Skip to content

Latest commit

 

History

History
50 lines (38 loc) · 3.97 KB

README.md

File metadata and controls

50 lines (38 loc) · 3.97 KB

Non-stationary Bandits and Meta-Learning with a Small Set of Optimal Arms

  • We study a sequential decision problem where the learner faces a sequence of K-armed stochastic bandit tasks. The tasks may be designed by an adversary, but the adversary is constrained to choose the optimal arm of each task in a smaller (but unknown) subset of M arms. The task boundaries might be known (the bandit meta-learning setting), or unknown (the non-stationary bandit setting), and the number of tasks N as well as the total number of rounds T are known (N could be unknown in the meta-learning setting). We design an algorithm based on a reduction to bandit submodular maximization, and show that its regret in both settings is smaller than the simple baseline of that can be obtained by using standard algorithms designed for non-stationary bandit problems. For the bandit meta-learning problem with fixed task length , we show that the regret of the algorithm is bounded as . Under additional assumptions on the identifiability of the optimal arms in each task, we show a bandit meta-learning algorithm with an improved regret.

Experiment results:

Task Experiment Small Gap Task Experiment
Subset Experiment Small Gap Subset Experiment

Installation

  • Python 3.6+

    git clone https://github.com/duongnhatthang/meta-bandit.git
    cd meta-bandit
    pip3 install -r requirements.txt
    

Evaluation

  • [Recommended] Interactive Notebook, or

  • Using script and check the outputs in \results:

    python eval.py --exp <experiment_type> --stochastic --adversarial --nonOblivious\
                   --nTasks <int_value> --nArms <int_value> \
                   --nExps <int_value> --optSize <int_value> \
                   --horizon <int_value> --expArgs <str_value> --timeOut <int_value>
    
    • --stochastic/adversarial, --nonOblivious: experiment setting
    • --nTasks, --nArms, --optSize, --horizon, --nExps: the number of tasks, arms, optimal size, horizon and repeated experiments
    • --expArgs: experiment's setting. Example: --exp=horizon --expArgs="[100,111,10]" means running the horizon experiment with horizon_list = range(100, 111, 10)
    • --timeOut: maximum duration of one experiment for each baselines. Total runtime is: timeOut * nExps
  • Examples:

    python eval.py --exp=task --stochastic --nArms=5 --nExps=2 --optSize=2 --horizon=100 --expArgs="[100,111,10]"
    python eval.py --exp=horizon --stochastic --nTasks=100 --nArms=5 --nExps=2 --optSize=2 --expArgs="[100,111,10]"
    python eval.py --exp=arms --adversarial --nTasks=100 --nExps=2 --optSize=2 --horizon=100 --expArgs="[3,5,1]"
    python eval.py --exp=subset --adversarial --nTasks=100 --nArms=5 --nExps=2 --horizon=100 --expArgs="[2,6,1]"
    

License: Apache 2.0