-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathharmonic_balancer.py
539 lines (431 loc) · 21.9 KB
/
harmonic_balancer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
import numpy as np
import matplotlib.pyplot as plt
from scipy.constants import golden_ratio, pi, e
from .quantum_system import QuantumSystem
from ..utils.helpers import phi_pi_transition, generate_harmony_vector, state_to_dna, count_valid_codons, calculate_gc_content, calculate_base_balance
import qiskit
from qiskit import QuantumCircuit, execute, Aer
class HarmonicBalancer:
def __init__(self, num_qubits, max_iterations, harmony_memory_size, objective_function=None, convergence_threshold=1e-6):
"""
Initialize the HarmonicBalancer object.
This constructor sets up the initial state of the HarmonicBalancer, including its parameters,
memory, and optimization settings.
Parameters:
num_qubits (int): The number of qubits in the quantum system.
max_iterations (int): The maximum number of iterations for the optimization process.
harmony_memory_size (int): The size of the harmony memory used in the algorithm.
objective_function (callable, optional): A custom objective function to be optimized.
If None, a default function will be used.
convergence_threshold (float, optional): The threshold for determining convergence of the algorithm.
Default is 1e-6.
Returns:
None
"""
self.num_qubits = num_qubits
self.max_iterations = max_iterations
self.harmony_memory_size = harmony_memory_size
self.harmony_memory = [generate_harmony_vector(num_qubits) for _ in range(harmony_memory_size)]
self.best_solution = None
self.best_score = -np.inf
self.history = {'scores': [], 'states': []}
self.quantum_system = QuantumSystem(num_qubits)
self.objective_function = objective_function if objective_function else self.default_objective_function
self.convergence_threshold = convergence_threshold
self.HMCR_initial = 0.9
self.HMCR_final = 0.7
self.PAR_initial = 0.1
self.PAR_final = 0.3
def combine_harmony_equations(self, R, F, E):
"""
Combines harmony equations using golden ratio, pi, and e constants.
This function applies the golden harmony with three different mathematical constants
(golden ratio, pi, and e) and returns their average.
Parameters:
R (float): The resonance parameter.
F (float): The frequency parameter.
E (float): The energy parameter.
Returns:
float: The average of the three harmony equations applied with different constants.
"""
phi_harmony = self.apply_golden_harmony_with_constant(R, F, E, golden_ratio)
pi_harmony = self.apply_golden_harmony_with_constant(R, F, E, pi)
e_harmony = self.apply_golden_harmony_with_constant(R, F, E, e)
return (phi_harmony + pi_harmony + e_harmony) / 3
def apply_phi_pi_transition(self, state):
"""
Apply the phi-pi transition to the given quantum state.
This function applies the phi-pi transition operation to the input quantum state,
which is a transformation between the golden ratio (phi) and pi.
Parameters:
state (numpy.ndarray): The quantum state vector to which the transition is applied.
Returns:
numpy.ndarray: The transformed quantum state after applying the phi-pi transition.
"""
return phi_pi_transition(state)
def analyze_dna_sequence(self, state):
"""
Analyze a DNA sequence derived from a quantum state.
This function converts a quantum state to a DNA sequence and performs
various analyses on it, including counting valid codons, calculating
GC content, and determining base balance.
Parameters:
state (numpy.ndarray): The quantum state vector to be analyzed.
Returns:
dict: A dictionary containing the analysis results with the following keys:
- 'valid_codons': The number of valid codons in the DNA sequence.
- 'gc_content': The GC content of the DNA sequence.
- 'base_balance': A measure of the balance between different bases in the DNA sequence.
"""
dna_sequence = state_to_dna(state)
valid_codons = count_valid_codons(dna_sequence)
gc_content = calculate_gc_content(dna_sequence)
base_balance = calculate_base_balance(dna_sequence)
return {
'valid_codons': valid_codons,
'gc_content': gc_content,
'base_balance': base_balance
}
def optimize_dna_sequence(self, target_gc_content, target_base_balance):
# Implement optimization logic here
pass
def default_objective_function(self, vector, param=1):
"""
Calculate the default objective function value for a given vector.
This function computes the sum of all elements in the input vector
and multiplies it by a parameter value.
Parameters:
vector (array-like): The input vector to be evaluated.
param (float, optional): A scaling parameter to multiply the sum by.
Defaults to 1.
Returns:
float: The calculated objective function value.
"""
return np.sum(vector) * param
def run_experiment(self):
"""
Run the harmonic balancing experiment.
