-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathrun_batch.py
664 lines (524 loc) · 24.9 KB
/
run_batch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
import os
import gym
import time
import torch
import numpy as np
import numpy.random as rd
from copy import deepcopy
from ElegantRL_master.elegantrl.replay import ReplayBuffer, ReplayBufferMP
from ElegantRL_master.elegantrl.env import PreprocessEnv
import config
"""[ElegantRL](https://github.com/AI4Finance-LLC/ElegantRL)"""
class Arguments:
def __init__(self, agent=None, env=None, gpu_id=None, if_on_policy=False):
self.agent = agent # Deep Reinforcement Learning algorithm
self.cwd = None # current work directory. cwd is None means set it automatically
self.env = env # the environment for training
self.env_eval = None # the environment for evaluating
self.gpu_id = gpu_id # choose the GPU for running. gpu_id is None means set it automatically
'''Arguments for training (off-policy)'''
self.net_dim = 2 ** 8 # the network width
self.batch_size = 2 ** 8 # num of transitions sampled from replay buffer.
self.repeat_times = 2 ** 0 # repeatedly update network to keep critic's loss small
self.target_step = 2 ** 10 # collect target_step, then update network
self.max_memo = 2 ** 17 # capacity of replay buffer
if if_on_policy: # (on-policy)
self.net_dim = 2 ** 9
self.batch_size = 2 ** 9
self.repeat_times = 2 ** 4
self.target_step = 2 ** 12
self.max_memo = self.target_step
self.gamma = 0.99 # discount factor of future rewards
self.reward_scale = 2 ** 0 # an approximate target reward usually be closed to 256
self.if_per = False # Prioritized Experience Replay for sparse reward
self.rollout_num = 2 # the number of rollout workers (larger is not always faster)
self.num_threads = 8 # cpu_num for evaluate model, torch.set_num_threads(self.num_threads)
'''Arguments for evaluate'''
self.break_step = 2 ** 20 # break training after 'total_step > break_step'
self.if_remove = True # remove the cwd folder? (True, False, None:ask me)
self.if_allow_break = True # allow break training when reach goal (early termination)
self.eval_gap = 2 ** 5 # evaluate the agent per eval_gap seconds
self.eval_times1 = 2 ** 2 # evaluation times
self.eval_times2 = 2 ** 4 # evaluation times if 'eval_reward > max_reward'
self.random_seed = 0 # initialize random seed in self.init_before_training()
def init_before_training(self, if_main=True):
if self.agent is None:
raise RuntimeError('\n| Why agent=None? Assignment args.agent = AgentXXX please.')
if not hasattr(self.agent, 'init'):
raise RuntimeError('\n| There should be agent=AgentXXX() instead of agent=AgentXXX')
if self.env is None:
raise RuntimeError('\n| Why env=None? Assignment args.env = XxxEnv() please.')
if isinstance(self.env, str) or not hasattr(self.env, 'env_name'):
raise RuntimeError('\n| What is env.env_name? use env=PreprocessEnv(env). It is a Wrapper.')
'''set gpu_id automatically'''
if self.gpu_id is None: # set gpu_id automatically
import sys
self.gpu_id = sys.argv[-1][-4]
else:
self.gpu_id = str(self.gpu_id)
if not self.gpu_id.isdigit(): # set gpu_id as '0' in default
self.gpu_id = '0'
'''set cwd automatically'''
if self.cwd is None:
# ----
agent_name = self.agent.__class__.__name__
# self.cwd = f'./{agent_name}/{self.env.env_name}_{self.gpu_id}'
# self.cwd = f'./{agent_name}/{self.env.env_name}'
self.cwd = f'./{config.WEIGHTS_PATH}/{self.env.env_name}'
# model_folder_path = f'./{config.WEIGHTS_PATH}/single/{config.AGENT_NAME}/{config.BATCH_A_STOCK_CODE[0]}' \
# f'/single_{config.VALI_DAYS_FLAG}'
# ----
if if_main:
print(f'| GPU id: {self.gpu_id}, cwd: {self.cwd}')
import shutil # remove history according to bool(if_remove)
if self.if_remove is None:
self.if_remove = bool(input("PRESS 'y' to REMOVE: {}? ".format(self.cwd)) == 'y')
if self.if_remove:
shutil.rmtree(self.cwd, ignore_errors=True)
print("| Remove history")
os.makedirs(self.cwd, exist_ok=True)
os.environ['CUDA_VISIBLE_DEVICES'] = str(self.gpu_id)
torch.set_num_threads(self.num_threads)
torch.set_default_dtype(torch.float32)
torch.manual_seed(self.random_seed)
np.random.seed(self.random_seed)
'''single process training'''
def train_and_evaluate(args):
args.init_before_training()
'''basic arguments'''
cwd = args.cwd
env = args.env
agent = args.agent
gpu_id = args.gpu_id # necessary for Evaluator?
