dzc2000
/
Deep-High-Resolution-Representation-Learning-for-Cross-Resolution-Person-Re-identification
Public
forked from NUISTGY/Deep-High-Resolution-Representation-Learning-for-Cross-Resolution-Person-Re-identification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtriplet_loss.py
289 lines (241 loc) · 10.6 KB
/
triplet_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
# encoding: utf-8
import torch
from typing import Tuple
from torch import nn, Tensor
import torch.nn.functional as F
def normalize(x, axis=-1):
"""Normalizing to unit length along the specified dimension.
Args:
x: pytorch Variable
Returns:
x: pytorch Variable, same shape as input
"""
x = 1. * x / (torch.norm(x, 2, axis, keepdim=True).expand_as(x) + 1e-12)
return x
def euclidean_dist(x, y):
"""
计算距离矩阵函数
dist=a-b=sqrt(a^2+b^2-2ab)
Args:
x: pytorch Variable, with shape [m, d]
y: pytorch Variable, with shape [n, d]
Returns:
dist: pytorch Variable, with shape [m, n]
"""
m, n = x.size(0), y.size(0)
xx = torch.pow(x, 2).sum(1, keepdim=True).expand(m, n)
yy = torch.pow(y, 2).sum(1, keepdim=True).expand(n, m).t()
dist = xx + yy
dist.addmm_(1, -2, x, y.t())
dist = dist.clamp(min=1e-12).sqrt() # for numerical stability
return dist
def hard_example_mining(dist_mat, labels, return_inds=False):
"""For each anchor, find the hardest positive and negative sample.
Args:
dist_mat: pytorch Variable, pair wise distance between samples, shape [N, N]
labels: pytorch LongTensor, with shape [N]
return_inds: whether to return the indices. Save time if `False`(?)
Returns:
dist_ap: pytorch Variable, distance(anchor, positive); shape [N]
dist_an: pytorch Variable, distance(anchor, negative); shape [N]
p_inds: pytorch LongTensor, with shape [N];
indices of selected hard positive samples; 0 <= p_inds[i] <= N - 1
n_inds: pytorch LongTensor, with shape [N];
indices of selected hard negative samples; 0 <= n_inds[i] <= N - 1
NOTE: Only consider the case in which all labels have same num of samples,
thus we can cope with all anchors in parallel.
"""
assert len(dist_mat.size()) == 2
assert dist_mat.size(0) == dist_mat.size(1)
N = dist_mat.size(0)
# shape [N, N]
is_pos = labels.expand(N, N).eq(labels.expand(N, N).t())
is_neg = labels.expand(N, N).ne(labels.expand(N, N).t())
# `dist_ap` means distance(anchor, positive)
# both `dist_ap` and `relative_p_inds` with shape [N, 1]
dist_ap, relative_p_inds = torch.max(
dist_mat[is_pos].contiguous().view(N, -1), 1, keepdim=True)
# `dist_an` means distance(anchor, negative)
# both `dist_an` and `relative_n_inds` with shape [N, 1]
dist_an, relative_n_inds = torch.min(
dist_mat[is_neg].contiguous().view(N, -1), 1, keepdim=True)
# shape [N]
dist_ap = dist_ap.squeeze(1)
dist_an = dist_an.squeeze(1)
if return_inds:
# shape [N, N]
ind = (labels.new().resize_as_(labels)
.copy_(torch.arange(0, N).long())
.unsqueeze(0).expand(N, N))
# shape [N, 1]
p_inds = torch.gather(
ind[is_pos].contiguous().view(N, -1), 1, relative_p_inds.data)
n_inds = torch.gather(
ind[is_neg].contiguous().view(N, -1), 1, relative_n_inds.data)
# shape [N]
p_inds = p_inds.squeeze(1)
n_inds = n_inds.squeeze(1)
return dist_ap, dist_an, p_inds, n_inds
return dist_ap, dist_an
class TripletLoss(object):
"""Modified from Tong Xiao's open-reid (https://github.com/Cysu/open-reid).
Related Triplet Loss theory can be found in paper 'In Defense of the Triplet
Loss for Person Re-Identification'."""
def __init__(self, margin=None):
self.margin = margin
if margin is not None:
self.ranking_loss = nn.MarginRankingLoss(margin=margin)
else:
self.ranking_loss = nn.SoftMarginLoss()
def __call__(self, global_feat, labels, normalize_feature=False):
if normalize_feature:
global_feat = normalize(global_feat, axis=-1)
dist_mat = euclidean_dist(global_feat, global_feat)
dist_ap, dist_an = hard_example_mining(
dist_mat, labels)
y = dist_an.new().resize_as_(dist_an).fill_(1)
if self.margin is not None:
loss = self.ranking_loss(dist_an, dist_ap, y)
else:
loss = self.ranking_loss(dist_an - dist_ap, y)
return loss, dist_ap, dist_an
class CrossEntropyLabelSmooth(nn.Module):
"""Cross entropy loss with label smoothing regularizer.
Reference:
Szegedy et al. Rethinking the Inception Architecture for Computer Vision. CVPR 2016.
Equation: y = (1 - epsilon) * y + epsilon / K.
Args:
num_classes (int): number of classes.
epsilon (float): weight.
