-
Notifications
You must be signed in to change notification settings - Fork 29
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Implementation of change_of_basis for commuting groups of QubitOperators
- Loading branch information
1 parent
f56165e
commit f3b457a
Showing
4 changed files
with
395 additions
and
32 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,256 @@ | ||
""" | ||
\******************************************************************************** | ||
* Copyright (c) 2024 the Qrisp authors | ||
* | ||
* This program and the accompanying materials are made available under the | ||
* terms of the Eclipse Public License 2.0 which is available at | ||
* http://www.eclipse.org/legal/epl-2.0. | ||
* | ||
* This Source Code may also be made available under the following Secondary | ||
* Licenses when the conditions for such availability set forth in the Eclipse | ||
* Public License, v. 2.0 are satisfied: GNU General Public License, version 2 | ||
* with the GNU Classpath Exception which is | ||
* available at https://www.gnu.org/software/classpath/license.html. | ||
* | ||
* SPDX-License-Identifier: EPL-2.0 OR GPL-2.0 WITH Classpath-exception-2.0 | ||
********************************************************************************/ | ||
""" | ||
|
||
import numpy as np | ||
|
||
|
||
def inverse_mod2(matrix): | ||
""" | ||
Calculates the inverse of a binary matrix over the field of integers modulo 2. | ||
Parameters | ||
---------- | ||
matrix : numpy.array | ||
An invertible binary matrix. | ||
result : numpy.array | ||
The inverse of the given matrix over the field of integers modulo 2. | ||
""" | ||
rows, columns = matrix.shape | ||
if rows != columns: | ||
raise Exception("The matrix must be a square matrix") | ||
|
||
matrix = matrix.copy() | ||
result = np.eye(rows, dtype=int) | ||
|
||
for i in range(rows): | ||
# Find the pivot row | ||
max_row = i + np.argmax(matrix[i:,i]) | ||
|
||
# Swap the current row with the pivot row | ||
matrix[[i, max_row]] = matrix[[max_row, i]] | ||
result[[i, max_row]] = result[[max_row, i]] | ||
|
||
# Eliminate all rows below the pivot | ||
for j in range(i + 1, rows): | ||
if matrix[j, i] == 1: | ||
matrix[j] = (matrix[j] + matrix[i]) % 2 | ||
result[j] = (result[j] + result[i]) % 2 | ||
|
||
# Backward elimination | ||
for i in range(rows - 1, -1, -1): | ||
for j in range(i - 1, -1, -1): | ||
if matrix[j, i] == 1: | ||
matrix[j] = (matrix[j] + matrix[i]) % 2 | ||
result[j] = (result[j] + result[i]) % 2 | ||
|
||
return result | ||
|
||
|
||
def gaussian_elimination_mod2(matrix, type='row', show_pivots=False): | ||
r""" | ||
Performs Gaussian elimination in the field $F_2$. | ||
Parameters | ||
---------- | ||
matrix : numpy.array | ||
A binary matrix. | ||
type : str, optional | ||
Available aore ``row`` for row echelon form, and ``column`` for column echelon form. | ||
The default is ``row``. | ||
show_pivots : Boolean, optional | ||
If ``True``, the pivot columns (rows) are returned. | ||
Returns | ||
------- | ||
matrix : numpy.array | ||
The row (column) echelon form of the given matrix. | ||
pivots : list[int], optional | ||
A list of indices for the pivot columns (rows). | ||
""" | ||
|
||
matrix = matrix.copy() | ||
|
||
rows, columns = matrix.shape | ||
column_index = 0 | ||
row_index = 0 | ||
pivots = [] # the pivot columns (type='row') or rows (type='column') | ||
|
||
if type=='row': | ||
while row_index<rows and column_index<columns: | ||
# Find the pivot row | ||
max_row = row_index + np.argmax(matrix[row_index:,column_index]) | ||
|
||
if matrix[max_row,column_index]==0: | ||
column_index+=1 | ||
else: | ||
# Pivot | ||
pivots.append(column_index) | ||
|
||
# Swap the current row with the pivot row | ||
matrix[[row_index, max_row]] = matrix[[max_row, row_index]] | ||
|
||
# Eliminate all rows below the pivot | ||
for j in range(row_index + 1, rows): | ||
if matrix[j, column_index] == 1: | ||
matrix[j] = (matrix[j] + matrix[row_index]) % 2 | ||
|
||
row_index+=1 | ||
column_index+=1 | ||
|
||
elif type=='column': | ||
while row_index<rows and column_index<columns: | ||
# Find the pivot column | ||
max_column = column_index + np.argmax(matrix[row_index,column_index:]) | ||
|
