forked from AICoE/prometheus-data-science
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathgraph_specific_ts.py
251 lines (222 loc) · 7.31 KB
/
graph_specific_ts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import json
from datetime import datetime
import matplotlib.pyplot as plt
import matplotlib.dates as dt
import re
import string
import random
import numpy as np
import fnmatch
import os
import sys
import ast
from matplotlib.backends.backend_pdf import PdfPages
if len(sys.argv) != 2:
print("incorrect number of command line arguments")
print("received: ", len(sys.argv))
print("expected: 2")
exit(1)
file = sys.argv[1]
lines = [line.rstrip('\n') for line in open(file)]
m_name = lines[0]
target_metadata = lines[1]
target_metadata = target_metadata.replace("'", "\"")
target_metadata = json.loads(target_metadata)
data_folder = "../data/"
metric_type = "hist"
#metadata = "{'beta_kubernetes_io_arch': 'amd64', 'beta_kubernetes_io_fluentd_ds_ready': 'true', 'beta_kubernetes_io_instance_type': 'm4.xlarge', 'beta_kubernetes_io_os': 'linux', 'clam_controller_enabled': 'True', 'failure_domain_beta_kubernetes_io_region': 'us-east-2', 'failure_domain_beta_kubernetes_io_zone': 'us-east-2a', 'fluentd_test': 'true', 'hostname': 'free-stg-master-03fb6', 'instance': 'ip-172-31-78-254.us-east-2.compute.internal', 'job': 'kubernetes-nodes', 'kubernetes_io_hostname': 'ip-172-31-78-254.us-east-2.compute.internal', 'node_role_kubernetes_io_master': 'true', 'operation_type': 'list_images', 'region': 'us-east-2', 'type': 'master'}"
# find bucket/quantile, sum, and count files in metric folder
for file in os.listdir(data_folder + m_name + "/"):
if fnmatch.fnmatch(file, "bucket_*.json"):
metric_type = "hist"
filename_bkt = data_folder + m_name + "/" + file
elif fnmatch.fnmatch(file, "quantile_*.json"):
metric_type = "summary"
filename_bkt = data_folder + m_name + "/" + file
if fnmatch.fnmatch(file, "count_*.json"):
filename_cnt = data_folder + m_name + "/" + file
if fnmatch.fnmatch(file, "sum_*.json"):
filename_sum = data_folder + m_name + "/" + file
if metric_type == "hist" or metric_type == "summary":
print("Metric: ", m_name)
else:
print("no metric type detected")
exit(1)
results_folder = "../results/"
pp_graph = PdfPages(results_folder + m_name + '_graphs.pdf')
pp_hist = PdfPages(results_folder + m_name + '_hists.pdf')
# load appropriate data
f = open(filename_bkt)
jsonFile_bkt = json.load(f)
f.close()
f2 = open(filename_cnt)
jsonFile_cnt = json.load(f2)
f2.close()
f3 = open(filename_sum)
jsonFile_sum = json.load(f3)
f3.close()
# each index corresponds to one graph
# each graph is a list of lists
# list of list of lists
# graph = all_series[i]
# one_series = graph[i]
# one_data_point = one_series[i]
b_val = []
b_time = []
b_md = []
b_le = []
for pkt in jsonFile_bkt:
timestamps = []
vals = []
for i in pkt["values"]:
if i[1] != 'NaN':
vals.append(float(i[1]))
timestamps.append(datetime.fromtimestamp(float(i[0])))
metadata = pkt["metric"]
if metric_type == "hist":
le = metadata["le"]
del metadata["le"]
elif metric_type == "summary":
le = metadata["quantile"]
del metadata["quantile"]
metric_name = metadata["__name__"]
del metadata["__name__"]
if metadata == target_metadata:
metadata = str(metadata)
if len(vals) > 0:
b_val.append(vals)
b_time.append(timestamps)
b_md.append(metadata)
b_le.append(le)
