OYqjo3i7ycjnLs+rYOE9gXDId5vZlamPVK1jmN97gzG\nV56rHsW6O7dvgd7fw71KNCPu1GvY5niEucpkenzzOjMz8ykvIt/v2Detcwtn/HeouA0OMZw7c5t8\n/cg+8P3uPDsGzEnsUX3g69yes285Spt7SEHrPmpivvn8Z7CO+K1v4X7ut7+E+eY0O3yfI8RfJnLa\no3MdII4xT9tsY75/8bHzTpsVypMmVIs6oFhsFFeDDPdSn3zuGdC7PYybr1297vTBp7OqOp3hrq3g\nOfNr37sCOqT610NrWOt6ZAVj5Be+/bLTh34Xz1EW6idBr6ziOcoXP/tF0J/95ovY57Vz2KcNrH3N\nVd39/I0bGP/bBxjLiwLPfqZ0RmJ85ldgrlcOUMee24eE9ltTD+f7a9dugr68gXvOxx+5CHqFasC1\nMsWt3K0pDPtd0HwWtL99H/SNq2+hvrcNur6LcSXlOnMda4RmZh6tLZ9iUYliXY1ywbyG9dDeAj6j\n3cY+bdCZm5lZSnWn1vIG6Gzs1qWOC//p3/uVd7oLDryPYf/bbGL+/2u/9mtOG6dOoR/gNtnH876V\na/+z6s3USeefxnS2GXO9k9Zbv4/7lBNLuI9dreMa36Za1da9204fohKu0UkX73n5axh3+CwppTPG\nhPa1BdUDtskHmJl1O+hnNrawXrY3wPj57iffBfrSE5dAn1zDb1na+5jfLs+557dWYKwK6ayU5y8K\nDz8bium89uaNm6Dv7h44XWg1qW44wb1wqYbz3Rvi/N7fb4Mu57hvTTJcF+0DHHczsz75/LVl9Jc9\nuv7pT/+y08aDyisvvQCaz15LEcWWnM/X3e9OqiVcLxmd20/pfLsUUV2JzpzYJ9TqGK/4TN/MbBJj\nfPJoD1l4mJftddA221TjzinP29nF9fW5z/+x04ec8pmc8t32CNvc20UfcOks1uTe8+QZ0KfOnsMH\nlnCtmJn97599DfR4jLlmpUw1W/ruIy8wT+Ozo4x84ayjvJyKGGXKT2I6fxrQGh8N6Nx893ug79/E\ndzj57LudPly48BDo8xcwV3z9e7gOAkMb9IOXQCfkG/nc058RG9lO+Vsk51w047NZp0nxQ8L71F4b\nY/93XkQ7WFk+C/qpp551G+XzbUp7KlVcl3MtXNc+nxmlh9ee2AfPsovRBOP9rdt3QY8pf29SHJ5f\nwD7evnUTNJ9rnz2De9YTlI+YuecHGe3fLzyMbfSGmAPduYtrrDtEHz3cxrxuSt/McZ9nf8pwRG3y\nqFolt0kPYf/42pvoy1546RtOj57/sU8c+kx+D5+/zyWfzt9CueD1WfeHIZ6LNJvo01dXcP4vXMBv\nX/b20affuIHn6C++9B3Q7Q7GW9+f9b0rx7Kjrv/wDlX/5wghhBBCCCGEEEIIIYQQQgghhBBCCCGE\nEEIIIYQQQjzQ6I8jhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgjxQKM/jhBCCCGEEEIIIYQQ\nQgghhBBCCCGEEEIIIYQQQgghxANN+E53wMxsmiagd9tt0FvVbdAXTp8DfevO606bfnUOdLWEr1qm\nvwsZd/qgb+/dBL24vAD6ZDAPOh0eOH3oxD3QSYLveWV/F/T2oAM6yzzUHuoijEAHQeD0IffxPeMs\nxzZybNMC1F4FderjO0wLbH+9VnP6sD1MQQ+yEegowLnpJHg9M3xm6OF7LpZwblbSU04fku066HyA\n18slfMYonoDujvdABwGO44TmdjKO3T6MMmzDp/klG83L+Pu8mILu0LjsJvjMwYhe0szudIagi8K5\n5VAK+kGR53wHSrInM7MiwXvSGNtIxvhex40p2UpQKoHOY5znIEFdRGhHZmYe+Qaf1tTcfBN0KcLr\naYpz0qig8e3vdEG/8vKboE930HeZmTVb+MxqpQq6tbSCfWqgn6i3cM0uZfjeeYL3FynaUZ6545RN\ncF2XaOz9ZgPbLLBNdrE5+VOeh/FoTB3AcR+NXD8xjfG9PNLzFWxjOMBnJNSn8hDtJ/XQZ3shvlSj\nTo7HzIZTGvuc4sCUbJT8QBjiM3mufHYT1Mf+eGpMe4D/Vi3he9RIJwnqahnjZ61M/peex75vv09z\na2YxxexylcaBDMj33Zh9nIgiXF9G8SIlWw18HK9ZOU1R0BqjNV2voZ/xyJZ8yonyHG27XkcfcPb8\nJacPqYd5zsoa+aIMdTzF93zqiYdAV0O8/sJ3b4AOfffvmCNatwGtMfPIHxaHr8mwjON28ZFzoN94\n65rTh+X1RdA/8fzHQP/0Jz8O+rd+4x+DbgQ4dwnZx+X3PA962N50+jCa3gR98dJFvIHyRc551jbO\ngZ6WcBwef+Z9oJ96FrWZmU82xv4vz+mhBV/nWEUOkTvtOEzXrhmOTfwItg/O7TxqPwhmPe/whDI4\nxv6uVK2A5uFOU/QJPFSe545dQTlMMqG9Ee2dkxjzCa+EMS4kOywmGMNyJ583K9ewjQnF4n4P9xRB\nFXPFpbXzoGsrJ0CPenj/qO3uW9gWW3OYG8YxjkOWYp/LTcq7xtheRnMzOsD9nplZqYrPnF/BfWeY\nroKOsn3QkzH6Ol6AtJW2nBeomfViXD/jKf7o0VO0Xy9jn7wU+xxv7+ADUrKf7l2nD/H4DuiTyzh2\ni3M4F0OaTtoGWLVK/tnHuer23HWxUsN1UdDglSKK8bTY4gSfEdL9KfWh7KbE5jk+nObTO77/7ZGA\nxmc6RbtJaD3FE/QZe7tY+zIzS6a0L6bcLwrxmaWQ1wLaxGjMfcL5Kpsbi0oRTjQ/081XuQ13zX4/\neYZ9mBWz+0Oq4wzRR883MKfmPWStitd75K+5/nBvk3yAufnK2uoy6Cceexj09ibWaHkuaaqsXsE+\ncq3AzGxE9av2FtZYI3IkpRKOJftbj3Z0lTL2YWEBa7pmM+yYajM83aHx/oVslhxJo4nvXa+SczSz\nCtVi+J5qGd97f3cL9O0790B3qV5Qo/1Saw5jhJmbuxz0sEY/id06xrGC1zmvW86Fue45K1cO6R6+\nhZ9x1HXe/7H+QfrE9zjvecR1jnnOdafQg7KY4T+dOEpnFPST9UtYV/z7v/o06Hb3W6C//F2sXSbZ\nD1kUF+IYwXVO3qhyPS2jvdmNLXfvdLaBMYzXbBFSXKS9Vs3D/dyPProO+vY2ruHuJt5vZjaY4HuM\nStjvRcofGrSfX5vDuuD+BGN7K8b267lbHy5HVJNOORaj76pXWqB7Y8xxq13ci3VqmJ9slvH3ZmZp\nTnWIBPOs7R2sPWY51fbpTIRzg9jHvKpWc3M7HptSBeupX76J+WQpvQl6oY73n3gUawztLdy3tvfc\nWFdpLYH2ab8x6GKO0+nieX4/xrn46pe+ArreQHv5yZ/+hNOHhy5gv32qAf2I4dh+MaP5JX3rPtZH\nb+1gLri2iPZlZnaH9gf1OVyLV+7ccn5zXHBqcu8ATl32CLjPnRlnr+zDa/RdBrext4c+m+uAzjkp\n5XXlGQUSvieK0Cc7Z4bUZ28J/S+vjXoNry8vuH6m3cN66e3b6C9XGxhnrr15HxugM8LdAxzrVgPH\ntTfA55mZzc2hD+azAqO99sE+1kOvvnkF76c9aEzfquTs382tnxbu6SYq/k7IqXUdftZea7h7af5+\nyavifPGnSPwajRDne7BPNcAp+ueDbZpLM1tcxvMqJxE5xjW7Gp1r8vdHPtkA13C8GWc7SczfPxxu\nF1SutgGtJz7TLHAp2NyCG792774FemUJa1WtRYyxdzdvg47HvGb5rA7HaTDjW4QK+UejHOlGB435\nC1ew/rm2hHOzQGexkxzz3Ze+i+9sZvadm+jDPcqxgoK+PaC54rWQU32UjzD9GR+P+QH6S99jn482\nFVPdaGkBfeVnfvFvgC5TzW5tFXM4M7OTJ3D++XuBCn0Xsk31zyzluIRzkdF7Bz/A2Xwp5HHh3/BY\n0jc6PFd/JvxweceDRpvyojdexfz85h2c94985BdAr666vmaWD/x+yiXMgzj285lGkqB/9Mkn8/18\n3cw9u9zdwb0Tm9rcOsbmpUWMiZv3sV7M3yacOoH3N1oUU80spW/z2gdYuz/o4tzc3sRY/ejjWLP7\n3Of+EPSUv6/lc+1ZdUTCzbspP6F17dZFjK5za/gP4zH64z/8wmedNj78gY+CLlNcKciHc17H9pI5\n3yfi89h1FbPcjM/1VnxGmb4RDyM8P6hWMUf2yLdtbqG9jkaYz3J9yWzGXoHzV/7G0WnhaI5vJiiE\nEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCiL8U6I8jhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII\nIYQQQgjxQKM/jhBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghxAON/jhCCCGEEEIIIYQQQggh\nhBBCCCGEEEIIIYQQQgghhBAPNOE73QEzsyItQE+GGejxZAK6MV8FXW5FTpuVHNvcPuiD3p3g9fla\nADrP8JmrUQV0PcXndcddpw83JvugO13Ug3QIukR96FOTgYd9KFdz1BX8vZlZUuA9QQmnPCtwrH2y\nCK+Mv/fpz2naoyno7njs9MHMA5X6CeiihHMRefgep+oboJfsDOisXQI93Mf2zMwysrEki1EnOKGT\n0Qh1G+/PaVy9AN+xSNy/O5pOcKwnZNftAn+zVy7jMzy8nmXYh8EQde8AtZnZwTbanLlDhZfpukfX\ng4LnDq+jdbxNGuM4pGMc+zw9olMPOOMJrpGIF9UIr/tjtBOrzBhVbiNA3Zprgm420bbm6zXQjSqu\nwd4A18Mrr13FLk8GTpcuP/Yw6LnWHHa53sAfkM+utlqgpxNcgymtwZxtMXTXIP+TR/6vXEUf64cU\nW2iNtvfaoGNa40VC6418XX9EgcTMcloPFfItpQb2MUjx/hH5hRHZz3YfdULL7eQq2oqZ2SRBnx1R\nqAnJ3sp0Q07vwH5ngd4pIVtI2BGZGb2m1Si2UZesoDb6Y4pdQ8ozKhhXGjW0hSx1/Wt3iOukRa/N\n9hTOsNHjRECTkOaUj/g4QBldL3J33n2P1kOE88SmkmW4Jj36Pd/vU5+azQWnD3/9U58Gff+tb4He\nuvpd0AcDtK1Fyi/e/fQp0G/d3AFd7qHvMzNbWUSfXY5wrLsjzHlLtAabVbTFhaVV0P/Ff/WroP/p\n//pPnD5cfuIp0J/86Z8Hvb6+iPc/fhF0b+cm6HGCfXzfhz4G+sar33D6kAw7oJeXT4AuldA+2H5W\nT54GffGZ94I+de48aI+TIDMzD40oSymvpvicpq7f/37CAH0Z2yy3b+baObfBFLw3CNAePMr2clqL\nRe72wVmuBa01c33mcWFKvr/cxDga1XDfahnGn2zi5nXJGPMHnwMv+9eY9lY8HxRvSiVsz0vdPWRO\n/rBM10dDzFcnNA5hCe2qRn7G7t0FWdiB04fBAP1fpYZrekrusTWPvRwM8YbOAG13cQHnZkK5gJnZ\nmHz4HI1LZQ7jREYpcTHZwvurHAvx/njqOpq7ezg/G4vYRmMOc+pOgTl0KcaiwloLDaRcoA3O8lML\nC/jMlVVa05QjD2nvXCIDiqhusbOPv5+vuLEvDHFseF3kOV03fI8wQpvMQ8ohQuxkFLj2YLQfLwr0\nt3mAOe1xYhLjnAwHaFccK/b29kDv76M2M2tUcQ12OxjXvYL2RT4+Y5yRnqAvDAO0kfHYtSufFyFf\nJ10m35ZT/srJgnN9Bjy2I3qPMttujLbJXqNM+6LpFNtLE3eNR1R7euShh0AvtDD37PTQ57