'''training arguments'''
net_dim = args.net_dim
max_memo = args.max_memo
break_step = args.break_step
batch_size = args.batch_size
target_step = args.target_step
repeat_times = args.repeat_times
if_break_early = args.if_allow_break
if_per = args.if_per
gamma = args.gamma
reward_scale = args.reward_scale
'''evaluating arguments'''
eval_gap = args.eval_gap
eval_times1 = args.eval_times1
eval_times2 = args.eval_times2
if args.env_eval is not None:
env_eval = args.env_eval
elif args.env_eval in set(gym.envs.registry.env_specs.keys()):
env_eval = PreprocessEnv(gym.make(env.env_name))
else:
env_eval = deepcopy(env)
del args # In order to show these hyper-parameters clearly, I put them above.
'''init: environment'''
max_step = env.max_step
state_dim = env.state_dim
action_dim = env.action_dim
if_discrete = env.if_discrete
'''init: Agent, ReplayBuffer, Evaluator'''
agent.init(net_dim, state_dim, action_dim, if_per)
# ----
# 目录 path
# model_folder_path = f'./{config.AGENT_NAME}/batch/{config.BATCH_A_STOCK_CODE[0]}' \
# f'/batch_{config.VALI_DAYS_FLAG}'
model_folder_path = f'./{config.WEIGHTS_PATH}/batch/{config.AGENT_NAME}/' \
f'batch_{config.VALI_DAYS_FLAG}'
# 文件 path
model_file_path = f'{model_folder_path}/actor.pth'
# 如果model存在,则加载
if os.path.exists(model_file_path):
agent.save_load_model(model_folder_path, if_save=False)
pass
# ----
if_on_policy = getattr(agent, 'if_on_policy', False)
buffer = ReplayBuffer(max_len=max_memo + max_step, state_dim=state_dim, action_dim=1 if if_discrete else action_dim,
if_on_policy=if_on_policy, if_per=if_per, if_gpu=True)
evaluator = Evaluator(cwd=cwd, agent_id=gpu_id, device=agent.device, env=env_eval,
eval_gap=eval_gap, eval_times1=eval_times1, eval_times2=eval_times2, )
'''prepare for training'''
agent.state = env.reset()
if if_on_policy:
steps = 0
else: # explore_before_training for off-policy
with torch.no_grad(): # update replay buffer
steps = explore_before_training(env, buffer, target_step, reward_scale, gamma)
agent.update_net(buffer, target_step, batch_size, repeat_times) # pre-training and hard update
agent.act_target.load_state_dict(agent.act.state_dict()) if getattr(agent, 'act_target', None) else None
agent.cri_target.load_state_dict(agent.cri.state_dict()) if getattr(agent, 'cri_target', None) else None
total_step = steps
'''start training'''
if_reach_goal = False
while not ((if_break_early and if_reach_goal)
or total_step > break_step
or os.path.exists(f'{cwd}/stop')):
steps = agent.explore_env(env, buffer, target_step, reward_scale, gamma)
total_step += steps
obj_a, obj_c = agent.update_net(buffer, target_step, batch_size, repeat_times)
if_reach_goal = evaluator.evaluate_save(agent.act, steps, obj_a, obj_c)
evaluator.draw_plot()
print(f'| SavedDir: {cwd}\n| UsedTime: {time.time() - evaluator.start_time:.0f}')
'''multiprocessing training'''
def train_and_evaluate_mp(args):
act_workers = args.rollout_num
import multiprocessing as mp # Python built-in multiprocessing library
pipe1_eva, pipe2_eva = mp.Pipe() # Pipe() for Process mp_evaluate_agent()
pipe2_exp_list = list() # Pipe() for Process mp_explore_in_env()
process_train = mp.Process(target=mp_train, args=(args, pipe2_eva, pipe2_exp_list))
process_evaluate = mp.Process(target=mp_evaluate, args=(args, pipe1_eva))
process = [process_train, process_evaluate]
for worker_id in range(act_workers):
exp_pipe1, exp_pipe2 = mp.Pipe(duplex=True)
pipe2_exp_list.append(exp_pipe1)
process.append(mp.Process(target=mp_explore, args=(args, exp_pipe2, worker_id)))
[p.start() for p in process]
process_evaluate.join()
process_train.join()
[p.terminate() for p in process]
def mp_train(args, pipe1_eva, pipe1_exp_list):
args.init_before_training(if_main=False)
'''basic arguments'''
env = args.env
cwd = args.cwd
agent = args.agent
rollout_num = args.rollout_num
'''training arguments'''
net_dim = args.net_dim
max_memo = args.max_memo
break_step = args.break_step
batch_size = args.batch_size
target_step = args.target_step
repeat_times = args.repeat_times
if_break_early = args.if_allow_break
if_per = args.if_per
del args # In order to show these hyper-parameters clearly, I put them above.
