-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathaec_dr_bss.py
197 lines (164 loc) · 6.27 KB
/
aec_dr_bss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# shmzhang@aslp, 2021-04
import numpy as np
import config as cfg
from heig2 import heig2
from stft import istft, stft
def aec_dr_bss(num_mics, num_refs, datain):
"""Perform aec, dr, and bss
Args:
num_mics (int): no. of mic channels
num_refs (int): no. of reference channels
datain (np.ndarray): input data
Returns:
dataout: output data
"""
M = num_mics
R = num_refs
N = M
Xtf = []
for m in range(M + R):
Xtf.append(stft(datain[m], cfg.stftshift, cfg.fftsize))
K, T = Xtf[0].shape
Ytf = []
for m in range(M):
Ytf.append(np.zeros([K, T], dtype=np.complex))
# space for dr
Micbuffer = np.zeros([K, M*(cfg.DR_DELAY+1)], dtype=np.complex)
drfsize = M*cfg.DR_FLEN
BufDR = np.zeros([K, drfsize], dtype=np.complex)
Cmd, Cdd, Reverbpath = [], [], []
for k in range(K):
Cmd.append(np.zeros([M, drfsize], dtype=np.complex))
Reverbpath.append(np.zeros([M, drfsize], dtype=np.complex))
Cdd.append(np.zeros([drfsize, drfsize], dtype=np.complex))
# space for aec
aecfsize = R*cfg.AEC_FLEN
BufAEC = np.zeros([K, aecfsize], dtype=np.complex)
Cmr, Crr, Echopath = [], [], []
for k in range(K):
Cmr.append(np.zeros([M, aecfsize], dtype=np.complex))
Crr.append(np.zeros([aecfsize, aecfsize], dtype=np.complex))
Echopath.append(np.zeros([M, aecfsize], dtype=np.complex))
# space for bss
C1, C2, Demix = [], [], []
for k in range(K):
C1.append(cfg.STABLE_EPS*np.eye(M, M))
C2.append(cfg.STABLE_EPS*np.eye(M, M))
Demix.append(np.eye(N, M).astype(np.complex))
# perform iteration
for t in range(T):
# perform aec.
Nearend = np.zeros([K, M], dtype=np.complex)
# shift in ref data
# BufAEC=circshift(BufAEC, R, 2);
BufAEC = np.roll(BufAEC, R, axis=1)
for r in range(R):
BufAEC[:, r] = Xtf[M+r][:, t]
for k in range(K):
mic = np.zeros([M, 1], dtype=np.complex)
for m in range(M):
mic[m] = Xtf[m][k, t]
# ref=permute(BufAEC(k, :), [2, 1])
ref = np.expand_dims(BufAEC[k, :], axis=1)
echo = np.dot(Echopath[k], ref)
nearend = mic-echo
Nearend[k, :] = nearend[:, 0]
xsq = np.abs(mic)**2
ysq = np.abs(nearend)**2
phi = sum(ysq[np.where(ysq < xsq)]) + \
sum(xsq[np.where(ysq >= xsq)])
# phi=(1-DRAEC_FORGET)*(phi+VAR_BIAS)^((GAMMA-2)/2)
phi = (1-cfg.DRAEC_FORGET)*(phi+cfg.VAR_BIAS) ** ((cfg.GAMMA-2)/2)
# update mic ref correlation
Cmr[k] = cfg.DRAEC_FORGET*Cmr[k]+phi*(np.dot(mic, np.conj(ref).T))
# update ref auto-correlation
Crr[k] = cfg.DRAEC_FORGET*Crr[k]+phi*(np.dot(ref, np.conj(ref).T))
# update echo path
Echopath[k] = np.dot(Cmr[k], np.linalg.inv(
