Skip to content

Commit 09bc5e4

Browse files
committed
README.md - Content added.
1 parent d394f37 commit 09bc5e4

File tree

1 file changed

+58
-3
lines changed

1 file changed

+58
-3
lines changed

README.md

Lines changed: 58 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,13 @@
11
IRIDE Service Segment Lot 2
2+
---
3+
[![Language][]][1]
4+
[![License][]][1]
5+
26
---
37
### Naming Convention and Metadata
48

9+
---
10+
511
#### Naming Convention - SE-S3-01
612
**S3_01_SNT_01**
713

@@ -44,10 +50,23 @@ Naming convention:
4450
Example:
4551
ISS Product Name: ISS_S301SNT04_20180101_20220101_015A_01
4652

53+
---
54+
**COSMO-SkyMed**
55+
56+
In this case, InSAR data generated per each of the considered CSK frames will be distributed employing a track-specific grid (i.e., once generated, the PS data is cropped using a grid aligned with the satellite track - see figures below).
57+
58+
A unique ID will identify each grid cell.
59+
60+
NOTE 1: PS/DS products will be cropped using the grid, not the input SAR data. The PS calculation will still be performed at the frame level.
61+
62+
NOTE 2: the case presented below constitutes an example of the grid we will generate and distribute. We will likely define a grid with larger cells.
63+
64+
<img src="images/csk_frame_grid.png" class="align-center" style="width:50.0%" alt="image" />
65+
---
4766

48-
#### Sentinel-1
67+
# Metadata
68+
### Sentinel-1
4969

50-
#### Metadata
5170
- **ISS_S301SNT01_2018-01-05_2022-12-28_08710208VVA_01.csv** - metadata file example for **S3-01-SNT-01** geospatial products.
5271
- **ISS_S301SNT03_20180105_20221228_100ME43N18V_01.csv** - metadata file example for **S3-01-SNT-03** geospatial thematic products.
5372

@@ -144,4 +163,40 @@ ISS Product Name: ISS_S301SNT04_20180101_20220101_015A_01
144163
| Mattinata_A | MTI_A |
145164
| Mattinata_D | MTI_D |
146165
| ColliAlbani_A | COA_A |
147-
| ColliAlbani_D | COA_D |
166+
| ColliAlbani_D | COA_D |
167+
168+
----
169+
### Setup Python Environment
170+
171+
1. Setup minimal **conda** installation using [Miniconda][]
172+
173+
2. Create Python Virtual Environment
174+
175+
> - Creating an environment with commands ([Link][]);
176+
> - Creating an environment from an environment.yml file
177+
> ([Link][2]) -> **Recommended**;
178+
179+
#### PYTHON DEPENDENCIES:
180+
- [gdal: Python's GDAL binding.][]
181+
- [fiona: Fiona is GDAL’s neat and nimble vector API for Python programmers.][]
182+
- [numpy: The fundamental package for scientific computing with Python.][]
183+
- [pandas: Python Data Analysis Library.][]
184+
- [geopandas: add support for geographic data to pandas objects.][]
185+
- [matplotlib: Library for creating static, animated, and interactive visualizations in Python.][]
186+
187+
188+
[Language]: https://img.shields.io/badge/python-%3E%3D%203.10-blue
189+
[License]: https://img.shields.io/bower/l/MI
190+
[1]: ..%20image::%20https://www.python.org/
191+
192+
[xarray: Labelled multi-dimensional arrays in Python.]:https://docs.xarray.dev
193+
[rasterio: access to geospatial raster data]:https://rasterio.readthedocs.io/en/latest/
194+
[gdal: Python's GDAL binding.]: https://gdal.org/index.html
195+
[tqdm: A Fast, Extensible Progress Bar for Python and CLI.]: https://github.com/tqdm/tqdm
196+
[necdft4: Provides an object-oriented python interface to the netCDF version 4 library.]:https://pypi.org/project/netCDF4/
197+
[fiona: Fiona is GDAL’s neat and nimble vector API for Python programmers.]:https://fiona.readthedocs.io/en/latest/
198+
[numpy: The fundamental package for scientific computing with Python.]:https://numpy.org
199+
[PyTMD: Python package for the analysis of tidal data.]: https://github.com/tsutterley/pyTMD
200+
[pandas: Python Data Analysis Library.]:https://pandas.pydata.org/
201+
[geopandas: add support for geographic data to pandas objects.]:https://geopandas.org/en/stable/
202+
[matplotlib: Library for creating static, animated, and interactive visualizations in Python.]:https://matplotlib.org

0 commit comments

Comments
 (0)