-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
459 lines (350 loc) · 16.2 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
# -*- coding: utf-8 -*-
"""
@Time:Created on 2019/9/24 15:49
@author: LiFan Chen
@Filename: model.py
@Software: PyCharm
"""
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch import Tensor
from torch.cuda.amp import autocast
import math
import numpy as np
from sklearn.metrics import mean_squared_error, r2_score, roc_auc_score
from Radam import *
from lookahead import Lookahead
from eval_metrics import *
class SelfAttention(nn.Module):
def __init__(self, hid_dim, n_heads, dropout):
super().__init__()
self.hid_dim = hid_dim
self.n_heads = n_heads
assert hid_dim % n_heads == 0
self.w_q = nn.Linear(hid_dim, hid_dim)
self.w_k = nn.Linear(hid_dim, hid_dim)
self.w_v = nn.Linear(hid_dim, hid_dim)
self.fc = nn.Linear(hid_dim, hid_dim)
self.do = nn.Dropout(dropout)
self.scale = torch.sqrt(torch.FloatTensor([hid_dim // n_heads]))
def forward(self, query, key, value, mask=None):
bsz = query.shape[0]
# query = key = value [batch size, sent len, hid dim]
Q = self.w_q(query)
K = self.w_k(key)
V = self.w_v(value)
# Q, K, V = [batch size, sent len, hid dim]
Q = Q.view(bsz, -1, self.n_heads, self.hid_dim // self.n_heads).permute(0, 2, 1, 3)
K = K.view(bsz, -1, self.n_heads, self.hid_dim // self.n_heads).permute(0, 2, 1, 3)
V = V.view(bsz, -1, self.n_heads, self.hid_dim // self.n_heads).permute(0, 2, 1, 3)
# K, V = [batch size, n heads, sent len_K, hid dim // n heads]
# Q = [batch size, n heads, sent len_q, hid dim // n heads]
energy = torch.matmul(Q, K.permute(0, 1, 3, 2)) / self.scale.to(K.device)
# energy = [batch size, n heads, sent len_Q, sent len_K]
# print(mask.shape)
# print(energy.shape)
if mask is not None:
energy = energy.masked_fill(mask == 0, -1e10)
attention = self.do(F.softmax(energy, dim=-1))
# attention = [batch size, n heads, sent len_Q, sent len_K]
x = torch.matmul(attention, V)
# x = [batch size, n heads, sent len_Q, hid dim // n heads]
x = x.permute(0, 2, 1, 3).contiguous()
# x = [batch size, sent len_Q, n heads, hid dim // n heads]
x = x.view(bsz, -1, self.n_heads * (self.hid_dim // self.n_heads))
# x = [batch size, src sent len_Q, hid dim]
x = self.fc(x)
# x = [batch size, sent len_Q, hid dim]
return x
class Encoder(nn.Module):
"""protein feature extraction."""
def __init__(self, protein_dim, hid_dim, n_layers, kernel_size, dropout):
super().__init__()
assert kernel_size % 2 == 1, "Kernel size must be odd (for now)"
self.input_dim = protein_dim
self.hid_dim = hid_dim
self.kernel_size = kernel_size
self.dropout = dropout
self.n_layers = n_layers
# self.pos_embedding = nn.Embedding(1000, hid_dim)
self.scale = torch.sqrt(torch.FloatTensor([0.5]))
self.convs = nn.ModuleList(
[nn.Conv1d(hid_dim, 2 * hid_dim, kernel_size, padding=(kernel_size - 1) // 2) for _ in
range(self.n_layers)]) # convolutional layers
self.dropout = nn.Dropout(dropout)
self.fc = nn.Linear(self.input_dim, self.hid_dim)
self.gn = nn.GroupNorm(8, hid_dim * 2)
self.ln = nn.LayerNorm(hid_dim)
def forward(self, protein):
# pos = torch.arange(0, protein.shape[1]).unsqueeze(0).repeat(protein.shape[0], 1).to(self.device)
# protein = protein + self.pos_embedding(pos)
# protein = [batch size, protein len,protein_dim]
conv_input = self.fc(protein)
# conv_input=[batch size,protein len,hid dim]
# permute for convolutional layer
conv_input = conv_input.permute(0, 2, 1)