||
if matrix[row_index,max_column]==0: | ||
row_index+=1 | ||
else: | ||
# Pivot | ||
pivots.append(row_index) | ||
|
||
# Swap the current column with the pivot column | ||
matrix[:,[column_index, max_column]] = matrix[:,[max_column, column_index]] | ||
|
||
# Eliminate all rows below the pivot | ||
for j in range(column_index + 1, columns): | ||
if matrix[row_index, j] == 1: | ||
matrix[:,j] = (matrix[:,j] + matrix[:,column_index]) % 2 | ||
|
||
row_index+=1 | ||
column_index+=1 | ||
|
||
if show_pivots: | ||
return matrix, pivots #(pivot_rows,pivot_cols) | ||
else: | ||
return matrix | ||
|
||
|
||
def construct_change_of_basis(S): | ||
""" | ||
Implements the CZ construction outlined in https://quantum-journal.org/papers/q-2021-01-20-385/. | ||
Parameters | ||
---------- | ||
S : numpy.array | ||
A matrix representing a list of commuting Pauli operators: Each column is a Pauli operator in binary representation. | ||
Returns | ||
------- | ||
A : numpy.array | ||
Adjacency matrix for the graph state. | ||
R_inv : numpy.array | ||
A matrix representing a list of new Pauli operators. | ||
h_list : numpy.array | ||
A list indicating the qubits on which a Hadamard gate is applied. | ||
s_list : numpy.array | ||
A list indicating the qubits on which an S gate is applied. | ||
perm_vec : numpy.array | ||
A vector repesenting a permutation. | ||
""" | ||
|
||
n = int(S.shape[0]/2) | ||
|
||
#################### | ||
# Step 0: Calculate S_0: Independent columns (i.e., Pauli terms) of S | ||
#################### | ||
|
||
S_reduced, independent_cols = gaussian_elimination_mod2(S, show_pivots=True) | ||
k = len(independent_cols) | ||
|
||
#S0 = np.vstack((z_matrix[:,independent_cols], x_matrix[:,independent_cols])) | ||
S0 = S[:,independent_cols] | ||
|
||
R0_inv = S_reduced[:k, :] | ||
|
||
#################### | ||
# Step 1: Calculate S_1: The first k rows of the X component have full rank k | ||
#################### | ||
|
||
# Find independent rows in X component of S0 | ||
S0X_reduced, independent_rows = gaussian_elimination_mod2(S0[-n:, :], type='column', show_pivots=True) | ||
|
||
# Construnct S1 by applying a Hadamard (i.e., a swap) to the rows of S0 not in independent_rows | ||
h_list = [i for i in range(n) if i not in independent_rows] | ||
S1 = S0.copy() | ||
for i in h_list: | ||
S1[[i, n+i]] = S1[[n+i, i]] | ||
|
||
# Find independent rows in X component of S1 | ||
S1X_reduced, independent_rows = gaussian_elimination_mod2(S1[-n:, :], type="column", show_pivots=True) | ||
|
||
# Construct permutation achieving that the first k rows in X component of S1 are independent | ||
perm = np.arange(0,n) | ||
for index1, index2 in enumerate(independent_rows): | ||
perm[index1] = index2 | ||
perm[index2] = index1 | ||
|
||
# Apply permutation to rows of S1 for Z and X component | ||
S1 = np.vstack((S1[:n,:][perm],S1[-n:,:][perm])) | ||
|
||
#################### | ||
# Step 2: Calculate S2: The first k rows of the X component are the identity matrix | ||
#################### | ||
|
||
R1_inv = S1[n:n+k,:] | ||
R1 = inverse_mod2(R1_inv) | ||
S2 = S1 @ R1 % 2 | ||
|
||
#################### | ||
# Step 3: Calculate S3: Basis extension | ||
#################### | ||
|
||
C = S2[:k, :] | ||
D = S2[k:n, :] | ||
F = S2[-(n-k):, :] | ||
|
||
S3 = np.block([[C, np.transpose(D)], | ||
[D, np.zeros((n-k,n-k), dtype=int)], | ||
[np.eye(k, dtype=int), np.zeros((k,n-k), dtype=int)], | ||
[F, np.eye(n-k, dtype=int)]]) | ||
R2_inv = np.block([[np.eye(k, dtype=int)], | ||
[np.zeros((n-k,k), dtype=int)]]) | ||
|
||
#################### | ||
# Step 4: Calculate S4 | ||
#################### | ||
|
||
R3_inv = S3[-n:,:] | ||
R3 = inverse_mod2(R3_inv) | ||
|
||
S4 = S3 @ R3 % 2 | ||
|
||
# Remove diagonal entries in upper left block | ||
s_list = [] | ||
for i in range(n): | ||
if S4[:n, :][i,i]==1: | ||
s_list.append(i) | ||
|
||
Q2 = np.block([[np.eye(n, dtype=int),S4[:n, :]*np.eye(n, dtype=int)], | ||
[np.zeros((n,n), dtype=int),np.eye(n, dtype=int)]]) | ||
|
||
S4 = Q2 @ S4 % 2 | ||
|
||
R_inv = R3_inv @ R2_inv @ R1_inv @ R0_inv % 2 | ||
|
||
# Adjacency matrix for the graph | ||
A = S4[:n, :] | ||
|
||
return A, R_inv, h_list, s_list, perm |
Oops, something went wrong.