'''init: environment'''
max_step = env.max_step
state_dim = env.state_dim
action_dim = env.action_dim
if_discrete = env.if_discrete
'''init: Agent, ReplayBuffer'''
agent.init(net_dim, state_dim, action_dim, if_per)
# ----
# 目录 path
model_folder_path = f'./{config.WEIGHTS_PATH}/batch/{config.AGENT_NAME}/' \
f'batch_{config.VALI_DAYS_FLAG}'
# f'./{config.WEIGHTS_PATH}/single/{config.AGENT_NAME}/{config.BATCH_A_STOCK_CODE[0]}/StockTradingEnv-v1'
# 文件 path
model_file_path = f'{model_folder_path}/actor.pth'
# 如果model存在,则加载
if os.path.exists(model_file_path):
agent.save_load_model(model_folder_path, if_save=False)
pass
# ----
if_on_policy = getattr(agent, 'if_on_policy', False)
'''send'''
pipe1_eva.send(agent.act) # send
# act = pipe2_eva.recv() # recv
buffer_mp = ReplayBufferMP(max_len=max_memo + max_step * rollout_num, if_on_policy=if_on_policy,
state_dim=state_dim, action_dim=1 if if_discrete else action_dim,
rollout_num=rollout_num, if_gpu=True, if_per=if_per)
'''prepare for training'''
if if_on_policy:
steps = 0
else: # explore_before_training for off-policy
with torch.no_grad(): # update replay buffer
steps = 0
for i in range(rollout_num):
pipe1_exp = pipe1_exp_list[i]
# pipe2_exp.send((buffer.buf_state[:buffer.now_len], buffer.buf_other[:buffer.now_len]))
buf_state, buf_other = pipe1_exp.recv()
steps += len(buf_state)
buffer_mp.extend_buffer(buf_state, buf_other, i)
agent.update_net(buffer_mp, target_step, batch_size, repeat_times) # pre-training and hard update
agent.act_target.load_state_dict(agent.act.state_dict()) if getattr(env, 'act_target', None) else None
agent.cri_target.load_state_dict(agent.cri.state_dict()) if getattr(env, 'cri_target', None) in dir(
agent) else None
total_step = steps
'''send'''
pipe1_eva.send((agent.act, steps, 0, 0.5)) # send
# act, steps, obj_a, obj_c = pipe2_eva.recv() # recv
'''start training'''
if_solve = False
while not ((if_break_early and if_solve)
or total_step > break_step
or os.path.exists(f'{cwd}/stop')):
'''update ReplayBuffer'''
steps = 0 # send by pipe1_eva
for i in range(rollout_num):
pipe1_exp = pipe1_exp_list[i]
'''send'''
pipe1_exp.send(agent.act)
# agent.act = pipe2_exp.recv()
'''recv'''
# pipe2_exp.send((buffer.buf_state[:buffer.now_len], buffer.buf_other[:buffer.now_len]))
buf_state, buf_other = pipe1_exp.recv()
steps += len(buf_state)
buffer_mp.extend_buffer(buf_state, buf_other, i)
total_step += steps
'''update network parameters'''
obj_a, obj_c = agent.update_net(buffer_mp, target_step, batch_size, repeat_times)
'''saves the agent with max reward'''
'''send'''
pipe1_eva.send((agent.act, steps, obj_a, obj_c))
# q_i_eva_get = pipe2_eva.recv()
if_solve = pipe1_eva.recv()
if pipe1_eva.poll():
'''recv'''
# pipe2_eva.send(if_solve)
if_solve = pipe1_eva.recv()
buffer_mp.print_state_norm(env.neg_state_avg if hasattr(env, 'neg_state_avg') else None,
env.div_state_std if hasattr(env, 'div_state_std') else None) # 2020-12-12
'''send'''
pipe1_eva.send('stop')
# q_i_eva_get = pipe2_eva.recv()
time.sleep(4)
def mp_explore(args, pipe2_exp, worker_id):
args.init_before_training(if_main=False)
'''basic arguments'''
env = args.env
agent = args.agent
rollout_num = args.rollout_num
'''training arguments'''
net_dim = args.net_dim
max_memo = args.max_memo
target_step = args.target_step
gamma = args.gamma
if_per = args.if_per
reward_scale = args.reward_scale
random_seed = args.random_seed
torch.manual_seed(random_seed + worker_id)
np.random.seed(random_seed + worker_id)
del args # In order to show these hyper-parameters clearly, I put them above.