This method performs the main optimization loop of the Harmonic Balancer algorithm.
It iterates through a specified number of iterations, generating new harmony vectors,
evaluating their performance, analyzing DNA sequences, and updating the harmony memory.
The experiment continues until the maximum number of iterations is reached or convergence is achieved.
Parameters:
None
Returns:
None
Side effects:
- Updates the HMCR (Harmony Memory Considering Rate) and PAR (Pitch Adjustment Rate) values.
- Generates new harmony vectors and evaluates their performance.
- Analyzes DNA sequences derived from the harmony vectors.
- Updates the harmony memory with new solutions.
- Appends scores and DNA analysis results to the history.
- Checks for convergence and terminates the loop if achieved.
"""
for iteration in range(self.max_iterations):
self.HMCR = self.HMCR_initial + (self.HMCR_final - self.HMCR_initial) * (iteration / self.max_iterations)
self.PAR = self.PAR_initial + (self.PAR_final - self.PAR_initial) * (iteration / self.max_iterations)
new_harmony_vector = self.generate_new_harmony(transition_constant=0.1)
evolved_state = new_harmony_vector
score = self.objective_function(evolved_state)
# Analyze DNA sequence
dna_analysis = self.analyze_dna_sequence(evolved_state)
self.update_harmony_memory(new_harmony_vector, evolved_state, score)
self.history['scores'].append(score)
self.history['dna_analysis'] = self.history.get('dna_analysis', []) + [dna_analysis]
if self.check_convergence():
break
def generate_new_harmony(self, transition_constant):
"""
Generate a new harmony vector based on the transition constant.
This function creates a new harmony vector for the Harmonic Balancer algorithm,
taking into account the provided transition constant.
Parameters:
transition_constant (float): A value that influences the generation of the new harmony vector.
It determines the degree of transition or change in the vector.
Returns:
numpy.ndarray: A new harmony vector with length equal to the number of qubits in the system.
"""
# Generate a new harmony vector based on the transition constant
return generate_harmony_vector(self.num_qubits)
def update_harmony_memory(self, new_vector, evolved_state, score):
"""
Update the harmony memory with a new vector and its corresponding score.
This function updates the harmony memory by potentially replacing the current best solution
if the new score is higher, and adds the new vector to the harmony memory. If the harmony
memory exceeds its maximum size, the oldest vector is removed.
Parameters:
new_vector (numpy.ndarray): The new harmony vector to be added to the memory.
evolved_state (numpy.ndarray): The evolved quantum state corresponding to the new vector.
score (float): The objective function score of the new vector.
Returns:
None
"""
# Update the harmony memory with the new vector and score
if score > self.best_score:
self.best_score = score
self.best_solution = new_vector
self.harmony_memory.append(new_vector)
if len(self.harmony_memory) > self.harmony_memory_size:
self.harmony_memory.pop(0)
def check_convergence(self):
"""
Check if the algorithm has converged based on the difference between the last two scores.
This method determines convergence by comparing the absolute difference between
the last two scores in the history to a predefined convergence threshold.
Returns:
bool: True if the algorithm has converged, False otherwise.
Returns False if there are fewer than two scores in the history.
"""
# Check if the algorithm has converged
if len(self.history['scores']) < 2:
return False
return abs(self.history['scores'][-1] - self.history['scores'][-2]) < self.convergence_threshold
def apply_golden_harmony(self, R, F, E):
"""
Apply the Golden Harmony Theory Integration to calculate a harmonic value.
This function implements the Golden Harmony Theory by combining resonance,
frequency, and energy parameters in a specific mathematical formula.
Parameters:
R (float): The resonance parameter, representing the system's responsiveness.
F (float): The frequency parameter, typically the oscillation frequency of the system.
E (float): The energy parameter, representing the system's energy level.
Returns:
float: The calculated harmonic value based on the Golden Harmony Theory Integration.
"""
# Apply the Golden Harmony Theory Integration
return np.sqrt((R * F**2) + E**2)
def apply_resonance_condition(self, F0, k, m, omega, b):
"""
Apply the resonance condition to calculate the amplitude of oscillation.
This function calculates the amplitude of oscillation for a forced harmonic oscillator
under resonance conditions using the given parameters.
Parameters:
F0 (float): The amplitude of the driving force.
k (float): The spring constant or stiffness of the system.
m (float): The mass of the oscillating object.
omega (float): The angular frequency of the driving force.
b (float): The damping coefficient of the system.