# conv_input = [batch size, hid dim, protein len]
for i, conv in enumerate(self.convs):
# pass through convolutional layer
conved = conv(self.dropout(conv_input))
# conved = [batch size, 2*hid dim, protein len]
# pass through GLU activation function
conved = F.glu(conved, dim=1)
# conved = [batch size, hid dim, protein len]
# apply residual connection / high way
conved = (conved + conv_input) * self.scale.to(conv_input.device)
# conved = [batch size, hid dim, protein len]
# set conv_input to conved for next loop iteration
conv_input = conved
conved = conved.permute(0, 2, 1)
# conved = [batch size,protein len,hid dim]
conved = self.ln(conved)
return conved
class PositionwiseFeedforward(nn.Module):
def __init__(self, hid_dim, pf_dim, dropout):
super().__init__()
self.hid_dim = hid_dim
self.pf_dim = pf_dim
self.fc_1 = nn.Conv1d(hid_dim, pf_dim, 1) # convolution neural units
self.fc_2 = nn.Conv1d(pf_dim, hid_dim, 1) # convolution neural units
self.do = nn.Dropout(dropout)
def forward(self, x):
# x = [batch size, sent len, hid dim]
x = x.permute(0, 2, 1)
# x = [batch size, hid dim, sent len]
x = self.do(F.relu(self.fc_1(x)))
# x = [batch size, pf dim, sent len]
x = self.fc_2(x)
# x = [batch size, hid dim, sent len]
x = x.permute(0, 2, 1)
# x = [batch size, sent len, hid dim]
return x
class DecoderLayer(nn.Module):
def __init__(self, hid_dim, n_heads, pf_dim, self_attention, positionwise_feedforward, dropout):
super().__init__()
self.ln = nn.LayerNorm(hid_dim)
self.sa = self_attention(hid_dim, n_heads, dropout)
self.ea = self_attention(hid_dim, n_heads, dropout)
self.pf = positionwise_feedforward(hid_dim, pf_dim, dropout)
self.do = nn.Dropout(dropout)
def forward(self, trg, src, trg_mask=None, src_mask=None):
# trg = [batch_size, compound len, atom_dim]
# src = [batch_size, protein len, hid_dim] # encoder output
# trg_mask = [batch size, compound sent len]
# src_mask = [batch size, protein len]
trg = self.ln(trg + self.do(self.sa(trg, trg, trg, trg_mask)))
trg = self.ln(trg + self.do(self.ea(trg, src, src, src_mask)))
trg = self.ln(trg + self.do(self.pf(trg)))
return trg
class Decoder(nn.Module):
""" compound feature extraction."""
def __init__(self, atom_dim, hid_dim, n_layers, n_heads, pf_dim, decoder_layer, self_attention,
positionwise_feedforward, dropout):
super().__init__()
self.ln = nn.LayerNorm(hid_dim)
self.output_dim = atom_dim
self.hid_dim = hid_dim
self.n_layers = n_layers
self.n_heads = n_heads
self.pf_dim = pf_dim
self.decoder_layer = decoder_layer
self.self_attention = self_attention
self.positionwise_feedforward = positionwise_feedforward
self.dropout = dropout
self.sa = self_attention(hid_dim, n_heads, dropout)
self.layers = nn.ModuleList(
[decoder_layer(hid_dim, n_heads, pf_dim, self_attention, positionwise_feedforward, dropout)
for _ in range(n_layers)])
self.ft = nn.Linear(atom_dim, hid_dim)
self.do = nn.Dropout(dropout)
self.fc_1 = nn.Linear(hid_dim, 256)
self.fc_2 = nn.Linear(256, 128)
self.fc_3 = nn.Linear(128, 1)
self.do_1 = nn.Dropout(0.2)
# self.gn = nn.GroupNorm(8, 256)
def forward(self, trg, src, trg_mask=None, src_mask=None):
# trg = [batch_size, compound len, atom_dim]
# src = [batch_size, protein len, hid_dim] # encoder output
trg = self.ft(trg)
# trg = [batch size, compound len, hid dim]
for layer in self.layers:
trg = layer(trg, src, trg_mask, src_mask)
# trg = [batch size, compound len, hid dim]
"""Use norm to determine which atom is significant. """