'''init: environment'''
max_step = env.max_step
state_dim = env.state_dim
action_dim = env.action_dim
if_discrete = env.if_discrete
'''init: Agent, ReplayBuffer'''
agent.init(net_dim, state_dim, action_dim, if_per)
# ----
# 目录 path
# model_folder_path = f'./{config.AGENT_NAME}/single/{config.BATCH_A_STOCK_CODE[0]}' \
# f'/single_{config.VALI_DAYS_FLAG}'
model_folder_path = f'./{config.WEIGHTS_PATH}/batch/{config.AGENT_NAME}/' \
f'batch_{config.VALI_DAYS_FLAG}'
# 文件 path
model_file_path = f'{model_folder_path}/actor.pth'
# 如果model存在,则加载
if os.path.exists(model_file_path):
agent.save_load_model(model_folder_path, if_save=False)
pass
# ----
agent.state = env.reset()
if_on_policy = getattr(agent, 'if_on_policy', False)
buffer = ReplayBuffer(max_len=max_memo // rollout_num + max_step, if_on_policy=if_on_policy,
state_dim=state_dim, action_dim=1 if if_discrete else action_dim,
if_per=if_per, if_gpu=False)
'''start exploring'''
exp_step = target_step // rollout_num
with torch.no_grad():
if not if_on_policy:
explore_before_training(env, buffer, exp_step, reward_scale, gamma)
buffer.update_now_len_before_sample()
pipe2_exp.send((buffer.buf_state[:buffer.now_len], buffer.buf_other[:buffer.now_len]))
# buf_state, buf_other = pipe1_exp.recv()
buffer.empty_buffer_before_explore()
while True:
agent.explore_env(env, buffer, exp_step, reward_scale, gamma)
buffer.update_now_len_before_sample()
pipe2_exp.send((buffer.buf_state[:buffer.now_len], buffer.buf_other[:buffer.now_len]))
# buf_state, buf_other = pipe1_exp.recv()
buffer.empty_buffer_before_explore()
# pipe1_exp.send(agent.act)
agent.act = pipe2_exp.recv()
def mp_evaluate(args, pipe2_eva):
args.init_before_training(if_main=True)
'''basic arguments'''
cwd = args.cwd
env = args.env
env_eval = env if args.env_eval is None else args.env_eval
agent_id = args.gpu_id
'''evaluating arguments'''
eval_gap = args.eval_gap
eval_times1 = args.eval_times1
eval_times2 = args.eval_times2
del args # In order to show these hyper-parameters clearly, I put them above.
