Skip to content

Latest commit

 

History

History
9 lines (5 loc) · 571 Bytes

export.md

File metadata and controls

9 lines (5 loc) · 571 Bytes

export.py

To export the models, run: python -m vall_e.export --yaml=./training/config.yaml.

This will export the latest checkpoints, for example, under ./training/ckpt/ar+nar-retnet-8/fp32.pth, to be loaded on any system with PyTorch, and will include additional metadata, such as the symmap used, and training stats.

Desite being called fp32.sft or fp32.pth, you can export it to a different precision type with --dtype=float16|bfloat16|float32.

You can also export to safetensors with --format=sft, and fp32.sft will be exported instead.