-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrl.py
361 lines (325 loc) · 14.7 KB
/
rl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
from datetime import timedelta
from glob import glob
import os
import random
import pickle
import time
import d4rl
import gym
import numpy as np
import pytorch_lightning as pl
from stable_baselines3 import PPO
from stable_baselines3.common.env_util import make_vec_env
from stable_baselines3.common.utils import set_random_seed
from stable_baselines3.common.vec_env import DummyVecEnv, SubprocVecEnv
import torch
import data
from evaluate import log_action_videos, log_demonstration_videos, time_evaluation
import ppo
from sac_discrete import SACDiscrete, TemporallyExtendedSACDiscrete
import subwords
def main(config, savedir):
start_time = time.time()
if config.continuous_actions and config.k_actions is not None:
print(f'Continuous actions {config.continuous_actions} is incompatible with k actions {config.k_actions}, returning')
return
# seed for deterministic subwords
random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
# basically all the seeds affect the starting positions, so more random
# seeds makes the learning problem easier than a single one
dataset = get_dataset(config.env_id)
primitives = None
if config.normalize_observations:
dataset['observations'] = data.normalize_observations(dataset['observations'])
if not config.continuous_actions:
action_path = os.path.join(savedir, 'discrete_actions.pkl')
if os.path.exists(action_path):
with open(action_path, 'rb') as f:
actions, primitives = pickle.load(f)
else:
if 'procgen' in config.env_id:
actions = dataset['actions']
primitives = list(range(15))
elif 'CartPole' in config.env_id:
actions = dataset['actions']
primitives = list(range(2))
else:
actions, primitives = data.discretize_actions(dataset['actions'], config.num_clusters, normalize=config.normalize_actions)
with open(action_path, 'wb') as f:
pickle.dump((actions, primitives), f)
dataset['actions'] = actions
if config.filter_inplace_transitions:
dataset = data.filter_inplace_transitions(dataset)
traj_dataset = data.split_d4rl_dataset_to_trajectories(dataset, config.exclude_terminal_states)
if config.trajectory_fraction is not None:
traj_dataset = data.subsample_d4rl_traj_dataset(traj_dataset, config.trajectory_fraction, config.subset_seed)
vocab, tokenizer = None, None
if config.k_actions is not None and not config.continuous_actions:
vocab_path = os.path.join(savedir, 'vocab.pkl')
if os.path.exists(vocab_path):
with open(vocab_path, 'rb') as f:
vocab = pickle.load(f)
if type(vocab) == tuple:
vocab = vocab[0]
else:
vocab, tokenizer = subwords.get_vocab(config, traj_dataset)
with open(vocab_path, 'wb') as f:
pickle.dump(vocab, f)
random.seed(config.seed)
np.random.seed(config.seed)
torch.manual_seed(config.seed)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
train_env = vectorize_env(config.num_train_envs, config, primitives, vocab, seed=config.seed)
# seed differently than training envs
eval_env = vectorize_env(config.num_eval_envs, config, primitives, vocab, seed=config.seed + config.num_train_envs + 1, train=False)
render_env = init_render_env(config, primitives, seed=config.seed + config.num_train_envs + 1)
if config.use_wandb and config.log_demonstrations:
print('Logging demonstration videos...')
demo_env = gym.make(config.env_id)
demo_dataset = get_dataset(config.env_id)
# demo_dataset = demo_env.get_dataset()
demo_traj_dataset = data.split_d4rl_dataset_to_trajectories(demo_dataset, config.exclude_terminal_states)
log_demonstration_videos(demo_env, demo_traj_dataset)
print('Logging demonstration videos... DONE')
return
if config.use_wandb and not config.continuous_actions and config.log_action_videos:
pl_checkpoints = list(glob(os.path.join(savedir, '**/*.ckpt'), recursive=True))
sb3_checkpoints = list(glob(os.path.join(savedir, '*_last.zip')))
not_logged = len(pl_checkpoints) == 0 and len(sb3_checkpoints) == 0
if not_logged:
print('Logging discrete action videos...')
