-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathmultiple_linear_regression with backward elimination.py
83 lines (54 loc) · 2.15 KB
/
multiple_linear_regression with backward elimination.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# Data Preprocessing Template
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Importing the dataset
dataset = pd.read_csv('50_Startups.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 4].values#profit variables
# Encoding categorical data here it is State
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder = LabelEncoder()
X[:, 3] = labelencoder.fit_transform(X[:, 3])
onehotencoder = OneHotEncoder(categorical_features = [3])
X = onehotencoder.fit_transform(X).toarray()
#avoiding dummy variable
X=X[:, 1:]
# Splitting the dataset into the Training set and Test set
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
# Feature Scaling
"""from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)
sc_y = StandardScaler()
y_train = sc_y.fit_transform(y_train)"""
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)
# Predicting the Test set results
y_pred = regressor.predict(X_test)
#here when we check the y_test which are actual value and y_pred value
#we can see the predictor has almost done goo job now if we
#have data about a start up we can predict the profit
import statsmodels.formula.api as sm
X=np.append(arr=np.ones((50,1)).astype(int), values=X ,axis=1)
#as in Backward Elimination we need to add col of ones as first col
#so in append we put that col of ones in arr and values
#e take x matrix and we append both
X_opt=X[:, [0,1,2,3,4,5]]
regressor_OLS=sm.OLS(endog=y,exog=X_opt).fit()
regressor_OLS.summary()
#as x2 the dummy variable has highest p value so we will remove this,like this we have to remove
#all variables which has p value high then 0.5
X_opt=X[:, [0,1,3,4,5]]
regressor_OLS=sm.OLS(endog=y,exog=X_opt).fit()
regressor_OLS.summary()
X_opt=X[:, [0,3,5]]
regressor_OLS=sm.OLS(endog=y,exog=X_opt).fit()
regressor_OLS.summary()
X_opt=X[:, [0,3]]
regressor_OLS=sm.OLS(endog=y,exog=X_opt).fit()
regressor_OLS.summary()