Returns:
float: The calculated amplitude of oscillation under the given resonance condition.
"""
# Apply the Resonance Condition
return F0 / np.sqrt((k - m * omega**2)**2 + (b * omega)**2)
def apply_wave_interference(self, y1, y2):
"""
Apply wave interference by summing two wave amplitudes.
This function simulates the interference of two waves by adding their amplitudes.
It represents the superposition principle in wave theory.
Parameters:
y1 (float or array-like): The amplitude of the first wave.
y2 (float or array-like): The amplitude of the second wave.
Returns:
float or array-like: The resulting amplitude after interference,
which is the sum of the input amplitudes.
"""
# Apply the Wave Interference
return y1 + y2
def harmonic_series(self, n, f1):
"""
Calculate the frequency of the nth harmonic in a harmonic series.
This function computes the frequency of the nth harmonic based on the fundamental frequency.
In a harmonic series, each subsequent harmonic is an integer multiple of the fundamental frequency.
Parameters:
n (int): The harmonic number (1 for fundamental, 2 for second harmonic, etc.).
f1 (float): The fundamental frequency of the harmonic series.
Returns:
float: The frequency of the nth harmonic in the series.
"""
return n * f1
def harmonic_mean(self, a, b):
"""
Calculate the harmonic mean of two numbers.
The harmonic mean is the reciprocal of the arithmetic mean of the reciprocals
of the given numbers. It is often used for averaging rates.
Parameters:
a (float): The first number.
b (float): The second number.
Returns:
float: The harmonic mean of the two input numbers.
"""
return 2 * a * b / (a + b)
def resonant_harmony_equation(self, R, F, E):
"""
Calculate the resonant harmony value based on given parameters.
This function computes a resonant harmony value using a combination of
resonance, frequency, and energy parameters in a specific mathematical formula.
Parameters:
R (float): The resonance parameter, representing the system's responsiveness.
F (float): The frequency parameter, typically the oscillation frequency of the system.
E (float): The energy parameter, representing the system's energy level.
Returns:
float: The calculated resonant harmony value, which represents the
combined effect of resonance, frequency, and energy in the system.
"""
return np.sqrt((R * F)**2 + E**2)
def objective_function_phi(self, R, F, E):
"""
Calculate the objective function value based on the golden ratio.
This function computes the absolute difference between the resonant harmony equation
result and the golden ratio, serving as an optimization target.
Parameters:
R (float): The resonance parameter, representing the system's responsiveness.
F (float): The frequency parameter, typically the oscillation frequency of the system.
E (float): The energy parameter, representing the system's energy level.
Returns:
float: The absolute difference between the resonant harmony equation result and the golden ratio.
"""
return abs(self.resonant_harmony_equation(R, F, E) - golden_ratio)
def apply_golden_harmony_with_constant(self, R, F, E, constant):
"""
Apply the golden harmony with a specified constant multiplier.
This function calculates the golden harmony using the base parameters
and then multiplies the result by a given constant.
Parameters:
R (float): The resonance parameter, representing the system's responsiveness.
F (float): The frequency parameter, typically the oscillation frequency of the system.
E (float): The energy parameter, representing the system's energy level.
constant (float): A multiplier to be applied to the golden harmony result.
Returns:
float: The result of the golden harmony calculation multiplied by the constant.
"""
return self.apply_golden_harmony(R, F, E) * constant
def quantum_entanglement_possibilities(self, n, f, P):
"""
Calculate the total quantum entanglement possibilities for a system.
This function computes the sum of entanglement possibilities for all pairs
of particles in a quantum system, based on a given interaction function and
probability distribution.
Parameters:
n (int): The number of particles in the quantum system.
f (callable): A function that calculates the interaction strength between two particles.
It should take two integer arguments (particle indices) and return a float.
P (callable): A function that calculates the probability of entanglement between two particles.
It should take two integer arguments (particle indices) and return a float.
Returns:
float: The total sum of entanglement possibilities for all particle pairs in the system.
"""
T = 0
for i in range(n):
for j in range(i+1, n):
T += f(i, j) * P(i, j)
return T
def simulate_microwave_effects(self, system, frequency, duration):
# Placeholder for microwave simulation
# This method should be implemented based on the specific system and parameters
pass
def plot_convergence(self):
"""
Plot the convergence of the Harmonic Balancer Algorithm.
This function creates a line plot showing the progression of the best scores
over the iterations of the algorithm. It visualizes how the algorithm's
performance improves over time.