Crr[k] + cfg.DRAEC_DIAGLOAD * np.eye(aecfsize, aecfsize)))
# perform dr
# direct and early reverberation
Early = np.zeros([K, M], dtype=np.complex)
#
# shift in new data
#
# Micbuffer=circshift(Micbuffer, M, 2)
Micbuffer = np.roll(Micbuffer, M, axis=1)
Micbuffer[:, :M] = Nearend
# BufDR=circshift(BufDR, M, 2)
BufDR = np.roll(BufDR, M, axis=1)
# BufDR(:, 1:M)=Micbuffer(:, end-M+1:end)
BufDR[:, :M] = Micbuffer[:, -M:]
for k in range(K):
# mic=permute(Micbuffer(k, 1:M), [2,1])
mic = np.expand_dims(Micbuffer[k, :M], axis=1)
# ref=permute(BufDR(k, :), [2,1])
ref = np.expand_dims(BufDR[k, :], axis=1)
# calculate late reverberation
late = np.dot(Reverbpath[k], ref)
# direct and early reverberation
early = mic-late
Early[k, :] = early[:, 0]
# calculate nonlinearity
xsq = np.abs(mic)**2
ysq = np.abs(early)**2
phi = sum(ysq[np.where(ysq < xsq)]) + \
sum(xsq[np.where(ysq >= xsq)])
phi = (1-cfg.DRAEC_FORGET)*(phi+cfg.VAR_BIAS)**((cfg.GAMMA-2)/2)
# update mic ref correlation
Cmd[k] = cfg.DRAEC_FORGET*Cmd[k] + \
np.dot(phi, np.dot(mic, np.conj(ref).T))
# update ref auto-correlation
Cdd[k] = cfg.DRAEC_FORGET*Cdd[k] + \
np.dot(phi, np.dot(ref, np.conj(ref).T))
# update reverb path
Reverbpath[k] = np.dot(Cmd[k], np.linalg.inv(
Cdd[k]+cfg.DRAEC_DIAGLOAD*np.eye(drfsize, drfsize)))
# perform bss
Bssout = np.zeros([K, M], dtype=np.complex)
# calculate nonlinearity
phi1 = 0
phi2 = 0
for k in range(K):
x = Early[k, :].T
y = np.dot(Demix[k], x)
Bssout[k, :] = y.T
phi1 = phi1+np.abs(y[0])**2
phi2 = phi2+np.abs(y[1])**2
phi1 = (1-cfg.BF_FORGET)*(phi1+cfg.VAR_BIAS)**((cfg.GAMMA-2)/2)
phi2 = (1-cfg.BF_FORGET)*(phi2+cfg.VAR_BIAS)**((cfg.GAMMA-2)/2)
# update the demixing matrices
for k in range(K):
# accumulate the weighted correlation
x = Early[k, :].reshape(-1, 1)
C1[k] = cfg.BF_FORGET*C1[k]+phi1 * np.dot(x, np.conj(x).T)
C2[k] = cfg.BF_FORGET*C2[k]+phi2 * np.dot(x, np.conj(x).T)
# solve gev problem
D = heig2(cfg.BF_DIAGLOAD, C2[k], C1[k])
Demix[k] = D
for m in range(M):
Ytf[m][:, t] = Bssout[:, m]
# perform istft and output signal
dataout = []
for n in range(N):
dataout.append(istft(Ytf[n], cfg.stftshift))
return dataout
if __name__ == "__main__":
import soundfile as sf
# Nearend signal, equal to nummics.
N = 2
# sensor numbers.
nummics = 2
# references signal.
numrefs = 1
testdata, sr = sf.read("sample.wav")
# [M0, M1, R0] stack.
testdata = [testdata[:, i] for i in range(nummics + numrefs)]
lenx = len(testdata[0])
# [N0, N1]
output = aec_dr_bss(nummics, numrefs, testdata)
# stft clips.
for i in range(N):
output[i] = output[i][:lenx]
sf.write("output_0.wav", output[0], sr)
sf.write("output_1.wav", output[1], sr)