forked from timsainb/noisereduce
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_reduction.py
executable file
·117 lines (95 loc) · 3.6 KB
/
test_reduction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
from scipy.io import wavfile
import noisereduce as nr
from noisereduce.generate_noise import band_limited_noise
def test_reduce_generated_noise_stationary_with_noise_clip():
# load data
wav_loc = "assets/fish.wav"
rate, data = wavfile.read(wav_loc)
# add noise
noise_len = 2 # seconds
noise = band_limited_noise(
min_freq=2000, max_freq=12000, samples=len(data), samplerate=rate) * 10
noise_clip = noise[: rate * noise_len]
audio_clip_band_limited = data + noise
return nr.reduce_noise(
y=audio_clip_band_limited, sr=rate, y_noise=noise_clip, stationary=True
)
def test_reduce_generated_noise_stationary_without_noise_clip():
# load data
wav_loc = "assets/fish.wav"
rate, data = wavfile.read(wav_loc)
# add noise
noise = band_limited_noise(
min_freq=2000, max_freq=12000, samples=len(data), samplerate=rate) * 10
audio_clip_band_limited = data + noise
return nr.reduce_noise(
y=audio_clip_band_limited, sr=rate, stationary=True
)
def test_reduce_generated_noise_nonstationary():
# load data
wav_loc = "assets/fish.wav"
rate, data = wavfile.read(wav_loc)
# add noise
noise = band_limited_noise(
min_freq=2000, max_freq=12000, samples=len(data), samplerate=rate) * 10
audio_clip_band_limited = data + noise
return nr.reduce_noise(
y=audio_clip_band_limited, sr=rate, stationary=False
)
def test_reduce_generated_noise_batches():
# load data
wav_loc = "assets/fish.wav"
rate, data = wavfile.read(wav_loc)
# add noise
noise = band_limited_noise(
min_freq=2000, max_freq=12000, samples=len(data), samplerate=rate) * 10
audio_clip_band_limited = data + noise
return nr.reduce_noise(
y=audio_clip_band_limited, sr=rate, stationary=False, chunk_size=30000
)
def test_reduce_torch_cpu_stationary():
# load data
wav_loc = "assets/fish.wav"
rate, data = wavfile.read(wav_loc)
# add noise
noise = band_limited_noise(
min_freq=2000, max_freq=12000, samples=len(data), samplerate=rate) * 10
audio_clip_band_limited = data + noise
return nr.reduce_noise(
y=audio_clip_band_limited, sr=rate, stationary=True, chunk_size=30000, use_torch=True, device='cpu'
)
# def test_reduce_torch_cpu_stationary_cuda():
# # load data
# wav_loc = "assets/fish.wav"
# rate, data = wavfile.read(wav_loc)
#
# # add noise
# noise = band_limited_noise(
# min_freq=2000, max_freq=12000, samples=len(data), samplerate=rate) * 10
# audio_clip_band_limited = data + noise
# return nr.reduce_noise(
# y=audio_clip_band_limited, sr=rate, stationary=True, chunk_size=30000, use_torch=True, device='cuda'
# )
def test_reduce_torch_cpu_non_stationary():
# load data
wav_loc = "assets/fish.wav"
rate, data = wavfile.read(wav_loc)
# add noise
noise = band_limited_noise(
min_freq=2000, max_freq=12000, samples=len(data), samplerate=rate) * 10
audio_clip_band_limited = data + noise
return nr.reduce_noise(
y=audio_clip_band_limited, sr=rate, stationary=False, chunk_size=30000, use_torch=True, device='cpu'
)
# def test_reduce_torch_cpu_non_stationary_cuda():
# # load data
# wav_loc = "assets/fish.wav"
# rate, data = wavfile.read(wav_loc)
#
# # add noise
# noise = band_limited_noise(
# min_freq=2000, max_freq=12000, samples=len(data), samplerate=rate) * 10
# audio_clip_band_limited = data + noise
# return nr.reduce_noise(
# y=audio_clip_band_limited, sr=rate, stationary=False, use_torch=True, device='cuda'
# )