e7mHtG\nNPZ1qjcUibu+YpqfaqOOuoa+bkp1lZhypJTso97A+DyeUbvsD9CJx1P0jwHl1Dk5t4Dee3V5GXSD\n3qlW4ehqliWUJyQUy3ZxneztY515ROPYorzk5MY69plrSWbW62MesrC4BLrddevfxwr2C47mgghf\nn7Fp4GHm31CMc9pwNPXB5+ID6VkbGY/boD4d2Sbnj3ydH3jE/TP/7XAdROjvLn3kHOh/+OvUg1//\nNugvfYdqese8Hi0Ecri9+3Q9TzE+dQZU8zazlYjapDpolQ4eK2X0CxcXV0AHPl6fp1rt6WWsO5mZ\nvXIPa2o1yt2W5vF84uLDF0Bzrf/ZJ/Bccj/ZBp0P3XF4aAP3iAHlMK1F3BsvnMTYnBX4njWqSe8c\nYOz/+g7urc3Mpj3MzaqG/YynlAcVnLNivtigvfgj53CucsfHu3XvA8r1lzcw3/Qmu6D/5Rex3jpK\nsM+PruJcHhy4+UlUw3GYq2PudUB5VHuAz+hNcByGPezj7/7u74F+69oNpw//8L/5B6BPreN8X6A9\nzyqN/e0+1kp2UnwHrqeXzmBt1MxsoYfz3z7ANiu147uP/WFxzw6Ozg34N3/WTKdu3fDOnTugwxD9\n69raGuiVFVyz8/Pzh/6+7Hyb4L5jTPtYbuPatWug7927B3q1hX6jRD6fz83X19xzms3b2Ob6jU3Q\nj9P3Kxf57HQJ62dvLKJfqT90DvTuvlu7LJfRP/JI7VEtZELx87/7b/8R6Ihy7ijEceGUfOZT6bzC\nqUuQXU/prNOjHOAn/upPgr70zHucHmxuYfytVNCvnD2Fse/LX/wS6J1d9Mc51WivXXkN9DB29/NL\nczh/Ke2tf4Dl/MDy6OOXQX/7a18AzUcLeYaxptrAPb+ZWaeLc9qgWLE4j3lY6uNa6HQxZzo1fxL0\nidOYg51+6FGnD/fuvAl6jnKoVhPnvNHEnOsUHr1af4y1rD7lS7PO1R5exjpOTLXhzS76wt96AXOB\nPEVb/omPPAf6IxeeBX2/6/r8AdWvpmT/VfYTIdZb+aw+odo/n+0VhVsnYj8xTbAGV6XyVkhns6dO\n4bd99Tm0H/ZTWebWLlOqj/F578YpPO+9ef06PoNiAH9353wvMKNmHNHeIqLFxd8YHF3j+OEuC7Nr\nV18F/bWv/SHoIkdjfP6jnwBdLc/IeznPIRnStyhzc5hHRVSbmtCZL9uqY1qzAhT9W0LfagW07gPK\nw/j7CI9ss0o16fOncY/CdXgzs24f93MHbdx/3buPeVhI523Pf+ynQH/1618BPaVvZ5318APEcc7d\nPaNv9/gHR8y984sjvoX4zne/6fTpxk2MZY89+gQ1Sb6J5sqnvfZR+Qxfn3U65fNrcapINd+MXpzP\nVQ6oRjGZYLzlb2X4W2uzWfsN/s7ksKs/GMf7yzwhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ\nQhx79McRQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYR4oNEfRwghhBBCCCGEEEIIIYQQQggh\nhBBCCCGEEEIIIYQQ4oEmfKc7YGYW+h7oPMfrk2kK2o8C0M2FhtPmMC1ATzsx3tDHNlYuVrFPHvap\nNMWft7M+6Dc6950+hBV8xqiEfYpHeD2K8cUXQ7w+KHAczMfpywv3b11KAU1xhs/gn+RegtfzDHSQ\n4DvkGY5TUuB1M7NSFR/SrNRAr1TnQF+oXAC9mJwGvbM3AL3X6YCOE3wHM7M0xX52ul3Qg+4IdDYl\nI6S/I0oytCc/wPeulNGezMyiIAI9NZzPeIJGlsXYpu+jPWQ5zwVeP9jEcTEziwfY74LaILM3nk2P\n/sEjkyxi/Icsc+0hG+O/FXSP7+F7HDfiGOd5HOD7+inaXlhFW/LruH7MzKxM69xDe221WqAvXdgA\nfevWLv0cDWF9DddopYLPW15cdLrUaOIzyw3y0wE+w6/ge9ab+MzdW3dApzSO5RKuL0vIaZtZYTTW\n9MwoqoAOyziOKa2X4QjXU5IO8Tqth4NOD59HPsHMbK5aBu3RKpxSbPMLnIuIfHxKcznKsE9DGsci\nd8eNptsa9A8preEkTUljHJmS9smxpAW+QzlwfUJtnsauYB+Mv8mpjweDCegxdslGE4wjObU/V8d5\nMjOb0th36RlBiONSYps9ZnA6kJLtjce4fuZaTdBe5OY0OY1xXuDEeRQ/Ah/b8Gk9pORvA1qTUank\n9OFv/s2fB33trUugf/P/wPxi+hrmh91d9AOvX0H/y3GT/a+Z2alV9Kf7+5iTGr1nvYL2ukh588XH\nHiP9OOhf/PTfcfpw8eJF0KurJ0CnKeUbGfqNvS0ch/W1NdCnz2MuOOrtO324+tJXQVdDXpectKA9\n1Jtocz/5M78Aenl5FXQwwxdR2mR+Ce/xKLGa1cb3k9MmiH8fee7WLYoO9yWcuxXeEdcLzg3xB57v\n9iGnsfb4IXZ8c7uAxp/9TE57kCynvdOMfYsz5ryfo+HNaY+YTWk/R3PMdhrNmJ4R5Tj80DLlAh75\n23iAa7w0twS6uYxrvr+LvtDMrN/DPnS7mKPUKjj2Hu2Vel2Mw2EZ87zqHOaqxQT3mGZm8XgMurOJ\n/QxrmJfPL6HPDvMOaZwbTldvH7jruVJCv0CPsLjAPky7W6CrPo5ji7YS1RL2iWstZmYLS2hEAdlk\nZxtfpF5Dewkp50lyfAbH4/kq78XNfKqNBLSXKKiwkZEuhdjnaYbv3aSahTejtpLk1EaC95Qj9n3H\nh2SKc5xSPt8+wDh9/dqboLMZe7Me+b9hB9fXSpPWOOVpQzLVZrMOmtcv70nMXP+YcRwmn16pYG44\npXcolTAXGY2oD7N8PvnPwRh9V7uPtaqQcqyA+ths4B53Yx39rRXu+spTnJ9mHdvgsesPcd+7soKO\nZWGBHFWOccozdy5yqj1Op7RHpBpsGOK4VRvYh4LGJabYeLB/4PRhQnvjehXjRr2GNlYq43yXy2gf\nzRrVcshFZFO0DzOzyRjnO47RHiYx7VOpVrm0hLWZhYUF0BXyx+kMmwwDbHOhhXsHHvvjB72fx5qc\nDxdSeaLNZmwaqE3eI3AoDnjMOaFnfcQ7zOqDc88R2nnGUTHw6P2Bd+R/w4tiP2k+h3nyow+D/lXy\nj2v/4wugf//zmEPt96nobW7cEOJBxScfUKU9QKNM9TG6vzajZpdkGMsbi2fxmSnGnDrV3Zt0dvDS\nDVyTL715A/RBD/MRM7Me1XMX6xi71849Cro9xNj/vev3QL/3Y3j/jXu4z70xdPeQgz724T2X3wV6\n7wo+ozrB96hV0NEstDC/6FNu6Jlbu5wOKW+i6Yp89G9lqq+eW8W86scvYc2vfgLzi6/dcGt2I+rD\naIjv9bO/9MugP/6By6D/n3/2T0H/m2+8BPqJk9iH+YZ7Hnt7dxv0qXk6fyowF9vvYp49ojPiSUK1\n/z7O/yuvvOL04bO/83ug/5O/9YugxzmO9Q6l6pU6zm9C+41giPYw7LtzMRlho9tkQ08/hTXev0xw\n/e3P6zd/Gu7evev8WxyjrYZU79ilGluTauCLdJ7bIP9bJ9856525hr1GtX3uN5+LT6lGEFHNJ/Q4\nTrm+7n2Uql0mf3jyb+E5TvURzA07L70M+tTn/gj0qy3cMw5nnAmOJrhfW1nG+mephn3KPPIjHfQj\nEX17MlejujMX8s0sozp8KaTaNN3v079Qecz5ZiuJ0Vdube44ffj2i6/ib2h+P/WznwC9vLIOejjA\n+2+10U8lVLOdtW8gF241x2yPbyL/5LPvA/3tr6Mt8/cWnHON+RjAzIIR2l6lhn6kSbX+EdWNIlqz\n1To+k79bYT9kZlaQHzg4aIOeW0G78QN8Zo2e2WjgMydUN5yjGpCZ2bvO4Ht+9Rr2IU7oe4gE28zp\nXJx9hkfrcRrPqBvm/L0CXt/v4jNrdZy7IMD3yrgWwLpwa3bxmPtNNXGnPoZ9CMnHs8/PyY9x3d/M\nrDTrEOv7qNH8Taf0Hk6Jg3wl2ZvPZ3LmnsVGEd7D57+ex98wOE0S3iHqP/ST9PH1bLN56YUvgH79\ntddBn7+Ae4rLl58APWu83IhCtSay1/k59Kn8vY8zb3zeS7bGNXGzGd+/8FlVwed1eJ3PC/jcf3kO\n/ePq8jzoWd/HdOj8Z2sL9+ubW5gfnD6LedfJk/jNrwOv+z+RcdN3qPyZCH1n5NEzPUr1Csq7Cjrv\nNzq73dvfc3r0uS98FvSjD+M3ODx3RcH2Qt9rO36G+vgDOAnndMinm+g7huEI87L7m/jt081bWKvp\ndDBWFtQprkfN7CZ/q+L84ofnuJ9oCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDimKM/jhBC\nCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghxAON/jhCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ\nQgghhBAPNOE73QEzs8grg06KDHS3dwD6oHUH9Kjbdtos8mXQ/c0EdKM5BV1OsA+r1UXQfuGB3p50\nQPcmI6cPnR4+w/Pxb1EmdH8/xetBguPQLGEfwgq+Uxg5XbBpkWOfEvyNH+D9gY/PSP0Cn1Gmv6fx\n8H4/oAbNbLnaBH25fhH0nG2AjtIG6PYIx3acpqCnGb5jnKA2M5sM8TfDYQw6SXGs8xTfm/+KKM0K\n+gdsP5n2nT6EAU6QV2CrpRCXY0HXfRpr7kKBXbC9eztOH/LUHRtoAx/B02s5PXOCJm5ZFzuR5Tiu\nZmZFgTbi8UOOORnZyng0Bj1t90AHZIutWtVtdJEslNZxrYlrcH6+BrrXQ33h3BroZhOfub6yTNdx\nzZqZVWt10AE7qJxskd4rqKOuN7G9KZnNuIfjViq54a1Sxn6GJfT7QYSaqdVxHFdO4PV6YwD6/jb2\nqZKg31lawHcyM6tEOE7TKfpsI/9W0Bpjv8HjvNQsgW5UcSDnGm4gmUzRZuMYdXeMjoBCl03I7/RG\n5DiMfRs5+sfuVQAAIABJREFUmhlUSuhHyhHqgIYhpNi0TDadZNjpKY1zSn1KZvjSlBzkMMH3zArU\nldLh9vagM40pzpItNxpo/ynF4SB017BHvi3y8Z7pFJ/JphSynZChZJkbs5iQ+vXoxSdBn3n43aCr\n3/4e6hauwYM25gsTGjeOs2ZmKcWFeh19+MIcjvVgjGt20MFnzC2eBF2u4Pr4wAc/7PTBp5w2CHks\nyUkH+N6dGPtYzivUB/TXJcolzcxS8m95yPaAgxdSHOJ3OHv2LGjHHooZ9kE5TEFGF4Zoczn57CA4\n3CaZhPyxmZlPv2F/l1OfOOvyvMOfyR4552TQjs7l8uLw/PNBxvMoPgxpD0B2FlZxvc4auzzFNcqT\nliVoB7z/8j20ffavnPCnM3xfRnOWk+1FlKf5vIeMMb/l7GJhA/d/w86BMe0DzKMysj22/TRFvzIc\nUd61Og+a40wWuHGnVMFY3esMQZdpSc5vrOLvFyhZpPpAp4N9HseuPZxfw/fkFTiI0abCdAt0pYKd\nLIU4t1mC7+37M/Iw2nj229jvdIw2VJ3DNoMSvsPBAba3VKe6iefWFPyA6w6op7x/D/E6u7qA/HMU\nUD0gc32j7+HYBWXK5QKMZceJeIJrejTEtbB1/z7obgdrdKUS5gFmZoMB1tTmI7SrWoR2lBva8nID\nc4WRh+N/QP7VG3MFzqzdQ5/tO9NO/pVuaFAfOO7zXn+Wz3fzUbTl/TaOdZXWcCnC3zdpX90gf53O\n2MdEPo7ddIL+c28f32