s_val = []
s_time = []
s_md = []
for pkt in jsonFile_sum:
timestamps = []
vals = []
for i in pkt["values"]:
if i[1] != 'NaN':
vals.append(float(i[1]))
timestamps.append(datetime.fromtimestamp(float(i[0])))
metadata = pkt["metric"]
metric_name = metadata["__name__"]
del metadata["__name__"]
metadata = str(metadata)
if len(vals) > 0:
s_val.append(vals)
s_time.append(timestamps)
s_md.append(metadata)
c_val = []
c_time = []
c_md = []
for pkt in jsonFile_cnt:
timestamps = []
vals = []
for i in pkt["values"]:
if i[1] != 'NaN':
vals.append(float(i[1]))
timestamps.append(datetime.fromtimestamp(float(i[0])))
metadata = pkt["metric"]
metric_name = metadata["__name__"]
del metadata["__name__"]
metadata = str(metadata)
if len(vals) > 0:
c_val.append(vals)
c_time.append(timestamps)
c_md.append(metadata)
graphs = {}
graph_label = []
graph_xs = {}
for md_i in range(0,len(b_md)):
metadata = str(b_md[md_i])
label = b_le[md_i]
try:
graphs[metadata][label].extend(b_val[md_i])
graph_xs[metadata][label].extend(b_time[md_i])
except:
try:
graphs[metadata][label] = b_val[md_i]
graph_xs[metadata][label] = b_time[md_i]
except:
label_dict = {}
label_dict[label] = b_val[md_i]
label_t_dict = {}
label_t_dict[label] = b_time[md_i]
graphs[metadata] = label_dict
graph_xs[metadata] = label_t_dict
inc = 0
print("number of graphs: ", len(graphs.keys()))
for i in graphs.keys():
if (inc+1) % 50 == 0:
pp_graph.close()
pp_graph = PdfPages(results_folder + str(inc+1) + "_" + m_name + '_graphs.pdf')
pp_hist.close()
pp_hist = PdfPages(results_folder + str(inc+1) + "_" + m_name + '_hists.pdf')
print(inc)
graph_title = i
xs = graph_xs[i]
ys = graphs[i]
#if graph_title == "{'instance': '172.31.65.74:8444', 'job': 'kubernetes-controllers', 'request': 'detach_volume'}":
title = re.sub("(.{200})", "\\1\n", graph_title, 0, re.DOTALL)
if len(graph_title) > 50:
graph_title= graph_title[1:50]
plt.figure(figsize=(20,10))
for j in ys.keys():
plt.plot(xs[j], ys[j], '*')
plt.gcf().autofmt_xdate()
plt.suptitle(metric_name)
plt.title(title)
plt.legend(ys.keys())
plt.xlabel("Timestamp")
plt.ylabel("Value")
#savefile = "graphs/" + insts[i] + "_" + graph_title + ".png"
plt.savefig(pp_graph, format='pdf')
plt.close()
main_title = re.sub("(.{200})", "\\1\n", graph_title, 0, re.DOTALL)
if len(graph_title) > 50:
graph_title= graph_title[1:50]
plt.figure(figsize=(20,10))
for j in ys.keys():
time = xs[j][0]
break
for j in range(0, len(s_time[inc])):
if s_time[inc][j] == time:
sum_val = s_val[inc][j]
break
for j in range(0, len(c_time[inc])):
if c_time[inc][j] == time:
count_val = c_val[inc][j]
break
graph_label = list(xs.keys())
tmp = graph_label
tmp.sort()
if metric_type == "hist":
inf = tmp[0]
# take away the +Inf bucket
tmp = tmp[1::]
# sort the remaining integers/floats
tmp.sort(key=float)
# append +Inf to the end
tmp.append(inf)
sorted_y = []
for j in tmp:
for k in graph_label:
if j == k:
sorted_y.append(ys[k][0])
break
graph_label = tmp
bar_vals = np.arange(len(graph_label))
plt.bar(bar_vals, height =sorted_y)
plt.xticks(bar_vals, graph_label)
plt.gcf().autofmt_xdate()
plt.suptitle(main_title)
title = "Count: " + str(count_val) + ", Sum: " + str(sum_val)
plt.title(title, fontsize=20)
plt.xlabel("Bucket")
plt.ylabel("Value" )
# #savefile = "hists/" + insts[i] + ".png"
plt.savefig(pp_hist, format='pdf')
plt.close()
inc += 1
pp_graph.close()
pp_hist.close()