'''init: Evaluator'''
evaluator = Evaluator(cwd=cwd, agent_id=agent_id, device=torch.device("cpu"), env=env_eval,
eval_gap=eval_gap, eval_times1=eval_times1, eval_times2=eval_times2, ) # build Evaluator
'''act_cpu without gradient for pipe1_eva'''
# pipe1_eva.send(agent.act)
act = pipe2_eva.recv()
act_cpu = deepcopy(act).to(torch.device("cpu")) # for pipe1_eva
[setattr(param, 'requires_grad', False) for param in act_cpu.parameters()]
'''start evaluating'''
with torch.no_grad(): # speed up running
act, steps, obj_a, obj_c = pipe2_eva.recv() # pipe2_eva (act, steps, obj_a, obj_c)
if_loop = True
while if_loop:
'''update actor'''
while not pipe2_eva.poll(): # wait until pipe2_eva not empty
time.sleep(1)
steps_sum = 0
while pipe2_eva.poll(): # receive the latest object from pipe
'''recv'''
# pipe1_eva.send((agent.act, steps, obj_a, obj_c))
# pipe1_eva.send('stop')
q_i_eva_get = pipe2_eva.recv()
if q_i_eva_get == 'stop':
if_loop = False
break
act, steps, obj_a, obj_c = q_i_eva_get
steps_sum += steps
act_cpu.load_state_dict(act.state_dict())
if_solve = evaluator.evaluate_save(act_cpu, steps_sum, obj_a, obj_c)
'''send'''
pipe2_eva.send(if_solve)
# if_solve = pipe1_eva.recv()
evaluator.draw_plot()
print(f'| SavedDir: {cwd}\n| UsedTime: {time.time() - evaluator.start_time:.0f}')
while pipe2_eva.poll(): # empty the pipe
pipe2_eva.recv()
'''utils'''
class Evaluator:
def __init__(self, cwd, agent_id, eval_times1, eval_times2, eval_gap, env, device):
self.recorder = [(0., -np.inf, 0., 0., 0.), ] # total_step, r_avg, r_std, obj_a, obj_c
self.r_max = -np.inf
self.total_step = 0
self.cwd = cwd # constant
self.device = device
self.agent_id = agent_id
self.eval_gap = eval_gap
self.eval_times1 = eval_times1
self.eval_times2 = eval_times2
self.env = env
self.target_return = env.target_return
self.used_time = None
self.start_time = time.time()
self.eval_time = -1 # a early time
print(f"{'ID':>2} {'Step':>8} {'MaxR':>8} |"
f"{'avgR':>8} {'stdR':>8} {'objA':>8} {'objC':>8} |"
f"{'avgS':>6} {'stdS':>4}")
def evaluate_save(self, act, steps, obj_a, obj_c) -> bool:
self.total_step += steps # update total training steps
if time.time() - self.eval_time > self.eval_gap:
self.eval_time = time.time()
rewards_steps_list = [get_episode_return(self.env, act, self.device) for _ in range(self.eval_times1)]
r_avg, r_std, s_avg, s_std = self.get_r_avg_std_s_avg_std(rewards_steps_list)
if r_avg > self.r_max: # evaluate actor twice to save CPU Usage and keep precision
rewards_steps_list += [get_episode_return(self.env, act, self.device)
for _ in range(self.eval_times2 - self.eval_times1)]
r_avg, r_std, s_avg, s_std = self.get_r_avg_std_s_avg_std(rewards_steps_list)
if r_avg > self.r_max: # save checkpoint with highest episode return
self.r_max = r_avg # update max reward (episode return)
'''save actor.pth'''
act_save_path = f'{self.cwd}/actor.pth'
torch.save(act.state_dict(), act_save_path)
print(f"{self.agent_id:<2} {self.total_step:8.2e} {self.r_max:8.2f} |") # save policy and print
self.recorder.append((self.total_step, r_avg, r_std, obj_a, obj_c)) # update recorder
if_reach_goal = bool(self.r_max > self.target_return) # check if_reach_goal
if if_reach_goal and self.used_time is None:
self.used_time = int(time.time() - self.start_time)
print(f"{'ID':>2} {'Step':>8} {'TargetR':>8} |"
f"{'avgR':>8} {'stdR':>8} {'UsedTime':>8} ########\n"
f"{self.agent_id:<2} {self.total_step:8.2e} {self.target_return:8.2f} |"
f"{r_avg:8.2f} {r_std:8.2f} {self.used_time:>8} ########")
print(f"{self.agent_id:<2} {self.total_step:8.2e} {self.r_max:8.2f} |"
f"{r_avg:8.2f} {r_std:8.2f} {obj_a:8.2f} {obj_c:8.2f} |"
f"{s_avg:6.0f} {s_std:4.0f}")
else:
if_reach_goal = False
return if_reach_goal