norm = torch.norm(trg, dim=2)
# norm = [batch size,compound len]
norm: Tensor = F.softmax(norm, dim=1)
# norm = [batch size,compound len]
# trg = torch.squeeze(trg,dim=0)
# norm = torch.squeeze(norm,dim=0)
# sum = torch.zeros((trg.shape[0], self.hid_dim)).to(self.device)
# for i in range(norm.shape[0]):
# for j in range(norm.shape[1]):
# v = trg[i, j, ]
# v = v * norm[i, j]
# sum[i, ] += v
sum = torch.sum(trg * norm[:, :, None], axis=1)
# sum = [batch size,hid_dim]
label = self.do_1(F.relu(self.fc_1(sum)))
# label = self.do_1(F.relu(self.fc_2(label)))
label = self.do_1(F.relu(self.fc_2(label)))
label = self.fc_3(label)
return label
class Predictor(nn.Module):
def __init__(self, encoder, decoder, Loss=nn.MSELoss(reduction='mean'), atom_dim=34):
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.weight_1 = nn.Parameter(torch.FloatTensor(atom_dim, atom_dim))
self.weight_2 = nn.Parameter(torch.FloatTensor(atom_dim, atom_dim))
self.init_weight()
self.Loss = Loss
def init_weight(self):
stdv = 1. / math.sqrt(self.weight_1.size(1))
self.weight_1.data.uniform_(-stdv, stdv)
self.weight_2.data.uniform_(-stdv, stdv)
def gcn(self, input, adj):
# input =[batch,num_node, atom_dim]
# adj = [batch,num_node, num_node]
support = torch.matmul(input, self.weight_1)
# support =[batch,num_node,atom_dim]
output = torch.bmm(adj, support)
# output = [batch,num_node,atom_dim]
support = torch.matmul(output, self.weight_2)
output = torch.bmm(adj, support)
return output
def make_masks(self, atom_num, protein_num, compound_max_len, protein_max_len):
# N = len(atom_num) # batch size
# compound_mask = torch.zeros((N, compound_max_len))
# protein_mask = torch.zeros((N, protein_max_len))
# for i in range(N):
# compound_mask[i, :atom_num[i]] = 1
# protein_mask[i, :protein_num[i]] = 1
# compound_mask_1 = compound_mask.unsqueeze(1).unsqueeze(3).to(self.device)
# protein_mask_1 = protein_mask.unsqueeze(1).unsqueeze(2).to(self.device)
compound_axes = torch.arange(0, compound_max_len, device=atom_num.device).view(1, -1)
compound_mask = (compound_axes < atom_num.view(-1, 1)).unsqueeze(1).unsqueeze(3)
protein_axes = torch.arange(0, protein_max_len, device=protein_num.device).view(1, -1)
protein_mask = (protein_axes < protein_num.view(-1, 1)).unsqueeze(1).unsqueeze(2)
# print(torch.eq(compound_mask,compound_mask_1))
# print(torch.eq(protein_mask,protein_mask_1))
# print("compound:", compound_mask.shape)
# print("Protein:", protein_mask.shape)
# print("compound1_:", compound_mask.shape)
# print("Protein1_:", protein_mask.shape)
return compound_mask, protein_mask
@autocast()
def forward(self, data):
compound, adj, protein, correct_interaction, atom_num, protein_num = data
# compound = [batch,atom_num, atom_dim]
# adj = [batch,atom_num, atom_num]
# protein = [batch,protein len, 100]
compound_max_len = compound.shape[1]
protein_max_len = protein.shape[1]
compound_mask, protein_mask = self.make_masks(atom_num, protein_num, compound_max_len, protein_max_len)
compound = self.gcn(compound, adj)
# compound = torch.unsqueeze(compound, dim=0)
# compound = [batch size=1 ,atom_num, atom_dim]
# protein = torch.unsqueeze(protein, dim=0)
# protein =[ batch size=1,protein len, protein_dim]
enc_src = self.encoder(protein)
# enc_src = [batch size, protein len, hid dim]
predicted_interaction = self.decoder(compound, enc_src, compound_mask, protein_mask)