"""
def __init__(self, num_classes, epsilon=0.1, use_gpu=True):
super(CrossEntropyLabelSmooth, self).__init__()
self.num_classes = num_classes
self.epsilon = epsilon
self.use_gpu = use_gpu
self.logsoftmax = nn.LogSoftmax(dim=1)
def forward(self, inputs, targets):
"""
Args:
inputs: prediction matrix (before softmax) with shape (batch_size, num_classes)
targets: ground truth labels with shape (num_classes)
"""
log_probs = self.logsoftmax(inputs)
targets = torch.zeros(log_probs.size()).scatter_(1, targets.unsqueeze(1).data.cpu(), 1)
if self.use_gpu: targets = targets.cuda()
targets = (1 - self.epsilon) * targets + self.epsilon / self.num_classes
loss = (- targets * log_probs).mean(0).sum()
return loss
############################################ ################################################
def get_world_size() -> int:
if not torch.distributed.is_available():
return 1
if not torch.distributed.is_initialized():
return 1
return torch.distributed.get_world_size()
class CircleLoss(object):
def __init__(self):
self._scale = 1
self.m = 0.25
self.s = 128
def __call__(self, embedding, targets):
embedding = nn.functional.normalize(embedding, dim=1)
if get_world_size() > 1:
all_embedding = concat_all_gather(embedding)
all_targets = concat_all_gather(targets)
else:
all_embedding = embedding
all_targets = targets
dist_mat = torch.matmul(embedding, all_embedding.t())
N, M = dist_mat.size()
is_pos = targets.view(N, 1).expand(N, M).eq(all_targets.view(M, 1).expand(M, N).t())
is_neg = targets.view(N, 1).expand(N, M).ne(all_targets.view(M, 1).expand(M, N).t())
s_p = dist_mat[is_pos].contiguous().view(N, -1)
s_n = dist_mat[is_neg].contiguous().view(N, -1)
alpha_p = F.relu(-s_p.detach() + 1 + self.m)
alpha_n = F.relu(s_n.detach() + self.m)
delta_p = 1 - self.m
delta_n = self.m
logit_p = - self.s * alpha_p * (s_p - delta_p)
logit_n = self.s * alpha_n * (s_n - delta_n)
loss = nn.functional.softplus(torch.logsumexp(logit_p, dim=1) + torch.logsumexp(logit_n, dim=1)).mean()
return loss * self._scale
#####################################################################################################
class HardTripletLoss(nn.Module):
"""Triplet loss with hard positive/negative mining.
Reference:
Hermans et al. In Defense of the Triplet Loss for Person Re-Identification. arXiv:1703.07737.
Imported from `<https://github.com/Cysu/open-reid/blob/master/reid/loss/triplet.py>`_.
Args:
margin (float, optional): margin for triplet. Default is 0.3.
"""
def __init__(self, margin=0.3):
super(HardTripletLoss, self).__init__()
self.margin = margin
self.ranking_loss = nn.MarginRankingLoss(margin=margin)
def forward(self, inputs, targets):
"""
Args:
inputs (torch.Tensor): feature matrix with shape (batch_size, feat_dim).
targets (torch.LongTensor): ground truth labels with shape (num_classes).
"""
n = inputs.size(0)
# Compute pairwise distance, replace by the official when merged
dist = torch.pow(inputs, 2).sum(dim=1, keepdim=True).expand(n, n)
dist = dist + dist.t()
dist.addmm_(1, -2, inputs, inputs.t())
dist = dist.clamp(min=1e-12).sqrt() # for numerical stability
# For each anchor, find the hardest positive and negative
mask = targets.expand(n, n).eq(targets.expand(n, n).t())
dist_ap, dist_an = [], []
for i in range(n):
dist_ap.append(dist[i][mask[i]].max().unsqueeze(0))
dist_an.append(dist[i][mask[i] == 0].min().unsqueeze(0))
dist_ap = torch.cat(dist_ap)
dist_an = torch.cat(dist_an)
# Compute ranking hinge loss
y = torch.ones_like(dist_an)
return self.ranking_loss(dist_an, dist_ap, y)
##############################################################################################
class CenterLoss(nn.Module):
"""Center loss.
Reference:
Wen et al. A Discriminative Feature Learning Approach for Deep Face Recognition. ECCV 2016.
Args:
num_classes (int): number of classes.
feat_dim (int): feature dimension.
"""
def __init__(self, num_classes=751, feat_dim=6144, use_gpu=True):
super(CenterLoss, self).__init__()
self.num_classes = num_classes
self.feat_dim = feat_dim
self.use_gpu = use_gpu
if self.use_gpu:
self.centers = nn.Parameter(torch.randn(self.num_classes, self.feat_dim).cuda())
else:
self.centers = nn.Parameter(torch.randn(self.num_classes, self.feat_dim))
def forward(self, x, labels):
"""
Args:
x: feature matrix with shape (batch_size, feat_dim).
labels: ground truth labels with shape (num_classes).
"""
assert x.size(0) == labels.size(0), "features.size(0) is not equal to labels.size(0)"
batch_size = x.size(0)
distmat = torch.pow(x, 2).sum(dim=1, keepdim=True).expand(batch_size, self.num_classes) + \
torch.pow(self.centers, 2).sum(dim=1, keepdim=True).expand(self.num_classes, batch_size).t()
distmat.addmm_(1, -2, x, self.centers.t())
classes = torch.arange(self.num_classes).long()
if self.use_gpu: classes = classes.cuda()
labels = labels.unsqueeze(1).expand(batch_size, self.num_classes)
mask = labels.eq(classes.expand(batch_size, self.num_classes))
dist = distmat * mask.float()
loss = dist.clamp(min=1e-12, max=1e+12).sum() / batch_size
#dist = []
#for i in range(batch_size):
# value = distmat[i][mask[i]]
# value = value.clamp(min=1e-12, max=1e+12) # for numerical stability
# dist.append(value)
#dist = torch.cat(dist)
#loss = dist.mean()
return loss