action_env = init_render_env(config, primitives)
if config.k_actions is None:
action_vocab = [[i] for i in range(len(primitives))]
else:
action_vocab = vocab
log_action_videos(action_vocab, action_env)
del action_vocab, action_env
print('Logging discrete action videos... DONE')
if config.online_algorithm == 'sac':
policy_kwargs = dict(
activation_fn=torch.nn.LeakyReLU,
net_arch=[256, 256, 256, 256],
)
OnlineAlg = SACDiscrete
if not config.continuous_actions and config.k_actions is not None:
OnlineAlg = TemporallyExtendedSACDiscrete
try:
# if 'auto' not in config.sac_ent_coef try casting to float
config.sac_ent_coef = float(config.sac_ent_coef)
except:
pass
model = OnlineAlg(
'MlpPolicy',
train_env,
verbose=1,
train_freq=config.sac_train_freq, # collect_rollout only collects single transition
replay_buffer_class=None,
# replay_buffer_kwargs=dict(alpha=0.7, beta=0.4) if config.use_per else None,
buffer_size=1_000_000 if 'procgen' not in config.env_id else 100_000,
learning_starts=5_000,
learning_rate=config.online_lr,
batch_size=config.online_batch_size,
gradient_steps=config.sac_gradient_steps, # 1 means 1 gradient step for every collect_rollout, -1 means num_train_env steps per collect_rollout
ent_coef=config.sac_ent_coef, # auto_1.0 is default
# ent_coef=f'auto_{config.sac_init_ent_coef}', # 1 causes critic divergence early on, so does 0.1
reward_scale=config.sac_reward_scale,
target_update_interval=config.sac_train_freq,
target_entropy='auto',
target_entropy_mult=config.sac_tgt_ent_mult,
policy_kwargs=policy_kwargs,
seed=config.seed,
device=device,
)
elif config.online_algorithm == 'ppo':
# for details https://stable-baselines3.readthedocs.io/en/master/guide/custom_policy.html
# separate policy + value branches is better
policy_kwargs = dict(
net_arch=dict(pi=[256, 256, 256, 256], vf=[256, 256, 256, 256]),
)
OnlineAlg = PPO
if not config.continuous_actions and config.k_actions is not None:
OnlineAlg = ppo.TemporallyExtendedPPO
model = OnlineAlg(
'MlpPolicy',
train_env,
verbose=1,
n_steps=1000,
n_epochs=config.ppo_epochs,
batch_size=config.online_batch_size,
# batch_size=config.num_train_envs,
gae_lambda=config.ppo_gae_lambda,
ent_coef=config.ppo_ent_coef,
normalize_advantage=(not config.ppo_unnormalized_advantage),
policy_kwargs=policy_kwargs,
seed=config.seed,
device=device
)
else:
raise NotImplementedError(f'RL algorithm {config.online_algorithm=} is not implemented')
setup_duration = time.time() - start_time
# train RL
from callbacks import Sb3LatestCheckpointCallback, Sb3SlurmTimer
# save_interval = config.online_save_interval // config.num_train_envs
save_interval = config.online_save_interval
saver = Sb3LatestCheckpointCallback(
save_freq=save_interval,
save_path=savedir,
name_prefix='online_rl_sb3_model',
save_replay_buffer=True, # for resuming training
)
time_left = config.time_limit
time_left -= setup_duration
if time_left < 0:
raise TimeoutError('Time limit {config.time_limit} has elapsed')
time_str = timedelta_to_str(timedelta(seconds=time_left))
timer = Sb3SlurmTimer(time_str)
callback = [saver, timer]
if config.use_wandb:
from callbacks import Sb3TrainCallback, Sb3EvalCallback, Sb3VisitationCallback, Sb3VideoRecorderCallback
# when parallelizing, the evals are delayed
# eval_interval = config.online_eval_interval // config.num_train_envs
# render_interval = config.online_render_interval // config.num_train_envs
eval_interval = config.online_eval_interval
render_interval = config.online_render_interval
if config.online_log_training:
train_evaluator = Sb3TrainCallback()
callback.append(train_evaluator)
evaluator = Sb3EvalCallback(
eval_env,
eval_interval,
config.num_eval_envs * config.num_evals_per_env,
deterministic=True,
)
callback.append(evaluator)
if 'antmaze' in config.env_id:
heatmap_logger = Sb3VisitationCallback(
config.env_id,
eval_interval
)
callback.append(heatmap_logger)
if 'antmaze' in config.env_id:
renderer = Sb3VideoRecorderCallback(
render_env,
render_interval,
vocab=vocab,
n_eval_episodes=4,
deterministic=True,
)
callback.append(renderer)
model.policy.to(device) # model should be on device, need to redo after pl
model_path = saver._checkpoint_path('model', extension='zip')
if os.path.exists(model_path):
model = OnlineAlg.load(
model_path,
env=train_env,
device='auto',
reset_num_timesteps=False,
verbose=1,
)
replay_buffer_path = saver._checkpoint_path('replay_buffer_', extension='pkl')
if hasattr(model, 'replay_buffer') and os.path.exists(replay_buffer_path):
model.load_replay_buffer(replay_buffer_path)