# out = [batch size, 2]
# out = torch.squeeze(out, dim=0)
loss = self.Loss(predicted_interaction, correct_interaction.view(-1, 1))
return torch.unsqueeze(loss, 0), predicted_interaction.view(-1, 1), correct_interaction.view(-1, 1)
def to_cuda(data, device='cuda:0', cuda_available=True):
compound, adj, protein, correct_interaction, atom_num, protein_num = data
# Put input to cuda
if cuda_available:
compound = compound.to(device)
adj = adj.to(device)
protein = protein.to(device)
atom_num = atom_num.to(device)
protein_num = protein_num.to(device)
correct_interaction = correct_interaction.to(device)
return compound, adj, protein, correct_interaction, atom_num, protein_num
class Trainer(object):
def __init__(self, model, lr, weight_decay, scaler=None):
self.model = model
self.scaler = scaler
# w - L2 regularization ; b - not L2 regularization
weight_p, bias_p = [], []
for p in self.model.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
for name, p in self.model.named_parameters():
if 'bias' in name:
bias_p += [p]
else:
weight_p += [p]
# self.optimizer = optim.Adam([{'params': weight_p, 'weight_decay': weight_decay}, {'params': bias_p, 'weight_decay': 0}], lr=lr)
self.optimizer_inner = RAdam(
[{'params': weight_p, 'weight_decay': weight_decay}, {'params': bias_p, 'weight_decay': 0}], lr=lr)
self.optimizer = Lookahead(self.optimizer_inner, k=5, alpha=0.5)
def train(self, dataloader, device):
self.model.train()
loss_train = 0
if self.scaler is None:
for i, data_pack in enumerate(dataloader):
data_pack = to_cuda(data_pack, device=device)
loss, _, _ = self.model(data_pack)
self.optimizer.zero_grad()
try:
loss.backward(torch.ones_like(loss)/4)
self.optimizer.step()
except RuntimeError as e:
if 'out of memory' in str(e):
print('| WARNING: ran out of GPU memory, skipping batch')
torch.cuda.empty_cache()
else:
print(e)
loss_train += loss.detach().mean().item()
else:
for i, data_pack in enumerate(dataloader):
data_pack = to_cuda(data_pack, device=device)
loss, _, _ = self.model(data_pack)
self.optimizer.zero_grad()
self.scaler.scale(loss.mean()).backward()
self.scaler.step(self.optimizer)
self.scaler.update()
loss_train += loss.detach().mean().item()
return loss.detach().sum().item()
class Tester(object):
def __init__(self, model):
self.model = model
def test(self, dataloader, device, threshold=7., plot=False):
self.model.eval()
T, S = torch.Tensor(), torch.Tensor()
with torch.no_grad():
for i, data_pack in enumerate(dataloader):
data_pack = to_cuda(data_pack, device=device)
_, predicted_interaction, correct_interaction = self.model(data_pack)
T = torch.cat((T, correct_interaction.cpu().detach()))
S = torch.cat((S, predicted_interaction.cpu().detach()))
T_ = T.squeeze().numpy()
S_ = S.squeeze().numpy()
if plot:
np.savetxt('plot.csv', [T_, S_], delimiter=',')
try:
rmse = mean_squared_error(T_, S_, squared=False)
pear = pearson(T_, S_)
spear = spearman(T_, S_)
f1 = find_f1(T, S, threshold)
auc = roc_auc_score(T_ > threshold, S_ > threshold)
r_square = r2_score(T, S)
R2 = pear ** 2
except Exception as e:
print(e)
rmse = r_square = 10 ** 10
pear = spear = f1 = auc = R2 = -1
return rmse, pear, spear, f1, auc, r_square, R2
def save_AUCs(self, AUCs, filename):
with open(filename, 'a') as f:
f.write('\t'.join(map(str, AUCs)) + '\n')
def save_model(self, model, filename):
torch.save(model.module.state_dict(), filename + ".state_dict")
torch.save(model, filename + ".entire_model")