NCeX2dnlkt43zXKjiXXuHug/Y6+IwsR7+wtLIAmvfBvT6OE9ddhv0uPnBG\nXtegnLpSwXHJc5w/zuOqZYx2AfmMJMZ3Gg6wfmDm1jd53zmm/LZawbFeWlgC3Wi2QHPeN5jRh4KO\nCto9HLspb/iPG+wIHMdAmtZsMavuSnmSx9Gcwx7X1p0gxvfjdT5/KMIZ+b7PBeAj3pv825Hj4sD+\nz431hbtTOUIz2GZIdcFLH7oA+r8+g7nhu//Va6D/xf/1pvOEV97EuDGeHt99jjjePP0E1q7GI4yj\nlL5bMkbbr3qu7Q9onxpVMAYtBJg/JDE+c0iucXURzx8unaKan9MDs6t0Hjak2tP8Cp55eCHmh4uL\n6BfeuIbn0K9fuQ76/j6+g5nZYIix+jQdIHz1dz6PP6jj2edgjH2+fg+fcfY0nq2mGeZQZma7kyug\nQ/Kfdcqz52uYwzQpl9tq4zOG+/fweVN3NhI6h+Ya3qOncX7bu5ugb3fxmXsDnP8vvoH7j4LPmsws\no7jwvSrmoK0Qc5oN2s4llJc16TCddzjJ2J2LF7/1bdDbn/w46LSONYQ9iserLcxPF2u4rro5jfOM\numFBZzGNJtr51N0mHRt4/8WZxFGnUH+Ss2v+DdeKj4LrurP6wPtSvofX3/7+PmiumZe5tvED8PTT\nT4PmuvqLL74I+urVl/D3j50BXaKaHNdboxmHJA/vYd3w0t/7z0CvfOZToAOqS2z81F8DvfCux/H+\n/+2fgb677J7n3m9j7aO1sgK6oLmZDMlXkV8pQnREHuWzg7Hr68ZUDwtT3kvQD3L0Eyl/GEL+1Kdz\n8zOnsaZrZtbtY57ANleis9BaFeNORA71A089Avr3rqMvLfHHTWZ2Yhn3wne2cW5qteP7LUpOsaNU\npRpNHW13eW0d9O4u1UvMrFSmbzxoktxzfBzfag3rZRH5GY/u53PXt/uA78G+a3Ee49k9OtesUB9O\nPI1njF/6JuZg51fdM8jaAj7Dr2INpRij9ihH5m12f4DPrFCfw8j9RsOpeTtnIofHgBr5vojmzvk2\ncEZNI8vQb/DenWsQAWtafj75+JzaTyduTsVnXM43bNTtA/JDTnWB6yZk0v6Mc9OAc0HKqfm9uY9O\nTHdifHGI+o//26FNHjN2N/GbiwOqm//CJyi2z2M9edbwsD9i6dNZVas5B7pWozOJA/SpbEvhUTXC\nWZ04wpYi8qFcs+YS4JmTuC+em8MYOus7gN1t3H/dun0DNOcCH3sCc0UvxDZTo9yOH8mfJVNd/gcZ\ntiPriLzOyTfxZfYT/OlD5rv+83Nf+veg//pP/RLoM6cwh3Zzf/ILTvylbwfpnYsZ9VfjfpMPnkxw\ng7izjWfO129QXWQL9/Ich/idZvnXwuPB5ff+0+2xzPR/jhBCCCGEEEIIIYQQQgghhBBCCCGEEEII\nIYQQQgghxAOO/jhCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBAPNPrjCCGEEEIIIYQQQggh\nhBBCCCGEEEIIIYQQQgghhBBCPNCE73QHzMymkwB04Oeg+/0O6MGkC7rT7jtt+v0W6hJeX1hGvRzO\nYZv9HujtYgv0Thf7tDUaOX2YTCLQjXoVdFJkoAMP/1YlLXAcOukUdNbF66Wy24cgxLFN6c9hIrru\nRXhDYdjHNEPdKFVAP7Z8zunD5fqzoKcD/M1Ovw3aL/A9Dno4vwdd1Hnmga6Wmk4fKqTDCOcmnsag\nJ70JaBp6symOU5Lg7wsPx8nMbJqkeE9SgPYM36PIUQcezZWhHvcGoDvbB04frCCJj6AemBU5/YDI\nqI/5hN5pxp9f+T63SW2Q3R83MlpDkyQBfbC5AzrfRnuvVtCPmJlFZM9eo4bXS+jqNzZW8HqI11eX\n0R8uzKOen0f/WqvXnT7V69gHx7YCtF+jPlZX10G3dnBc9oc4LiH7Mm7fzLwAnxFGZdCBT/6vQFst\n0TiHczgupTK250U4V3NzY/y9z6NilmVo/zkt0iKhuMGvmeLv0xT9TqOGwbDl4zvlM9Z8b4gOcBhj\nH/bper2CzxhM0MbbdL9Hf6c5mGKfPXeYHFpVfI+5GuqlJkaBFo1DlGMfwpDykDG9w4iDglkpxDZi\neo/cx8majjFuHDeGQ4xJoyHG9lKJ1guth6Jw4+h4jLE5inAeec16ZDy8vtKUn4G/Hw/c/LI5P0/P\nxOsf/tGPgS6TX7h/8xXQN968AjrPKCfy3FQ9jfGhGfmJkBxDQLnd/MkToB978gm8P/BJUxJt7ljy\nWPs+9vuRZz8MehLimtxYxz5Va+g/55dXnT6860PPg26tngTN78G+hOeO8SkmdPbdvKrRxJyT44Br\nk9im4/NzzoF4XN3EymmT/ThJfkZKa43b4wbc60fni24WcHzgvDWfYnzwI1yPPsWCkGzGzCylMU8n\n6Ps4f4/qjUOfkXVwX1uQ7/O4QTMLqY2c3iOjGJdMRqSH+IwB7p3LNcwlFzZOOX1ob22DHg9xHMIy\n+qZhH/Os0Rjfc5HsNIlpb1Zg7mBmNpli/B8OsY0gwmfEY2yzUkffxaGte/cu6Pm6mxvUamhjvS76\n16SKa3Kuin2ok/ZoufZpnIxyRzOzgwTnP5liI60FnAu/hH0aTVD7OY6rZ/iOfsm1ySDiPSP7R+xT\nwf6SgkC1gvMd0O+TdEb8NXxPL8JYFgZ/Icprfy6Mxri+9vb2QN8lW+Y9SJHg+jUzq3to760ajmdA\nuWEpwDlrtTAG91O8XlD9ZDNGn2JmNhphv9h/HpU78D6aLZf3/rxHfvsezqnQdvfa6MNLIXZieQ73\n4tUmXh8O0D8HoWunSyuL+JsRzrfRXujxx86DXl/DAmsY4kjQ8rXRjPppTH5lnXLDuQWMG4M+1oXj\nPcyhBwOMQynVXaoVrhKaVWs4lv0hthFP0GbLEdYDPMqx4hifmdFePZ+R58cJjv1kzLVGvL9Bfa7X\n0MZyKmYm1IdJ7O5ruQZ7f2sXfzM93vtY578jRWFx2kG72N7ENXp3291DJuQ8Vk7gvJ1+BNdQYwNt\nyygPM9rnWOAdrmfsIdx76BlOHGUdHH7dgT3krPv5Hu/Qq0fd7+ylaF+7dg79wM/+l7jXf+rDZ50n\n/pt//jLo3/zX10Hv99w8Soi/iCytnQN9bwtzub0uxtVKgPGl7mOMMzMrypQPGMaYxTnct547fQl0\nZw/PXwd0BniJ8o3t4Yy9k4/nBx2K/y+89CLo83/1x0GvrWC+kWdY2/zC3oSuu7WQWh1z1McvPg46\nvH0b9G9fwbHuDnDcpgnmC+tr6Mvubt5z+tBPaI9YppyV6hjOHpFq/1d2MfbltH/Lq25eVaazntMn\n1kAnfdxP/J//9ougX7x6E3SjgfYzoTpJu4vx2MytofF5ey/H9zx9GuPzI8tYm/QpbfLKuP/Yn7h7\nnoNdtMm9AeZ65TrtcylX6+3tg+5S3bhFczvZx9qLmdn5AsehtI5r6Wuvvur85rjAx2+cffiUK6SU\ns/35nFTjM1sNtLP11SXQ06mbrw9pn8L775D2fHx+HNDZAe/PeL2dPIk1dzOz1VWsd924cQN0jfYl\nXCN3auB0vlt42Ofa1J2N+Qr2s/WRD4D+9ovo8y+/C89ADg6w1p88hdcfevIZ0BuvvOD04R75Op9y\n4gnVHLjO0VxF/1mivH+F8v7JXXcv3e/SuVudzq8ob89oz8mxLMswdjaaOM5PP/WU04cnnngXtkE1\nWK6XFwdYn6k+8RhejzHGc/18Yck9KzqxgTWEnTb6z+A41+yGWB+J6Oy1VMLcgWtVYeSOTbVK33iQ\nHeW0ppvzOP7DEeZQCdW+BnR9OHRt2+fvonhbTHta/vZrmb7heHQJ14Y3wBi9POd+f1M7/zTon34c\nc8ff/s1/DrpC9eX5Bq7xM+Tj210ch1k1Oz+kMwsP5zOgBKVg/0r5jm/8fSI9MHDPSDhupDnGHc65\nfPJ1Azprn1B9LZngOGSJG/u45sBZOH+Ht7eDfobfgev4BRXcvBl1FG6Dvxvi6wzXmZ0Kxg/yQcwR\nvznqpPZB587uHdA92pb26QxiQvGkXnXXuTPqNIhcq280cL/Xou8EfNqT8vrwArZlN8fh70aPshW2\nPe4z54anT6Av4m/9RiO3tjlo4z5jdx/3JbyGnnoKvxHe2sOaQ5wdUV/mgxjnnGZGlZD/jdcxnyHS\n/rDo0VyxS6ZzGS93OuX06c69W6A/94XfBf13P/0r2EW2F++o70bwKt/tz7AvDhMxnQ9sbm2Cvnr9\nKug7d7CmMXbOeg63z1m+slJxv5WAZ1Dc4LOeHwT9nyOEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh\nhBBCCPFAoz+OEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHEA43+OEIIIYQQQgghhBBCCCGE\nEEIIIYQQQgghhBBCCCGEEA804TvdATOzYX8KuuxneEMwAPnm/ddA+0HVabMSBdjEfBf0arQEepQk\noG9N8P5BnoLeGqCe9CZOH0q1AnSceKCTBK+bh9f9AHWR4+1hhH/b4ofu37qk9E9BiM/0c3zGXCVC\nXVoGfbJ5AnSrchL0ifIZpw9ehvMzzXqgB6MY9F5nB/RwMMbfT3CuPMN3WJ137aFRw39b8hqg+yO0\nsUEZnzke4jOHA1w6kwkOdFqgTZuZ5R5OYEY6z8geCN9Zrvjee5s4bvHItUn6iXlkc1ZgH3hsC7qd\nKezw37/9TH4k/iZnQz9mZCn6tzRG+z/YRd9TjHG9LM7PO20uNNGePfZ/PuqlpQXQPv2dXLNeAd1o\nYPtBuQy6XMb7zcx8eqZ5ZN85rinL8H5/fg50fXkV9PT/a+/Nnm27rvO+sbq9dr9Pf26D2+PiXhAN\nSZCgRLCDqVCkTNIUJcexFdFKxUmq4sp/kKo8JW9JXlKpxC6loio7luRIMmUxNklBJEiaHUASANHj\n4vbNuaffZ/d7tXmAq8Lvm9vngIoc6px8v7fv7LXXGmvOMcccc8y5793DdppEOIazxB2DlQraze1y\nkG+accxGXw1DvF+rjXEnohg9HWPfm5lNpugfheEzSqP50cNn8ujxaQ6Iad7Ic7zfTt+NGxt7+Dc/\nxFhUUGDIC2ynlGJbneaZLKd2zPF+WebGxozixN4I/YnvWRzQl+1GBXQnRs3OkeVu31Wo/4MU2zal\nsZ8e8d+n1moYF4IA/aYSox9MpzhmKxXqAzOr1XBM+eTgWUb5geeTxn4MAooB5Bd5jrnerHsw589f\nAH3q1AOg+wOMXf/qX/5z0Ndu/x+gl48fc55xfAXbYXdrG/Q25U0f/+TToL/4m38P9COPPgramZfz\nGfPyAfkAt/3lRz+Az3zfk6CzFPvfJ385fQ7b1czs5OlzoKMK+lQUoXahnNjn2IPvPbe44N7hgBzG\np3YoS4wDYci5HcV0iqes/+1d8Zk+P5NyM4rZ3FfcuWyzsTYzc+Z8cpCZdh8NSlpLFRnGjYLWmB7F\nnVlwrljSGoDzCZ/mnyLC73PeVlAuMZ1gzDAzC3ldSb46oTyLcyArsR2mQ8xnKzXMLRvz7vhaPn0C\n9MaNu6DrlP+O+yPQaYb5y2SMNpWUn+zu4vffuQd+Jw55LsN4PKX4G1DuGc/jWnn1DMapyuS2Y4NX\nDEGPU5xfax3sz1qF4hDFhPEY3yGOeYy7AT6l3Mz3KXaRHo/w+mmCNlQjGhfF/vO1mTsv5FRLyUoa\nJzzHh3RPntvo/mmOfWdmVobY9mGAuUq1fnRj3f17OP7u3LkFejhCP+XY1wrctdlCB9s4Il+NQmzf\nuN7CG9B8VA9xPKVUA1pzLDArC1qHkN+Uxr6PNqb0nhNa24fkV+760p0yx3SPmMJxs4rvFVfwGYHH\n4w/bfr7ZcGxoUTxNaP119izWDy5fvgg6ojkgS/Ed0inF49TNLTvz+Ix5yrtSapd+D2P2iHyQY0DU\naoNuUI3DzKzf7+M9B/iMTge/U6+ijxbkTx7FxoTmpfHEXVPy+uT0aVxL1KsYh7j/OeUajvGZ3R6u\nRe6ubzo2bG53QY9G2A4xr5WPGuT/oy30rW985yroP3p+HfQbO2684/L/yQ72268/tQr6i7/5COj5\nh7AeZpy/c/7PhSDWs+4R8He4gMz5/v5rCBea62fWQ37ee+7/fTfi0ud0+7iO88ilX3Zzgb/TRP9/\n800cU898F2vzs+K+EH8duLd+D3R3F323v4dzQVrF8dBYpLhkZnOLuH5bbmKutrqMc/unn3oc9Dh7\nL+gXvvVN0PdvYj66PnDXsVc3d0HnVCn//g+/B/qTH/0Y6McuPgj6xlsvgz5dw7l703Prhksr2DYr\nNcy99lqY81y9+yPQjfoy6KLE2DVMcW9olNQdG4IKXuM30IZ7G5jLV3x8rxrtLXHNe0I1i4WKGy8/\n86lPg/7E+x4C/fqbV0C/cuU6PpPW2jnlev0BamcvysxiqhPyPkiSYC5/fRvv+YkzuP7wONGiaate\ncY9bNDo4b/gR6tc9/A7XJrnWuTvGdzhzAs857HUxnzUza65gHWK8jeOkSfXVo0RJk31Avt2kPhuO\nMY+bFAfvVXOdaJnWDPepT6q0J3LuBJ7BuL+DuUWrRetgc+vJvIZgzb7P+UmDYsTTTz8NemkJbTQz\nu3TpEui1NVxxd7s4j6yuYr7rUW6ZkY3tBdwTKffcvqhRjaCxgPPMU5cx7oQV2luKcG3V28O+alE7\nvOeVFx0brs1hf+e0N5BlXEenc0MF1QyoPlZpoc21hhvzT9IeyM4AnzlKaN3pnMHgs0n7+88bb+AZ\nLTOzP/zD3wfNPvOFz38BdEB5hTfGeNycx9j2Nz71a6DHUzpfYGaNJvrD6TOnQPf6OLaOEjHNLUGE\n7csrEl7jRxXXr6Iq/s2jWj+f/xmPsPZfFOg3Ee8tTLBWcePmDceGlGq3Ac3D212cz1Laz63TnohH\nNi20MAYUgVvr6CVoQ20ex+TnP4R7qw8fx3jqUV1w0MIaz4DOvBW5u/fm0RnFgjSfhzDDe/KSlOvu\nXAuNZuUztN/fpbjCcYP3lrobmMe325irBpRrhrGbW/IeJPug7+McnifoY857Uuz0qG7CNeB3TKDa\nNZ/H4rOdvDfLZ0HpGU5dccYeyUFVkgOOMBx6rlL+Poywjf/pH/wu6HqM8/Tv/N0vOfds1DHecb9x\nrb1JeVOnjTXngPJ57hIe5zP3/b399/Hd8y48btGXGnUcUw8cx3m2Qmf91tfcfcqb9zDXW9/YAr0w\nj+vYBx/EXPH//Mo/AZ1NaS3NDUXv6LbSwX/xnJyH1oxOrk/n8rg0Sn3Lt/cKdwDy2aWvPvNnoD/3\n6d8AfWwVz187Zz7Yf4x9Zf/zv2ZmCcXwjQ2sbb/9Nq7Vr13DWnivhzkzjxk+L8BjqN3Bc6BmZg88\ngPNjSHuDd2h/cmMdbX43HO2TeUIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEOPLoxxFCCCGE\nEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhDjU6McRQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII\nIYQ41IS/aAPMzAa7Q9B5jGZ5dfz83voEdDU76dzTj3qg4wB/BzLIM9C9PAWdxnXQ4/EIdFSpgp7W\n8H5mZkmGdpqP18TtGugyLVGXaLMXeHg/D/VCA20yMyt8vCaqNUCfbK2CvtA+j9/P8Po4bKEJRQB6\nd4DtaGY2pXbY7e2C7g7w86CsgG6RP4wy7IvReAx6c3vLscGfmwe91EYdt+dAN6rUv80C9F61jzYM\nsS/HCfqsmdmkQLsnZYIXFNj/Xoh9F3roD5PRFPTm2gbossT7vXNT/kO5/+d8i9Kjj8lm8slilg15\nvq9RM+0+Qkwm6O95gnEhLbA9xlMcU93r95x71hdxXNY4thTY5nEcg65WUUcRjsG0RP+vUp8FHsaB\ndx5K8YxiriXk/3yPOo7J2skzoPM9jPFBgN/PU7q/mcUxjusgxNiCb2nm0Tt4dAUPl8DHMRrQvBNG\nEeg0c+cNP6W2DfG9PIrpGY0nn8ZgLcbvl9SXOz30x+7QbbeMhqSfkz9E+J4+2dio7p9q5BT76hW8\nfppyzDDLKPaMJnhNd0RzOtns0TuF1FcW09wZ4uf12H0njn9xhG0/SsimzH2vo0Saon/7Pv8eFzsh\nirBNZ00FHD8bjTpdQeOH+rUsabyQr/o+9tnc4rJjgxNraAwGNB6CEONxlfKwpz72q6Bf/Ok10F/6\nnb/v2NCoYVv95Mc/BP3lP/0q6N/+nf8C9OXLl0AXnH/wXF64vloUNKY8zlHxnjHlVWmKOUwywfHR\n272D36/hPGXmtiXbxO91MOw/M+a2g+5A7eA0C891ZOLMvAlscn/X7nyFUzvHJicZ3Pf7nENwO5uZ\n+dRWzhMOeuYhJqjweg59uZjSOpfaL+dJ1sx8mj98moN4TKYDXAsVNOf5FF8D6iFv4PYp91lh9Eye\nVyMcowGNz7DZQU1raT9y17H1ziLoantAz8S8qgyxLQcTXK/1Bxh3JtSu/Rk50Pw82lWv4TM9eg8q\nKVgyxHkrjJugVy4+DjooMD6bme2+9Tzo0u/iMz20yQ+wL6aUW04y9If5Oq5RZ/okDeEKzUPThPLT\nEn04NGx7I5s9HxsuL9yY4fNcReEwojjEaVarhTZn1N15QfksJ4tmlpR4j5Dyal4rHyVu374Jejik\n2Eaxr0F9utLBPjczCwJe92D71uqY53k0B6a0vowC1I0An1kP3Xm9SuviLHRWhPvazHNqSvk+T4iT\nCY0FM5uba4NOErym08G4Uath3GlSPsw5N+e/XAswM+uPMA40WvjMB8+fA12hdXWe4Xv7Aa2zqbZp\ngRvzj5/E2mRM77m1QfUu+n6njTWRaBFrfqMxtmu/j3OKmdnODtYqPepA9hfuf6fWQ+6U0fqfcwIz\ns/PnsO6x0Mb+HfRwbtvdQ5vXN7ZB73TxPffovUcjqlubOTlAu4VtW61j7nPUKIc4Zt54EWtw/+tf\n3AX90h76v1vlcbk/wmfsPIPPWFrCfv/MCuZRlQbW7Jx6Gq+9edKc8Tf255K/Q2tlN7+n+Oj8e1wH\nabOS68PONfyMgzjo+1S3pKv39tzx8d1v3wD95g2sTR71mrY4Ouzt4ryajHF+CH305SnlJ/c21px7\nfvKDuJb54CO4z8hx5/Qy5kBr25hfhrRfd//qFdDbuzj+zMyGU6o10drZKzZBP/ftr4P+wDGc467e\nxvg8pHnYZtT2Lx9/APRrb9wCvXYf276gdol8zMsKfwX01hZ+f6+Hc7+ZWRRhHpTklJv5+J592r/d\nc3JWzFliqosvxzQvmdmjj70fdFhBn7p+G+fTAdUFfQ8XbLu0F8Q5b31GjltQHpzRWpdrcGs9fOaQ\n9usXqlTz9fH+Cw3XhpMPngIdU569QGvK45QfpqfeA7p//S3Q9TnM0zrzC44NH3nyY6D/2R//S9BP\nf/aLzneOCk82MY4EHVxjLB9fAv2dN2+Ang7dfX6e61eoD37r40+C/qPvvQD6V57EsdHt7YF+7AEc\nT2dPn3ZseP3NN0EvLGC/tyh/5/Gyuoprr+Vl3ANJaX3P+x9mZuvr66AHA5xHeG30oV/6JdBtWhIO\ndjDebm5g7AzoXImZ2Smqd5V01qhx7kHQvSHG13odx+PcPPrD1lWsg8QTt26YjPE9+3s4T/CecmcB\n8/pjixjj+1v30UY6qxS54daW5zCmj1Lsi/4I68a85dGo4U37VGceDvCdvv61f+3YsLWB/nCHakid\nNr73o489AjqnPeDqHNaVLz32QdBvvIWx0Mxskfy420ef4b3Ao8TtO9jeztkdp050QC3LzEreW6Pm\n472CRht1r0f7GbznRGu1vHT33Hl/j/c8drsYPzMqBteoDlhMKccimzYn7lou7GKetb2HzzzXwXx2\neQ7HbG+KueIopTMaAxzz3a4b69z9OD5XhZ9mfB6H4LMsFdo7atJ4NTM7ceI4aD7vUqlU9v085Bow\nlxvoebOGK/+N1/PTAmN0MsFY6Hu0l0/+wXuc7pkG928R1bIDrpsQB+3VHrh3a/YuCiFHN9aZmY0N\n27iyinO5R+P4n37lH4NuUZ3dzOw3fg1z4XqN6p7UpHzebI7igLuPz2cu+CyDY5LTi+5Zg/33VTxa\nYx5bwpx4dRlzR8/H72/POG+7s7sDereL67NLjzwBennlGOibd26ALvc/MuoEBi/f/5yq2ayjCDz5\n8Nz0onnsAAAgAElEQVTGD9n/erbZOfIxqyZIe51Xr70N+rs/+Cbo3/zCb+MzuF5Lt3c+J38aT939\nqPtrOPdcuYJ51dVrV0Hv9aj2SfntQbGxRWvgC+cvODadO4f1I598ks/sDPtUm3kX6H+OEEIIIYQQ\nQgghhBBCCCGEEEIIIYQQQgghhBBCCCHEoUY/jhBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh\nxKFGP44QQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIcShJvxFG2BmNtjpgy6bdbwgzUBmY/y4\nmgyce4bHC9B7Pv4O5GYyAT0d4vVJP8VnpjnoIsXrS790bPArEeg8T0Cnox5ozwLQlbgKemGhA7pm\nTdAXaqccG6IIr6k1VkDHYQO1jzqM0KZxhm29Nd3Bz8fYV2ZmgU9uRk3VqOAzp+UUdJrjPf0AbQpD\n1GmKfWdmttXtgk7Ip1o1bCffw+/X4xh0ZR7fqV8Zgu4N6QZm5o/wbyXZPc3wvTOyMS3Rf+7dvAN6\n5/6W88yDKEuP/0CapId/8JzLeRy44yL38Jl8j6POYMCxB/v9+vV10KtTbK/lCvqimdlkYxd0fAJj\nah6jr3E/hwHGx6xA34s8fGYUYmzzffd3dh71c8n9XqAN7AYexS5r4/ernXn8PMcYnSfYrmZmvkd2\nsi4xrufUTl6x/+8JSw+/71MgCSP8fqXAdnzHBHxmTr9hjDN8xnBvhDaG9IwYY9VuH/1vq4d6QnPb\nO0bhexQ52hhF9HmBfVGleaRCOqJYWFA/ZIUbT6cZPmM8RX17C+cqj/pig8ch3W91vga600Rdjd2+\nM/LxaU5tSTHcfaujRVzFHCYM0BeTBONMSeMtmBFX2Bcz6jfWvo++xVMcR56SfNed08zKku3avyd5\nTBvFifPnL4L+L//hfwX63Lmzzj057zlz7iHQ733/R/DzM5gfcmzKKX56Ht4/oOeZmQUl/o3jq0fz\nSknjukJzWbyIYyxLKWeekdvx3FMUFMNpDPK85JHN3A7TKcaJMHTHfUp28jUB+T37eUg5rZNF0TvN\nTpkOeE/b/73/HTf9fz72KI+fseZxxgpLd/AdGfyoAjqg9VtBOZVlpAv0ITMzSzi2sW/j58MBznk+\n+V0Y0LxdRxujBq7FZj2D/00Fzi/qS6uoF4/jM5qYtznjb4LjzcwsiNDOarMNurezB3q3izlRWuD4\n2t3FIkK7hXGnXnNz7GoF3zOnWJSkaGO9hfcoKYeZ9HHNWJ87gTY9iPHbzCw3fMZ49Beguz18r0Hj\nHD4jxHaKprhOGOLHFlbdElHnOPpIMuG1AvpYkaDPVg39vKC+4bhVmVGlyjKKpzQHlDTnVxucv9J8\nTd/PU4zfWe4aMcnwGY021Xu8GfnhESGZoJ/lCY6FCsWy1Q62RauGfmzmxgEvwHhaUN4XUZ+FNLVk\nGdrgG8ax+Zrbp6O5Fugph2h+Ro7vPaHY5ZMvcyStVFwf4fyF892AcoV6HWMX51S8dIpCfO80cWt2\nGa3vHn4PxpGY+q/XwzjivFeJz5jSPBaG2NdmZlWaizxKJjzKd6IKtkutjvNMQPlukmDtcjpj3mk1\nsQYxPzcHejzGcbCxuYnPpDywVsPadquF77i0uODY0Kb+7W5tgN7ewdrm+jbNhX2cC3d2qTZEfb2y\nuuzY0Gqg3VQOt8HYbbujREm1hTv3MM+6MaA9ir/EM7jqcrOHz/zys1jvffS9mC+cW0Jf9Wpc6+L8\nfcaalddrfI2zHqeY7fx7W/wMur/xumfWOprXMfvb8PNXVfh67L3xCPO0Z/7kFecO/8t//wLo23eP\n9ngQR5d0inNaJaAchmo+Y6qPBKW7jh0PcM5pUF2wVsX5f6+L+xm3b98D3Z7Dub05j3qL5kQzt96V\nZTjvLdI86yXYDi+/eRf0vTXcb1vr4n5uw9wc92MXHwZ9M8O18h3Ki4riRdDVCu5pbOzeRJtLbLfp\nFLWZWbWG83uaYd8EUY005jCTEdVLS8yBfR/zz09/6m86NpxYxjwn2cW23e1hzlIJ2eewb7iqFEY4\n1wWBW0fODqg9897omGoxm0PUyw304ZD8LfBdf7jwwY+CbtcxH2yO0MZaSns1Ht5zronfv7eBueBD\np086Nmzew5w1XsQzAh/5+Kec7xwVhlSju0R1pjPLOFbuZvj59du3nHt2d7E963XMy1YWMFb9+rmz\noD//y0+A3iRfv3Ib8//l48ccGyoUX5999lnQH/0o+t0jjzwCmtegXTo/wTXB8+fPOza8/vrroHd3\nMRY9/fTToLe3t/GZm9i25RjfKWvj2Li7je1uZrZGezlnv4N5WvPxx0EXvAdCa23eS0ruYE4+mbp5\n39oGrhXOLi6CrlAd4sw5zOvfc/IS6B99l/b6KxRXfK4ymL19B7+TG8b0uQUc83mO88x4hD7INYjx\nGON1NmOfpt3GcdAsab1STPfVi/NY8+UcIaV9nlkx//79NdBnT2E8DP9anIj798PNa2+DTqZUH+P6\nG+nxGNdB71yDcxyPj4Dm4UqT16Q4506n2OcFnbfojTAPNJuxZ0z9HtO+TDXC/KRDZzLKIY7XBtWh\n1seuX/FebBBjvWTYx3mYzzew744S7Jt+H9tlNHT7guHaI7cTf877g7x3ZGQjt4uZ2blzWCd85JFH\nQdfr2C5cT4sp1+SaH5cjOMcyc4/0OBWIks9yYuzic5qcS3K7eDPOKPCeNO+dc/zkbVFeq/A4e3f8\nVdzj8JJSbd7dc6d+C3GM/e9f+UfOPW+u3QD92U9+DvTli5dBRxWMPXNzuO7hcwLu2QSOrzP2zw/o\nVr4H+x5//fgynjPm/DWnnGprB+voZmYbW7g2HlH+8P4nngQd0bjf3qSzrFwc5QHDvv0uDpWyP3D8\n40Ulnx878Oyss1nEtVU3T2O7E5oH/q+v/wnoT5H/ddp0JpLm45zORg2HGPvu3MV1uJnZm2++CfrK\n22+B7u5i//NZp4BzAvK/dhP33M6dOwP64kU8G2VmtrqKZwr4zNfeHs637Q7OM+8G/c8RQgghhBBC\nCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQ41OjHEUIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGE\nONToxxFCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhDjUhL9oA8zMkmQE2h8EqJMYdD7F33S0\nG+4998oe6N5eDjqje+QZfj9L8HqPmqoS1UHPzy05NtQbaNgg2cYLYnxokg1ATycpfn+C13sh2rib\nlY4Ny3EL9GprBXQzboMeT7Av9qZD0KNsDDryq6ArVc+xoRpi/3keXjMI8Jl9w3bop33QYUx9UZJ/\nFIVjwzRLQN/fxL7Y9tFfogj9o1nF/m43sN2iCG2K44pjQ5Jgf/o+2sTt4nlow2SE7XTt9at4/ynf\nzzHBPG6aAn2mJBdyPOrn/Hw29EwP9QyzjxR3794HvbuF/n3r3h7ouIa+NxlPnXuOt/E79d0u6LRZ\nA8397FOj+yHG4GqMY6waRaDzAmORmZkX0G/v2Pd8dha8vvRoDIUTlHVsl2iE8dbz0cZ3DMUYWnBD\nOK/BvhrQp/hSPOY8H98pwK/PjBM87nNql2Ca0ec8flCPxxh3NnYxhvdpXqnFbrtN6R4hOUwjQv+I\nQn9fXaUYHlDD5dwvnvs7Tg7zWR3/UFJs2x0l++qE5gif/Deu0BiY0U4hdfCY+qogmzJ32Bwp0gTb\nNGpgm1WCGWP0Z+A5zcwsoNgUUJs7sY18lXM9vl9JN+DYOOsa9wKUGXX0eIRjsD2HedrFhy7g7Qr3\neZznxDHmYmdOnwEdhhSz8/3fgX01z928KgxxHHM85aYLfGzrKflHpUJ9Szb7HEDNzKcYW9BcVPB7\nUiihr1sQ4Dt5HrZrwF8ws0q0/1KqdFriIP/h+Idylg0cD/Mc24Hbyae8q6Qb8PXu81x/4BzWySdn\n5AlHBW4PL8C5PWrM4fUTXFt5mRvr0hHmPAmtCac0d2cl9WGEOkvpc1pDljP+vQSPfJvnvVoH37Nz\n4jReP3ecnonXZwnms0WOsdHMbdu4hvmsF+HaiHOmhNql38ec2yvRhkbdzcuGnF+WnBtiX3UopodV\n/H7n1EXQ7dOPga50Vh0b5t/zSbymiXWH9PtfB93dwXYxsqmxwHkYfl6p0GRpbv9kJd6j0UL/SNZw\nbZ0WGCMCivlFQfWfGSvCnOoxno86IbNbdbzHqEfzSIgxPiEbcnPnnVodn1lr0RorxBrBUSJNKe5M\ncTwtN7C961Vsq2jGPB5VsP2CiNqT3IBjVUrxc0q5I8ed5oxa1co8jtER1ZaSFONldw/X2Qk5Xkjr\n5NJJ+N08gHPDRoMLnPjeNaoP+AG+V0ZjIaScu153C6itDvpuo4HP6O7sgqYhbfUajifORULqizDH\nec3MzKdcYjrheQHbrlFHf8noxXd2dkBvbmMNMMnd3GR5cQH0ZILzxNYO3oPz4eV5/H67he3Ic+lk\niDmBmdnW5iZeM8ZregOM8WPy++4eXs9rkXYLY36LtJlZQYumEfko23DkoGEacq3238MjM8ovnr+J\nbfyd794EfeLyMdDVDo5BriuVM2oqTgGL1mvmseY3p2dQy7DmfZXZ7chzBV/FEwMX4X6+ovV4TO38\n1ddA/97//BPHwju3Mfc7sD4gxF9TCpqL25S7TQr8PI5wfC7X3ZreW7c3QD+0iePl/AmcFwdbmF+s\nLuDaud3BMb5Uez/oYRfnejOzLo3rKuUo77t0CXQ+xn3Ie/dw32arizlvUe2A/vVj5xwbLj6Cf/vu\nV18A/ezz3wE9GuMzWzXMm04dxzqh0Z7J+uYNx4aTx07TNVt4C4qnnKOUOa3vUuz/ublF0I89/Ihj\nQ0o5zHSM/rDbx77i9f9kij7Iud9kgvebVavi9UFG+Z8Tw2mue2sTbVymHPns6ZOgn3jsQ44Njz/6\nBOgx1aK7VIsc0Wtcf+MV0OdXMHe7tYbjYLvv5tk7dez/9/6tvwu6SvseR4kdqiNdp/Hj72B7HTt2\nAnR34NaqlurYh+dP4XeGPYwrT85h3CibtB6jGnhtGf1y6RjmfWZmb9+8BXpvD/eH19fXQXOtd24O\n4+0mrUF4z2U4Y93y4osv7vuMGrX9YIDtwnX4SoR9U62iX06cDWaz79GZm4vfxPgan8T6We3pp/AG\nVbR5dBXPXGz/iy+Dzk6654COeRhnVpewHuo1cR5aXMQxXKtiO0VUU4jo8yB2c8+ghm3ToJrBmfM4\njxQp2ry1jTGiyDC+Li/juaIHTp9ybPjJT14CHVXwPS4+hPNvROeGJhSv/+APfx/0c88/jzbyRp+Z\nXb70MOj/7D/9T0AfP44x+ygxGmAdluc33jcLqf15L9fMPScS8FkvGvMJFYpKWl+6e4x8Bm5iTEnr\nt5jOqpw+fRZtpjhRLal2QXsBx0/geL1+A8eCmVm90QTdWUQ/2t29AzpP8b14LzahtuY97Hodn2dm\n5hnZ5ezFol5cxDyN94c5Z8oytDmYsTF+7txDoJdXMC5UKJeoUCxz9l7pDAbvBczaDw7pOwGXB+oY\nb5eWsEZ3b20NbXDqDbyP6tZReK4LnTMLv4B/l9yp1RztGoXn7R/fON+vUB/lvpsrf/uVZ0C/dP05\n0B9+/BOgP/PRz4Gu85m1Cp81wOfxnvysulJJe5scD0vnUBtqdsXTKxgX4irGmtEAc8ltqqObufVh\nnicefBDn+gmdO+71cG3twEszCgNcApzN/uPaeaQzfPZfHzrf53Mo2YzrfepLOiP50ms/Bf3sv8H9\n3s9/5j8EzfMI74Hcvn0b9JWrVxyTrl+/BnqP9rwK8r+Q5nTu+1YT/enCubOgLz6E++Injru5ZI3G\nEb/nAtWLlhYwxr8b9D9HCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDiUKMfRwghhBBCCCGE\nEEIIIYQQQgghhBBCCCGEEEIIIYQQ4lCjH0cIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEOJQ\nE/6iDTAzsxJlEOFvNqbDBPR8uwM6bHSdW65tDUH74TzovMCHFqkH2vOxaaqVJuh6o4W6ip+bmQU+\nvkeeFaDbzTm8RwXvmcQT0FFUoevxnW53bzg2LDUW0IZpCvra5jXQe5MB3oDawfex3TotfO/F1qJj\nQxyi3WmW4QUptlPk4TNjsqE/xr7NQ2zXRlx1bNgb9PAeU7xHQD7Y76HP7XVHoLdrfdBhEIEuDG0y\nM5uk+N5liT7n03tXogD029feAt3d2AXt0TvwuDIzK8mscsY1iEe6oE/x85Iv/0twsE2Hm811jFfr\nm+hL3RH63m6JfjAYYVwwMxt1cdxWd9DfC5/iG32/oJ/JVUL0xUalBnqSTEFHFRzjs/ApHvIv87yC\nO56szDF2WYhjLiQbysIdgwUPgDzH7zjfYHiewLfw6PaeR2Mcu9LMcweMT4Oo8PC9pxRHPOrbgtpx\ns4f+srGHOqXr2w23LwP2D5qjV+froMOAX5RaltvlAP/LZ3TMOOF5BOWxhQY+MsBnpuQf/Qneb5Ti\n50mGvlKJ3PSpoIkkpBeLqCHHqeujR4lKHIP2yVeTBDstojaNKjNS1AMGKT+Dx2CW7z9++PpyxoTE\nsSyfYrz1IsxBAvLn9lyb7ojPcOJGOON3zBS72KaQ2jIkGzj08DPZJr7/v/0WfoPjq8exaf8EhD/n\ntufY9s412A4F9S8nJUGA8c3xD8pPswx9NKjiXPjONThnO21N1/N7BMH+MZxtdPvKzKfYwm0XhhiT\nHT+nccBd6YyrGf4wwyyk5Hnh6FBSAh5UMPY5PkDXF9nUmHKMfsXjI6ecyKMuKVJ8RkLrv5K+H9Vw\nHjczy8n/oxb6f1jHWBfR+AgibAc3CeL3dufESg3vOdrbw1tS43LIHvdxvbc7GIPOUmznaeLmQK0U\n26FC+WaS0ZgN0MZTcyug6ysXQYdVXM87sdLMqq0l1I/+KujGifeD3nzu99DG9ZdAl0Yxgfrf9zG2\nmplNBxgf51bxO8NdmpcK1Dzfls5KANsxn5EiUUnAJuTn1