Parameters:
None
Returns:
None
Side effects:
- Displays a matplotlib plot showing the convergence of the algorithm.
- The plot includes a title, labeled axes, and a grid for better readability.
"""
plt.plot(self.history['scores'])
plt.title('Convergence of Harmonic Balancer Algorithm')
plt.xlabel('Iteration')
plt.ylabel('Best Score')
plt.grid(True)
plt.show()
def plot_dna_analysis(self):
"""
Plot the DNA analysis results over iterations.
This function creates two subplots:
1. GC Content over Iterations
2. Base Balance over Iterations
The function uses the DNA analysis data stored in the object's history
to visualize how these properties change throughout the algorithm's execution.
Parameters:
None
Returns:
None
Side effects:
- Displays a matplotlib figure with two subplots showing the progression
of GC Content and Base Balance over iterations.
- The plot includes titles, labeled axes, and uses tight layout for better visibility.
"""
gc_content = [analysis['gc_content'] for analysis in self.history['dna_analysis']]
base_balance = [analysis['base_balance'] for analysis in self.history['dna_analysis']]
plt.figure(figsize=(12, 6))
plt.subplot(2, 1, 1)
plt.plot(gc_content)
plt.title('GC Content over Iterations')
plt.xlabel('Iteration')
plt.ylabel('GC Content')
plt.subplot(2, 1, 2)
plt.plot(base_balance)
plt.title('Base Balance over Iterations')
plt.xlabel('Iteration')
plt.ylabel('Base Balance')
plt.tight_layout()
plt.show()
def quantum_circuit_simulation(self):
"""
Simulates a quantum circuit with 4 qubits and applies specific quantum gates.
This function creates a quantum circuit with 4 qubits, applies Hadamard and Pauli gates
to different qubits, measures all qubits, and then executes the circuit on a quantum
simulator. The simulation is run 1000 times to gather statistics on the measurement outcomes.
Parameters:
self: The instance of the class containing this method.
Returns:
dict: A dictionary where keys are binary strings representing the measured states,
and values are the number of times each state was observed in the 1000 shots.
For example, {'0000': 500, '0001': 250, ...}
"""
# Create a quantum circuit with 4 qubits
qc = QuantumCircuit(4, 4)
# Apply gates as per the configuration
qc.h(0) # Hadamard gate on Q0 (Graphene)
qc.x(1) # Pauli-X gate on Q1 (Silicon)
qc.y(2) # Pauli-Y gate on Q2 (Silicon)
qc.z(3) # Pauli-Z gate on Q3 (Diamond)
# Measure all qubits
qc.measure_all()
# Execute the circuit on a simulator
backend = Aer.get_backend('qasm_simulator')
job = execute(qc, backend, shots=1000)
result = job.result()
# Get the count of measurement outcomes
counts = result.get_counts(qc)
return counts
def simulate_fusion_reactor(self, parameters):
# Placeholder for fusion reactor simulation
# This method should be implemented based on specific fusion reactor parameters
pass
def simulate_mechanical_vibration(self, mass, stiffness, damping, force):
"""
Simulate a simple mechanical vibration system.
This function calculates the displacement of a mass-spring-damper system
over time when subjected to a constant force.
Parameters:
mass (float): The mass of the object in kg.
stiffness (float): The spring constant in N/m.
damping (float): The damping coefficient in Ns/m.
force (float): The applied constant force in N.
Returns:
tuple: A tuple containing two numpy arrays:
- t (numpy.ndarray): Time values from 0 to 10 seconds.
- x (numpy.ndarray): Displacement values corresponding to each time point.
"""
# Simulate a simple mechanical vibration system
omega_n = np.sqrt(stiffness / mass) # Natural frequency
zeta = damping / (2 * np.sqrt(mass * stiffness)) # Damping ratio
t = np.linspace(0, 10, 1000)
x = force / stiffness * (1 - np.exp(-zeta * omega_n * t) *
(np.cos(omega_n * np.sqrt(1 - zeta**2) * t) +
zeta / np.sqrt(1 - zeta**2) * np.sin(omega_n * np.sqrt(1 - zeta**2) * t)))
return t, x
def optimize_energy_distribution(self, grid_parameters):
# Placeholder for energy grid optimization
# This method should be implemented based on specific grid parameters
pass
def simulate_mri(self, parameters):
# Placeholder for MRI simulation
# This method should be implemented based on specific MRI parameters
pass