-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAtlas.cfg
179 lines (123 loc) · 5.4 KB
/
Atlas.cfg
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
// contacting info
title = "Configuration File for auto_segm version 0.1 ";
author= "Michail Mamalakis";
email= "mmamalakis1@sheffield.ac.uk";
license= "all right reserved";
// functionallity of code
init_segment_data=true;
atlas=true;
deeplearning=false;
segment_data=false;
evaluate_results=false;
interpolate_3D=false;
deformation=false;
sensitivity=false;
translation=false;
// initial segmentation part
translation_space =
{
general={
initial_image_space="LGE"; // .format of the initial translation space image
final_image_space="cine"; //.format of the final translation space image
};
paths={
trans_python_script="./Initial_Segmentation/scripts_translation/"; //path where the scripts of GAN networks are.
store_path="./Initial_Segmentation/data_internal/Input/image_ES_trans/image/"; // path to store the translation images
};
};
// initial segmentation part
initial_segmentation =
{
general={ heart_phase="ED"; //ES endsystolic or ED enddiastolic or BT for both comparizon
};
atlas={
data_path ="./DATA/LGE_test/atlas_LGE/"; // path where the dataset images excist
landmarks_path="./DATA/LGE_test/atlas_LGE/"; // path where the 5 landmarks atlases excist
type_of_input_data="nii"; //dcm or nii or jpg
};
deeplearning={
store_data_path ="./Data/ES/MAIN/test/"; // path to store the results dl images
configuration_file="./Initial_Segmentation/scripts/Configuration_file/"; //path where the config of DL networks are (auto_segm python software).
python_script="./Initial_Segmentation/scripts/"; //path where the scripts of DL networks are.
num_classes=2; //number of prediction classes of DL network.
};
};
// segmentation part
segmentation =
{
general = { segmentation_case="both";
//type_of_input_data="dcm"; //dcm of nii
};
paths = {
myofolder_path = "/data_internal/myo_LGE_ES25b/"; //path where the myo images excist
ROIfolder_path = "/data_internal/ROI_LGE_ES25b/"; //path where the ROI images excist
store_scars_results_path ="/DATA/Results/LGE_v25b/"; //path to store the scar results images
patient_folders=["1","2", "3","4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17","18", "19", "20" ]; //folders names
number_of_images = [7, 8, 8, 6, 7, 8, 7, 8, 6, 8, 7, 8, 7, 9, 6, 6, 7, 7, 9, 7]; //number of images per folder
};
parameter = {
segm_border_zone_bool=true; //do you want to segmenta the bprder zoen? true/false
threshold_of_scar_intensity=45; //which is the intensity threshold where the code does not search for scars
};
};
// sevaluation matrices
evaluation=
{
general = { number_of_experts=3; //number of expert to create the GT
};
paths = {
copy_from_store_scar_result=true; //copy the resuts from the variable of the segmentation:: store_scars_results_path above deterination
manual_labels_path = ".DATA/Results/manual/intra/all/"; //the path of manual labels
predict_labels_path = "./DATA/Results/predict/new/v25b/"; // the path to store the scars results if the copy_from_store_scar_result is true or the path that the scars results are stored
patient_folders=["1","2", "3","4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17","18", "19", "20" ]; //folders names
number_of_images = [7, 8, 8, 6, 7, 8, 7, 8, 6, 8, 7, 8, 7, 9, 6, 6, 7, 7, 9, 7]; //number of images per folder
store_results_metric = "./DATA/Results/metric/"; //store a txt file with all the metrics results
};
parameter = {
rotation_pred_mask=-90.0;
scale_pred_mask=0.5;
center_pred_mask=[256, 256];
};
};
// interpolation of 2D slices to create a 3D shape model
interpolation_3D={
paths = { slice3D_manual_data=false;
manual_3Dlabel_path = "/CODE_generalization/manual/3D/";
manual_labels_path = "./DATA/Results/manual/";
interpolate_2d_to_3D_predict_data=true;
store_scars_results_path ="./DATA/Results/3D/";
patient_folders=["1","2", "3","4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17","18", "19", "20" ];
number_of_images = [8, 9, 8, 9, 8, 10, 7, 7, 8, 8, 10, 9, 8, 9, 7, 8, 9, 8, 9, 7];
};
parameter = {
visualize_3D_scars=false; //do you want to visualize each patient scar 3D model?
visualize_3D_epi=false; //do you want to visualize each patient epicardium 3D model?
visualize_3D_endo=false; //do you want to visualize each patient endocardium 3D model?
gap_of_mri=5; //slice gap of 3D MRI usually 5mm
alpha_vtkDelaunay3D=3.5; //fix parameter of interpolation method
};
};
//future work... Deformation and motion capture from ES to ED phase of heart pace
Deformation={
general2={
deeplearning=true;
};
paths = {
image_move = "/CODE_generalization/data_internal/Input/image_ED_dl/image/";
image_fix = "/CODE_generalization/data_internal/Input/image_ES_dl/image/";
store_path = "Desktop/test_test/";
};
};
// Sensitivity code of the AI-SOCT parameters change
Sensitivity={
general={
parameters=[true,true,true,true,true]; //endo_rate, epi_rate, kmean_portion, rgmm_portion, rgmm-kmean_portion
lower_border=[0.5, 0.5, 0.25, 0.25, 0.25];
higher_border=[2.5, 2.5, 1.0, 1.0, 1.0];
initial_SD=[0.25, 0.25, 0.1, 0.1, 0.1];
sensitivity_mode="LC"; //GL for global LC for local
};
paths = {
store_path_results = "/home/michail/Desktop/test_sens/";
};
};