def draw_plot(self):
if len(self.recorder) == 0:
print("| save_npy_draw_plot() WARNNING: len(self.recorder)==0")
return None
'''convert to array and save as npy'''
np.save('%s/recorder.npy' % self.cwd, self.recorder)
'''draw plot and save as png'''
train_time = int(time.time() - self.start_time)
total_step = int(self.recorder[-1][0])
save_title = f"plot_step_time_maxR_{int(total_step)}_{int(train_time)}_{self.r_max:.3f}"
save_learning_curve(self.recorder, self.cwd, save_title)
@staticmethod
def get_r_avg_std_s_avg_std(rewards_steps_list):
rewards_steps_ary = np.array(rewards_steps_list)
r_avg, s_avg = rewards_steps_ary.mean(axis=0) # average of episode return and episode step
r_std, s_std = rewards_steps_ary.std(axis=0) # standard dev. of episode return and episode step
return r_avg, r_std, s_avg, s_std
def get_episode_return(env, act, device) -> (float, int):
episode_return = 0.0 # sum of rewards in an episode
episode_step = 1
max_step = env.max_step
if_discrete = env.if_discrete
state = env.reset()
for episode_step in range(max_step):
s_tensor = torch.as_tensor((state,), device=device)
a_tensor = act(s_tensor)
if if_discrete:
a_tensor = a_tensor.argmax(dim=1)
action = a_tensor.detach().cpu().numpy()[0] # not need detach(), because with torch.no_grad() outside
state, reward, done, _ = env.step(action)
episode_return += reward
if done:
break
episode_return = getattr(env, 'episode_return', episode_return)
return episode_return, episode_step + 1
def save_learning_curve(recorder, cwd='.', save_title='learning curve'):
recorder = np.array(recorder) # recorder_ary.append((self.total_step, r_avg, r_std, obj_a, obj_c))
steps = recorder[:, 0] # x-axis is training steps
r_avg = recorder[:, 1]
r_std = recorder[:, 2]
obj_a = recorder[:, 3]
obj_c = recorder[:, 4]
'''plot subplots'''
import matplotlib as mpl
mpl.use('Agg')
"""Generating matplotlib graphs without a running X server [duplicate]
write `mpl.use('Agg')` before `import matplotlib.pyplot as plt`
https://stackoverflow.com/a/4935945/9293137
"""
import matplotlib.pyplot as plt
fig, axs = plt.subplots(2)
axs0 = axs[0]
axs0.cla()
color0 = 'lightcoral'
axs0.set_xlabel('Total Steps')
axs0.set_ylabel('Episode Return')
axs0.plot(steps, r_avg, label='Episode Return', color=color0)
axs0.fill_between(steps, r_avg - r_std, r_avg + r_std, facecolor=color0, alpha=0.3)
ax11 = axs[1]
ax11.cla()
color11 = 'royalblue'
axs0.set_xlabel('Total Steps')
ax11.set_ylabel('objA', color=color11)
ax11.plot(steps, obj_a, label='objA', color=color11)
ax11.tick_params(axis='y', labelcolor=color11)
ax12 = axs[1].twinx()
color12 = 'darkcyan'
ax12.set_ylabel('objC', color=color12)
ax12.fill_between(steps, obj_c, facecolor=color12, alpha=0.2, )
ax12.tick_params(axis='y', labelcolor=color12)
'''plot save'''
plt.title(save_title, y=2.3)
plt.savefig(f"{cwd}/plot_learning_curve.jpg")
plt.close('all') # avoiding warning about too many open figures, rcParam `figure.max_open_warning`
# plt.show() # if use `mpl.use('Agg')` to draw figures without GUI, then plt can't plt.show()
def explore_before_training(env, buffer, target_step, reward_scale, gamma) -> int:
# just for off-policy. Because on-policy don't explore before training.
if_discrete = env.if_discrete
action_dim = env.action_dim
state = env.reset()
steps = 0
while steps < target_step:
action = rd.randint(action_dim) if if_discrete else rd.uniform(-1, 1, size=action_dim)
next_state, reward, done, _ = env.step(action)
steps += 1
scaled_reward = reward * reward_scale
mask = 0.0 if done else gamma
other = (scaled_reward, mask, action) if if_discrete else (scaled_reward, mask, *action)
buffer.append_buffer(state, other)
state = env.reset() if done else next_state
return steps