timesteps_left = config.num_steps - model.num_timesteps
# torch.use_deterministic_algorithms(False) # scatter2d in sb3's train loop, is this important?
if config.time_rollouts:
time_evaluation(model, train_env)
model.learn(
total_timesteps=timesteps_left,
log_interval=config.log_interval,
callback=callback,
reset_num_timesteps=False,
progress_bar=config.progress_bar,
)
# DummyVecEnv calls each environment in sequence within single process
# SubprocVecEnv uses multiprocess, but if env is not IO bound, shouldn't exceed
# number of cores, which will be 2 on slurm
def vectorize_env(num_envs, config, primitives, vocab, seed=0, train=True):
if config.multiprocess:
assert num_envs <= 2, f"SubprocVecEnv uses multiprocess, but if env is not IO bound, num_envs ({num_envs}) shouldn't exceed number of cores, which will be 2 on slurm"
return SubprocVecEnv([make_env(config, primitives, vocab, i, seed, train=train) for i in range(num_envs)])
else:
return DummyVecEnv([make_env(config, primitives, vocab, i, seed, train=train) for i in range(num_envs)])
def get_dataset(env_id, discrete_actions=False):
if 'procgen' in env_id or 'CartPole' in env_id:
dataset = dict(np.load('demo_easy_merged.npz'))
# downsample visual observations
obs = torch.from_numpy(dataset['observations']).permute(0, 3, 1, 2)
obs = torch.nn.functional.interpolate(obs, scale_factor=(0.5, 0.5))
dataset['observations'] = obs.permute(0, 2, 3, 1).numpy()
# reshape to vectors for subwords
dataset['observations'] = dataset['observations'].reshape(len(dataset['observations']), -1)
elif 'antmaze-umaze' in env_id:
# transfer skills from medium to umaze
# env = gym.make('antmaze-medium-diverse-v1')
env = gym.make(env_id)
dataset = env.get_dataset()
else:
env = gym.make(env_id)
dataset = env.get_dataset()
return dataset
def init_env(config, primitives, vocab, train=True):
if 'procgen' in config.env_id:
env = gym.make('procgen:procgen-coinrun-v0', start_level=0, num_levels=10, paint_vel_info=True, distribution_mode='hard', use_sequential_levels=True, debug_mode=1)
env = data.ProcgenWrapper(env)
else:
env = gym.make(config.env_id)
if config.use_goals:
env = data.GoalWrapper(env)
if config.stochastic_action_prob > 0:
env = data.StochasticActionWrapper(env, config.stochastic_action_prob, config.stochastic_action_noise)
if config.continuous_actions:
env = env
else:
if config.k_actions is not None:
env = data.TemporallyExtendedDiscreteActionWrapper(env, primitives, vocab)
else:
env = data.DiscreteActionWrapper(env, primitives)
return env
def init_render_env(config, primitives, seed=0):
if 'procgen' in config.env_id:
env = gym.make('procgen:procgen-coinrun-v0', start_level=0, num_levels=10, paint_vel_info=True, distribution_mode='hard', use_sequential_levels=True)
env = data.ProcgenWrapper(env)
else:
env = gym.make(config.env_id)
if config.use_goals:
env = data.GoalWrapper(env)
if not config.continuous_actions:
env = data.DiscreteActionWrapper(env, primitives)
env.seed(seed)
return env
# adaped from https://stable-baselines3.readthedocs.io/en/master/guide/examples.html#multiprocessing-unleashing-the-power-of-vectorized-environments
def make_env(config, primitives, vocab, rank, seed=0, train=True):
def _init():
env = init_env(config, primitives, vocab, train=train)
env.seed(config.seed + seed + rank)
return env
set_random_seed(config.seed, using_cuda=torch.cuda.is_available())
return _init
def timedelta_to_str(td):
days, hours, minutes = td.days, td.seconds // 3600, (td.seconds // 60) % 60
assert days < 100
seconds = td.seconds - hours * 3600 - minutes * 60
day_str = f'{days:0>2}'
hour_str = f'{hours:0>2}'
min_str = f'{minutes:0>2}'
sec_str = f'{seconds:0>2}'
string = ':'.join([day_str, hour_str, min_str, sec_str])
return string
if __name__=='__main__':
from config import config, setup_wandb
if config.use_wandb:
import wandb
config, wandb_dir, wandb_name, wandb_id, savedir = setup_wandb(config)
else:
savedir = config.savedir
os.makedirs(savedir, exist_ok=True)
try:
main(config, savedir)
except TimeoutError as e:
print(str(e)) # otherwise clogs emails with slurm timeouts
finally:
if config.use_wandb:
wandb.finish()