SZdQA7B309Sjseoo9D1hzoNlZRqSGEN\n88+jRE71k2NN7MOlFsYEXg9Uqm6cqcTYXjXyRV67jSe4jikoH+I5tKQ45jsFE7Mlim0jD23a3KP6\nGPkm1+g4H8pSbLcoxjXsO9egndWY8hWadznHnkwxtiW0Xlyh+80vYo3QzKzZxPceULzt97FmsbS8\njDZRvprRvJ9RvhPX3HbIKQ8bD7EGl6W0dqfuHA6wrbe38R26PXyHRt0dr+Mxzk3rm5ugfQ/f6/jK\nKuiFeczzG1Xsq/EIbRyPse/MzLa2sV40ptrL/c0d0N09qn3T3LhAa4+5Bez/YsZ6p99Hv+/28BkT\nWscdNfIx+uLmHvZB8v9BzXJnig/5s++tgX7vE7dBP76MtXm/SnMYJ4tmZuTPrubv0JqD14NcLzPO\n/ZwqoGuTU1Q+4DsHrGPNKK5M0Je//8zroP+n/+57oF/+KcYRs9nrUiEOI9UQx898Hees2wOcN080\nMWeqV9w1/i7NtS9fuQp6THujS/O4x/ueB06APlXDZ2zewVzgiYtnHBsmE4zZ9SW85wPLOHdfffMV\n0DznPfLe94H+ex/8JdC1kTsnvk57eFdf/hroaf8O6IfPYl40TCjnzV4Dvb6L7VKdkWdntObvUw7i\n0T5kQvuzYYj3PHEc161/5wv/AehO1Y3p6RTfYzjEvGeP1usc4mNae3ONgnMerunNuqdbe+Qv4B92\nJuhzaxO06e9/4ougn3z4YdcEyr0yyqOy526A7tK+dEJjcYe2vrlEl04whzYz85axLrF06kHQ1fDo\n1uweP4Zxpr2EMeDSmfOgb2xsgH74OH7fzOzJiw+B7szhmYjzW5g/rFMh4c+/9RzoDz+MNjx+As+J\nvHoF8xUzs5dewjpPTGvE730Pcxqu7Z8/j8/k73c6+N4vvPCCY8PW1pbzt59lfX0dNK99ljqYv+Yj\n2lOhddCsmvirBa5b/vwWtsun/gc8/1L/F38M2l/BsdF76aegb969hfoJbDczsyaNuc48+sOp4zhv\njPo3QHNqWVA+HNF6vjSKnWY2pDjBOXJK8++br71Id6B9OQoJHCtPnDzl2HDs2Ennb3iPcl995W3s\nq5d+in3B/lMWbu0yp72heg39+oEHXLuPCktLWKMZDNEneI/dpzr9xQcvOffc2sQ16JT3JHmtNqZa\nFteFaJ7mnG1r1z3rF8fomzWqu3bm8L2vUg62uYPxeLWGY6M/QhtGtFdgZtbMcMzdvHEFdET7/Fyj\noVTC5hZxrDRjjIWVqjvGr1zB9X9J+QrvrX/sox8Bfe36TdBra9i3fJ5mVv10nmJbp41nHLkOXPI+\nN2k+RsLnJ2btQfJaPOd4WcH59kMfwvj7+utv0B0pLvH+1ay9WOfcB36H92KZWXPZ/1vce/7VP+Ov\nE5WYalMFvm+VarFcyx3P2I/tTTBmbg8wH1z/Fo6ZH72Oudz55dNoE+2vjVPMV9KC1y1un+V0jzyi\n+vDoPujRi1gv/ltPfw70yiLGy4DWWuvXb4C+dfeeY9Pbd/CabornY37vK/8Y9L+58i3QGzvYjlx2\nLHlqzzgWcU3QMXHGAq/cVx6oeb82OGB8uemJlRm+aBHiQ0a0Tv6jP/1noB+9/AToCZ0fuH0H89Xr\n1zGnWruPvmJmNhyiT3JeFtBmKs8zrRauV86dwTFw+fJl0Jwn8ll7s1khF/8wN4fr6mWq7bwb9D9H\nCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDiUKMfRwghhBBCCCGEEEIIIYQQQgghhBBCCCGE\nEEIIIYQQ4lCjH0cIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEOJQox9HCCGEEEIIIYQQQggh\nhBBCCCGEEEIIIYQQQgghhBDiUBP+og0wM+ssdkDHcQ10WQagq5UW6O79beeefj2me+Sg8zwFXYsX\n8RlVfEYYVkA3K3h/o/ubmU2SMdpUYnNHeR10pRKBnl+cx0d4Gd5/OgW967k2XNt+E3S/h9/p9dHG\neg1tWmytoM0B2rjX7+Pnnvt7m7nGHOjSw88b1N9N0p4VoPMc37MgL/a90rEhrVbRhgzvaTn6WEB9\nNZ4moAeDCdroo67VsR3NzKIQ264I0c6Cum+41wN9+43baPKU3oHw9v/4nWu8g65AG70Z/Ut33Pf7\n7/wFr/H4GnaQI8bO3gh0f4hjMimwPfamGKsGY/RFM7PJEP1vvIu+EzRwTKUU//IcnSXy0f+zlGJP\njjZUcjf2VCKMmWGAYww/NQvYL0q0qUzpvel+Xog2z/LVkv7Gvuf4IsWesuTP0QYeUB4NQp9MKsoZ\ng5S+Q+5gGQWKSgVt2OmjP22Tzqidc3rncYJ9bWZWpWe0Gth77SbqwMfrC2q3IMTPI9IeNVSSuv7l\nB3hNo4aanxnRO1Qi9Jf1Lo7Lktplb5TQ565/VQuOl9jW/J6z8oajxHhM8yT1SVHQ+KI5Mpm6sS6M\n8BqP78HTCY2xgHxr1B+AbrQx9+M+NDNLKR4GUQO/Q/4f0C34vQKKZQHFsoKTAzNLp2iDV8X34jEW\n0HjhWMbtwlN5PsOGIEA7ua19agd+ZpbRPBJjHMlzvN5nG83MI0P9iOIAzW38HjzOubv5HXmunGXn\neDwEXa/h/MttSy7s+DB74Mx5g96DfYrzZu4b183xfvzINMMcwsws5DmY5xp+0SNENsG1VBniGpE9\nN0+x/TJek5hZQflKTp0UVLG9wxCvn45w7vd87NM8o1zC3Lnf99kPKPZx2GA/oj8U5IcBra2L3LXB\no1ySW4rdajjCeWe7i32TTdGGCa2l4p4b65pVjFX1OrV1STnRNsaAuLMMeuEifh7VsK/82F1D8jwT\nVDCuRFWqGbzvs6AHL9zBZ2S4TpjSmO513b7ozOEz8xz7Nx1gHlWU2E6ViOJtQP5F67+idMtUPq2d\n4wD7r1nH/ksSvCfnbgHdz/E3qg+YmZU0LqZjfGYUYDscJRYq6Ber5BMVGtPmY87WaGJNyMzM5+9Q\nHIno84xi14TmszqtUbhexmsUMzdHqlEtqRaiUVyzawdN0IMB5pac31R4PWBujhzSOoXrSEGA99za\n2UGb6lS7bLXxflzLNHcdnCYYT1ttrNkuLS2AjmlMDyhf9iN8Zi3iaoBZMsa2Kzlvo4Sk18NYttfD\n74/GOAcEPuWNM0pb/QHVNym/aTUwHteq+9edu91d0NvUVyOar83MNrbwmpTyzyTBmM0+uUp9U6lS\nbKNcc2e369iwu7sHmnPgehP9/qgx2EZfurKGOqY2ZG92V7E/P1zPePE2+vMffPkN0HMrOEbP/NI5\n0F40Y/sn4uSNk7sDtHF9jeMbXe/UemfUfp2Ekp+5f704zzB23bl2F/QPnsU9kt//314A/dJPcTxk\nOdcAhTg6nJrDOW1EeVNIE2VMOcwkdcfHuKD9sx7OJ2tr9/ALBc1pF0+AfvmF50AnIeaTH/jQU44N\n/RLXU3uU09+8vwH6PuXzJ46tgj59EtdzKeUru7mbUFx79SegP/wYrgEfHGJM/rVP4f7r+XM4l+/R\nXtL3frgJ+o+fdWeetR2cJ6o+3iOgPd6Y8omFDtr43/zX/xBtPIV9dfXKVccG6l4bTjBG94fYLk6t\niioAoxHVXuh5nu/OEbw/xHVe3rvhWnVEaxo/xe9vd9HHo4dOuTbUMF+s38f88Pgba6DndrFduqvH\nQa8cw7H76GnMy35w1c3tHv78fww6ruN30iNcs1s+gec+gjnUJ9//XtD1H38DdOqm63ZxGePCqz/G\n8Ta/hHnZnRqeTXjtFva5v45xqf6R94Pezt2105Ritrtvaft+vruLftjpoM281mJtZpYkGHvGtP66\ndesW6CatIeoNjNebVB8NqS7P15uZnTh3GvT05AOgX9jAMfrA2k20+UXMBW/SHvQP5nD83r9L86JF\nezMAAB+ASURBVJiZ5dS2tfsYo398BcfkB953FnSS4rzCNYqA6gGzsmFehzpHZDzapzG8Z0hzfFxB\nG3yKr0Xm1g2dfRcnrvCmB97z6ttXQI9HVGekujHHazMzo/2mcohte+P6NdCPPPq4e49DyvmHHgJ9\nfx3XQQntR1Sr2H5eiHOLmVt/LkcYBziudDexljGg+kqjimOY/TRJ3IDLdZudHYxdr738IujtbTwv\nGHkYl1qr+J5+A8f4/Mklx4b2Cay7L2d0fnCI80rSRz/b20Wbls5jvF0+/wjoV159y7HBShpzlGS1\nWmjTBz/4JOgp7UnfX8N5iPtySjmbmVlKY5D3oEOKXVWKI/WYap0HbC4NJ26cGVFdmPcg21XUT3/4\ng6Cf//73QO8NqXYZ8IFDN8/nfWo++xQFfA6EbnDAfM3MOqPAM4F7xdGuY/T7OD+0m1j35n2pwQTn\ngmzq+lazirFhkuMYyGhvtHsD13tv330V9HIV48JwC21OMtSjwM2z9vqYR3VvYoyd9nDNcNsw9iR9\nzD+S4d8A/fwbmL8+8+xfgP7BC5gjmZntUP7IZ8x++tYroMcBxp4hzSPsvDymjWtyNHHMGh/OOSHn\nLCB9xz1YdNANCcpHihljlredye6S3uvVN18C/c//5J+AXprHfHdzE3PPQQ/n31lnOrjt+FxJTHs3\ncwtYizl7BnPwi+cfBH3iBNrYoD2V0pux9+rER4rxdIbrGNVu3g36nyOEEEIIIYQQQgghhBBCCCGE\nEEIIIYQQQgghhBBCCHGo0Y8jhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQghxqNGPI4QQQggh\nhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIcagJf9EGmJnFSQw6mRSgfZQ26Cb4eW3euWejUwGdWwk6\nSPCmHj1j1OuCnmQT0FsBPZC1mUVxFXWE71l6OehOZxH0gi2Bnq/Pgd5MN0G3mh3Hhlod/3brzi3Q\nYdoAHfjoEsN4CDou8B3Mwxdf3912bFjvop0rbXyvZoQ2VkNst0aMNvrYlWYF/mEaV4yp+R7ojRy/\nM5lgX+RJBro08km6X4WeGVddG/IUnxGk2Ha1ag30Gz96GXRvu0939Gw/vP0/fucafo8G2h3G6A9F\niu0wHUzxc8fCGb+/IrvKEvuiLN6F4YeY0TgFnWXYagU1WT9DvxlM8ftmZmmCf0tGGK+CKfbTOMXP\nC+qDkMb1YDjABwYH95Hn04uQrAT4DC9C/7eSvClL6HO02X3eLN/Dv5Uc+Mk5OdSU/Bdqp7Lgb1A7\n0fXmu+1YltjfSYp9mxf4+ZT6vktjcneI7Val2BSVaEOacZuY1apod7Ma4T1C/LxKnxfULgFdzzrP\naX723FSlUsFncN+kNMeHIfZ9JcLvJ/Tet7cw3pJJzv3M3HkhzXO6gtrhXYyjw0yjUQftefj+2XT/\neTUI3MSKryloPHg0xtmXMuqTWhPzi+kUY2OV8jgzs8CncU+fpxnmD46NFAx5TJf4dctz+oO58Y7n\nAKO25jF4ULsFdP9K6OY008kYv0PjuCiw7ZMpvofvc/9S/KU5YNZoyekZ/N5RiDkrX+/Te5YFxx68\n/cxphZ45GWO71OvoQ57zJgf0DS0wnLnOzDw2lOZHbmvOuwoaJ9x3/MwwcGMyT9n8mr53dH+Pn9NY\nKANaQxSo8ynOy+nYzevGI5zLea2TZeTrFewTz8dnclzKKP+p8lgys8YCra/pmoLiKfsN+2FR0Pqd\n/NKnednMrOjjXMx+NqH12l5vBDqZUDzOec1BOuWIbjYZ4XuOt9G5sxLfqxHi2tmPr4NePH8TdFTF\neahC630zs4LWRgXl9Tymg84ptOHYk6Dz298APezR9yN3vNaottK/T2sD8skwxntkOedhPJdSLljM\nKK5QvKw38J4cq4p8/3jLPpgXOI7CitsO04TmbJ/y9iHWkI4SC02qE9BcEEb4eb2Fta2oQnUkMytp\n/nJyiwz7IEmo9lDwepD8kHLJIHDjzGiMYzgp8BlV8qtmjXIiypF6e3ugfXrHLHPzukpINReKp612\nk2xGG4ekl+fbaEPIc4SbVXGO3Wxhja7eaqFNlOdPRhgTSpr3wwq2kx+446tPefh4gvE0y7Gvens9\n0IMBXl+Lsb9bnPdz/mxm/QTnnWqMfttuYs0iong5HeE8dOfOPdB317dAcw5uZtZuYX8fa6PdXLsZ\nU/+HtE5e38S4NKQcY5YNXJsMIvShyox651Fi+x6O43aAY/I/fxjHxzO30PeeH7i+5WYYPx9Dmmf/\n7HmsvddqPwH9W/TAU4+ddO5ZWaJae5MuqFHMrBxQ3yrZl1jz92etDw5aM3C+iW29dXMd9D/6b78O\n+l9/DfOwjS38Ps8rQhxlTsxhvrDRxdiXU213RPPmZEb9eEJDuNfDe8Y0b55Zwfyiku6A/vZzL4Cu\nrz4Eeu6Xn3Js6Hk4dz/32itoY4L5REA5ULaH75m+9Bbo4wv30ea6ux87pHv+7c9dBr1wEvPBxQ6t\nY6im3YhxzfHU+zAPC4tdx4afvIE5yYTWup5hPuCHVJONcFJYncNnGq2td7bWHBvanWP4B1rQZxm2\n9TTBtcCU1r0Z5ci8Dp412XId0NmH5HsQYYifx1X0n5vX3yYT3Dw7oL9NWjj/bl6kdvoa+kN16QTo\nxgLt39MaqTO/7Ngwt4p5AO9ZjCe073aEGFewLrt96xroB5axBnP5Mo7XjeGMttnA2HZnF3PB7QbG\noTmqfzxxZhX0e05gH3d38H7hqnv+5eRJ7NP1dcyBUtpT5Bo464RiI69Jh0O0adbf+JnPPfcc6E9+\n8lfQBlord2nOaNaw79ptnLfMzD701EdB/0df+gegRyO0ketE9+/h2ZXRvTugH719G/TOn3/FsWEy\nwjVkRPXNVnsFdGfuNOh6dgN0SOt33osKZtTlV+ap/hLTupX2uMII2yFPsZ3KAH14MsY5ZXNrw7GB\n+/+geMt590OXLoH+0m//Fuh7b70O+uY9nI/NzN5LZ6zWfoB5xJ3L6GOf/fyvO/c4rHhU688O2JPk\nMd6fuGM8p7NaWU41TxrDlSovKLG92QciqiNWa+5eLM/tGe29dTfRF4/RfBcNsQYzzmjOpDrRw8dw\nfJqZ+VRjWaD8pk7zzNarGE/H9yg+03haXjkOunoDrzczy2ne9mlPslrFMTs/j/PG6VPYLi+8gGOD\n94O3trDdzMzevnIF9MMXzoBu1bE/a1RX55RrRPluf4T5MdfgzdwzA02q0dWr2BflHMbfX/3cb4D+\n1je/CdoL8B2Kclb9lPbSndozvTd9n88sHJCKzsQ9/8d760e8rkH1sczQdxKqk04oV05TN7fjOjXn\nKGlBZ7WoH/kswt0h5g/tBsbH3TGe151bpDNyZlbFMrk1fDqLegbXZ8kYv3D9LtrwP/7u74IOac3K\ned1o5LZTRudEPTrnNNnDtt66g7EkNzorW6d9T1qzcg3ceEx6rq/zeYkDhwPd09lR5E1prhu+m6MP\n7nYQPpP6gvd+/tUzXwb9wUc/AboSuPtuPwvvkZm5sSqm+LmyjPHz/PmzoE8/gHvQKys4NzYbtD9F\n75g7h0rM6Iikc/4mpn2apSU8c/5uOLonVYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII8f8L\n9OMIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIcavTjCCGEEEIIIYQQQgghhBBCCCGEEEII\nIYQQQgghhBBCHGrCX7QBZmZrdzZAl34F9NzCIui8loGO48C5pz8tQGdlCbrRrIEOCw90UGmCvj/C\nZ6b+EL8f4edmZnkwBl0GMX4nQBtTw8/vD2+C7mV10O1gCfTl1ccdG5oxvudPd34C2h+TC3jYTtNk\nAjrw8Pc0cYQ2W4F9Z2bWHeyC7vWug55rzINeamJ/18Iq6NBDm/ujPdC7e/g8M7PBcAB6MsG+GY4T\n0NgzZh65WLWC7xlVItCV0B1aozQFHYToc/0tfI+3X7mGN8CusSDAvsC7udebmcVNtPPkwyugzz5+\nHnRnGfvm/PHToH/yrZdA//CbPwadULuamfkBNmZJYzMZu2PpKJFlOf6BxpznY09OMvx8kLrtw/Gt\nJGfIc2pjsqEa4xgrCrw+K/B6z8c+jGf4OztkSN/xA/xOGaBvemSD0Xt7KdlEv/XjdpxhkoMzZEqW\n/n4fH4znkXR/n1iQP6TUV0WB0Wk0wXbZ2JuCnmZ4vc99H6EN9RnzaauOfbPQwXmlUcN4GNAYLyii\netz31JAZ2Uzu987f2D+ov7mdQrKpRTavzOH8yu0+dvzNhd+jyNlDyEb+wpFjf3+vVLgVD24Pnvem\nU/T3Cs3NYYj9zr7pk98EPt6f5yszs7Ikf/b4c/ZvvIdHX8jz/IDPXW/zA/xbmmB+wQ7q+2gztwOT\nUrxlG83MImrrLMPvRBRbOOfhJQjnAvwSCfW1mfseYYSxim1ynsAxmecN+gJfP8NMW1rGHJZjUUnx\nMPDRZt9DzQ7m5BAz7GS/zTL0j5DmbM/Jy2hOp/vnM4KyT2OnoGvSxM0Hjwplir6Zjkag+zt9/JzW\nA87kYWbjCV5T5KirNVx/TccUC1sN0AHFiEEPbQxm/HMJ1UX05aiOuWJQodyRYnxW4DM5dqYJ5XXs\n++/8FRRPq70ersf7XWxrn57J67sqvbc3Yx6a0JeGKdpU88nXaXi8+TKuewvvGdAf/yzZ4Ltr6TqN\nYY5FUbWNNozJ58Jl0Nvb+OKR4Xp//hjmeWZm4wH1V45j2gvZiSj/pDlhmlHeTv5kvrveKX1aM1Hs\nSjJsOz/gehDGtoLmoTzH66N4xlrCw3yx9PEe6eToxrqFNsYVP8T2brSxNhVWME55M2JdQvkG5+s8\n53HuwXGHc80kwRgxnqKvm5lNyYZKTLkkzW9eB9thmKGflLRGKUrK83ihbu4c6tN7NBv4zP4Aa1u+\nk89QO0zRL9lGM7OYxqAfcN2P2p76czSi2ifFslYb49Swh7UvM7Oc8jaPywH0HgXn0HxDqj/wvBP5\nbj48R3by2oPfezrB+ZdtOH7yJOjWXAf0ztaOY8Pq8WNkJ951TM/MyaeGY+yLCV1fq+LYnJ+fc2zg\ntkuobwZ9zCOOGgtNjPV/+2msk7bmcL9g/U9fB/2TAeV6ZvZXXeXcpQTl9791H/Rbd78D+olHMEab\nmV2mevCFR1ZBH7+InzdP4T2COYxN5nNixWOMR8isqgqvx/A9x9td0Ou3cD/p+W9fAf3sN+6Avr9x\ndOdpIX5eVmkMexnVk8cY6+tVXCNs9zHPMjMrOG+iIT2lXCwocEzevol7oXd3aL23gfH2zt17jg2v\nXnkb9OYOxo1aDWN8o4G6T/PonW3MWVY2UJ894cb89jzun924gnnRN370MujHH8LvP/Qg7Y3Xcc1x\n6iTOQ17qxrYKrVOv30M7e2PMaXgZM83wD8MRrjHjuAV6m9rZzKzRxHVoSHlVRLrLedUBNduE3pvX\nc2YzanIH1OLrVC+rUo7cmj8OepfGwc6um+MuxTh/csktO7cAuttGn6zQOvixhx8Eff8ajou19U3H\nhnSMdpYxPuPWvbugP2CPOPc4rIRUW3jPw4+CvngJ33U8xJzqA194wrnnjbfXQN9+Df3sYhtz/lWq\nFS9P0E/8eRzT7SXMz/05zMnMzNb3cExubGBOxLVf3jNJDqjT8thxaplm1u+jDfydtTVspyTh2j7O\nKwsdjCv8zDB064YVOp9y7ASuv1KKC/0hzkPxAua/Zx7DMzZPUT11/RbmmmZmm/dvgW7UcXzVAnyv\nZG8ddB2734l9vs97S24c423mSoxtxbX87W20wamf0vfHNDfuzIj5CbUVW8nx9yB9/NgJ0Kdq2A5L\nHVy7m5mtxtiY2zn6nN9Dnz1KbGxgbSGlArVb/kA/68y768XJ5hboKe9B0nmJWh1jVxyjTbxH2Whg\nfz16DPMnM7OixGfubG6DPnEGv3PpEiZVO3fwnNX09mugB32sr114z1OODfU2ztMxnacJ6LxD2sMz\nahvX8Zkl1So5tnU6FBTMrKQR5dS46dxcTuPp/AXMHao1fIfJGGNjb+COlR/96Eegf+uLnwHdpDoK\n790PxuiTk4JiG9WRazX33FFEtUmf9v+56st14o994hN4vwrOQ2++9grorJhRw/X4DAFew/MvX58X\ntGftxELnkQ58zaxt66NMQGcuMqq4ZVT/TWn/tvTdNUNCa5+AxlhSUt6UoD8faz0AejfFtfTOBGPX\nqMDY0wrc2ux8k/LBFuVBFNhPXzgLOn4Cx8vOBtpw/Y03QfP+gVe6uR/va5QJOuPeTZw3enfxmfV5\ntDmiDdrJHp892P/Mxkzn521K55bOoZ59H+Hc0DkMdrBNJf+Nzn5aSPueFHt2ujif3r2Pe84Xz+L6\nJqR5ic8xm5m16AzBsVXMiS+cuwD6gQdwvm21cK6q0voyoHOfzjq8cCvlhc9rd2wHPn/dbmGO/W7Q\n/xwhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQohDjX4cIYQQQgghhBBCCCGEEEIIIYQQQggh\nhBBCCCGEEEKIQ41+HCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCiENN+Is2wMysudgBHYZV\n0J7vgc69DPTUAvemRQHSL2P8zqgEvbg8B7oVoA39nRxtqtVBZ2XPMSGdop1FgfeYZrugB5ME9Civ\ngR5n+Mz5hWOgm1HbtSEb4x9ifO8T7VXQNR+fMUonoPMSbTSLQFWjyJhOFe2aJGjTvY110FubW6BD\n+g1Pv0vt1t8DvbGHn5uZhUEFdDPG9xxM0KaSXMqjkdLoNEDXfOyrsECfNTPLMuz/IMC2unPzDujJ\nEG3yQ2wHv8S+5FEQt2NjLn38QdDHL5wAPb+0DHpuDsfFIxcfAf3oo4+DXn1wCfTa3TXHhsDDtk8S\nHCd7m9ifR42S+o09xQ/wLyUNqaTi/qYtb9BFdez7wsN7+gF6S1zB8YEWmhl/n2Ky57yFWUkxuCzw\nrkWG/R6UdI9sis+g6537Oxa4NvF7lPQtHrYFfz7jKfvdj7ra+BVZmzlTl6UUN/gdxim2S3/KMRr9\nJcnwAc0qBrfFDsYyM7NWHf2j1UT/CgJ+kf3boaB3Ksr9r89zahQzy+hvWY73LKn/A/J5cmFbmcO4\nVK1gu2x0B2ST6wv8HlN6Tx43PCaOGh75QZqib/o+trFH7ZHzYJhBhWIX93MyxTji+xQ/+fokxfvH\ns35DTPHPGccU4z2+3ieN78nxlN/JzMwP8B5RVHeu2c+GjOIpt0sYYt8EgdsOHsWWMMDv8D3ZBjdO\nYDskCfYd97WZWZbje6Q8r3Db0TP4mdy3/H23r80qlPe6/cvavcfPwvGO5+swnLHmOWBu4v7kvuO8\nxLkd2eyMoxnwe/v+LLuPBjT9WEZxZzrBtdTuTh80z0dmZlGM/p6m6BdRlXKB/gj0Es1pc6uYzzv/\nPMKMhCSl/DxqtkCHrQX8Aq21SmqYZErrGnKsvMDnvfM3fO9pijF6d28Iupji5zzN1gP8AzdDNKMy\nMpignXMVvEdIbRfy3Eft8PpLV0B7NP4+MiM3WDl7Gu2kdWytieuvwfbboHfvXgc9HKCPHj+Fcayc\ntY4doo8VOV5zUI4c0lxXUBkqzyl/5bhkZlGEcaSkeJkX2P8hrZnKDHVRUodTPkspwTs2NGK6hvPR\ng3OXw0qtjn4XRrhmqDc4F8H25lho5uYz7Ac8ZxY550yIR/N6XMWaXj5jfVhQ7PEo7gRUg6lz7khj\nvEXtMJnie/N6YdbfqjHXccg3ab3HORLnN5MRr2No4jIzo3k65FyT8o/+Xhf0iPp3YQXjUkT5Euei\nZmYF5/5cc6Dua7ebeDnlonmGgziKsJ3C0M1nphNaO1D60t3B9/bqaMPKKr53THGrPUKfDGbETq4T\nRiG++OY21ju7fZwLxyPsi1oN/alex1omr9nMzEZjjPkJrX17Q3zmUWPhEtZJFyrYB5wjHWtTPdhz\n9weyv+KlP99ub4rj59nXsK76/Tddm+bqN0GfP4b++eEProD+9N98FPTDv/Iw6GCVckO32nnA5zOg\nWLHz6n3QX/39H4L+469jDnRrzZ17hBDvMKG105j2JWuU89QrOD/1ZiyeAspJsgzvOUkwDmzv4rx6\n4ybGpbfX8PPdPq4pX73iJuwprRm5FpuSTXmO82RM7zmh+HqL960Cdy/08YVLoL/9Gsbgr/0I3+vS\nBYyvC3XcG33o+IA01hRaHs7bZmYLFbS7X6O6YM41WPyc+6qkGD7hfezpjNyOcvdpgt/h2j33VUR9\nwX3LtSwnl/x3/O1n4Vpmi3LW8Qjb9pmXXgF9bgnPNVz68p85z/iNf/Al0LzzstpBG7Iatf0Yc/c2\n7cusXsD5+vm3ca40MxtSbtcK8R6bOzvOd44KT9D+d6uF+9/HThwHPRjgeu6BU65vTwfYXr/5mfeA\njutYg2vSupTcympzWG/zM4y/p8+cdWxYo3UJrwkntD7j8TLl2iVpHjuz1pCDAcambhdtYhteffVV\n0O0axr75uXnQ6/fRl33PXb/dvnsP9Msvvgh6YfUk6JIWeB7F8BbZsLtLa68htpOZ2foOro1q89jB\nuY/zxrnzeEbDy6mveO/JKRy7OXSP1oB5gJGmyfUzqr2UTl2Y5raS9/nccTFrjY+3oJjt7AnTnhrV\nNXLaW2w4NSizZAnPTHkh1TsP2pg5xOxuY+4wIZ/wa1Qfo3219hyv5cx2upi/cPPxmadODePQ6VNY\nz7Ycx89cG2NfneorZmYFjfszZx9CfeoU2tCkekeKz7x1+w3QXKtsNt1zdo02zvUBxRHeK2suYF2o\n2sD3jAp8plegby/N4/PMzFp1mkeGGH+Napts44XzF0CfPI5jpUfxO6rg88zMXnsL9xde+CnmRI+/\n932gE6r9BzXsm07Ee/tcA3THK/8lOKBumPG5pBKfeeESzt/rGziOimTTsYGPw/C+J9vE+S3n4O4e\n9cHFI7dtjm5sm0VAezo+bSulY6oHV3BODGbsAWZGe1fULx6tlXI6Z1zx8BkR5dp7I4ynyYjONsRu\nv09org7p8KpH9eLeBMcx18lPrZwB/Wuf+zTou2+8DPrFn77m2HR/Dd9jSmvlgvc2U9QnH8B1yzDC\nGH1vjO9Q4rLXjJf/3ozTgZwvOjnOAQcg3EOS9Ei63uPzFo5J7gjlcc9FY3qFwsfr76zfAP3QOYxl\ni4vzpN05/sRxXAOdPIE58+oKrqHabVzfHHwGCHFzzVlnRvY/x8lD191DOxj9zxFCCCGEEEIIIYQQ\nQgghhBBCCCGEEEIIIYQQQgghhDjU6McRQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQ41OjH\nEUIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEONR4ZVn+om0QQgghhBBCCCGEEEIIIYQQQggh\nhBBCCCGEEEIIIYT4S6P/OUIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEIca/ThCCCGEEEII\nIYQQQgghhBBCCCGEEEIIIYQQQgghhBCHGv04QgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ\nhxr9OEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEIca/ThCCCGEEEIIIYQQQgghhBBCCCGE\nEEIIIYQQQgghhBCHGv04QgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQhxr9OEIIIYQQQggh\nhBBCCCGEEEIIIYQQQgghhBBCCCGEEIca/ThCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBCH\nGv04QgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQhxr9OEIIIYQQQgghhBBCCCGEEEIIIYQQ\nQgghhBBCCCGEEIca/ThCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBCHGv04QgghhBBCCCGE\nEEIIIYQQQgghhBBCCCGEEEIIIYQQhxr9OEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEIca\n/ThCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBCHGv04QgghhBBCCCGEEEIIIYQQQgghhBBC\nCCGEEEIIIYQQhxr9OEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEIca/ThCCCGEEEIIIYQQ\nQgghhBBCCCGEEEIIIYQQQgghhBCHGv04QgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQhxr9\nOEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEIca/ThCCCGEEEIIIYQQQgghhBBCCCGEEEII\nIYQQQgghhBCHGv04QgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQhxr9OEIIIYQQQgghhBBC\nCCGEEEIIIYQQQgghhBBCCCGEEIca/ThCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBCHGv04\nQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQhxr9OEIIIYQQQgghhBBCCCGEEEIIIYQQQggh\nhBBCCCGEEIca/ThCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBCHGv04QgghhBBCCCGEEEII\nIYQQQgghhBBCCCGEEEIIIYQQhxr9OEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEIca/ThC\nCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBCHmv8bcQFvP9Y3ziUAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7fd73f6f5c50>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"print_mislabeled_images(classes, test_x, test_y, pred_test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**A few types of images the model tends to do poorly on include:** \n",
"- Cat body in an unusual position\n",
"- Cat appears against a background of a similar color\n",
"- Unusual cat color and species\n",
"- Camera Angle\n",
"- Brightness of the picture\n",
"- Scale variation (cat is very large or small in image) "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 7) Test with your own image (optional/ungraded exercise) ##\n",
"\n",
"Congratulations on finishing this assignment. You can use your own image and see the output of your model. To do that:\n",
" 1. Click on \"File\" in the upper bar of this notebook, then click \"Open\" to go on your Coursera Hub.\n",
" 2. Add your image to this Jupyter Notebook's directory, in the \"images\" folder\n",
" 3. Change your image's name in the following code\n",
" 4. Run the code and check if the algorithm is right (1 = cat, 0 = non-cat)!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Accuracy: 0.0\n",
"y = 1.0, your L-layer model predicts a \"cat\" picture.\n"
]
}
],
"source": [
"## START CODE HERE ##\n",
"my_image = \"Jietu20180307-103240.jpg\" # change this to the name of your image file \n",
"my_label_y = [0] # the true class of your image (1 -> cat, 0 -> non-cat)\n",
"## END CODE HERE ##\n",
"\n",
"fname = \"images/\" + my_image\n",
"image = np.array(ndimage.imread(fname, flatten=False))\n",
"my_image = scipy.misc.imresize(image, size=(num_px,num_px)).reshape((num_px*num_px*3,1))\n",
"my_image = my_image/255.\n",
"my_predicted_image = predict(my_image, my_label_y, parameters)\n",
"\n",
"plt.imshow(image)\n",
"print (\"y = \" + str(np.squeeze(my_predicted_image)) + \", your L-layer model predicts a \\\"\" + classes[int(np.squeeze(my_predicted_image)),].decode(\"utf-8\") + \"\\\" picture.\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**References**:\n",
"\n",
"- for auto-reloading external module: http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython"
]
}
],
"metadata": {
"coursera": {
"course_slug": "neural-networks-deep-learning",
"graded_item_id": "TSPse",
"launcher_item_id": "24mxX"
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}