From dc900f3a35fe841442353aef93da017303b91801 Mon Sep 17 00:00:00 2001 From: dominicWC <135868541+DominicWC@users.noreply.github.com> Date: Fri, 6 Sep 2024 09:48:56 -0500 Subject: [PATCH] Fixes a few issues in the latex models --- HARK/ConsumptionSaving/ConsBequestModel.py | 14 +++++--------- HARK/ConsumptionSaving/ConsIndShockModel.py | 2 +- 2 files changed, 6 insertions(+), 10 deletions(-) diff --git a/HARK/ConsumptionSaving/ConsBequestModel.py b/HARK/ConsumptionSaving/ConsBequestModel.py index 4a265341a..f0bbeb801 100644 --- a/HARK/ConsumptionSaving/ConsBequestModel.py +++ b/HARK/ConsumptionSaving/ConsBequestModel.py @@ -273,12 +273,8 @@ def make_warmglow_portfolio_solution_terminal( class BequestWarmGlowConsumerType(IndShockConsumerType): r""" - A consumer type with idiosyncratic shocks to permanent and transitory income. - Their problem is defined by a sequence of income distributions, survival probabilities - (:math:`1-\mathsf{D}`), and permanent income growth rates (:math:`\Gamma`), as well - as time invariant values for risk aversion (:math:`\rho`), discount factor (:math:`\beta`), - the interest rate (:math:`\mathsf{R}`), the grid of end-of-period assets, and an artificial - borrowing constraint (:math:`\underline{a}`). + A consumer type with based on IndShockConsumerType, with an additional bequest motive. + They gain utility for any wealth they leave when they die, according to a Stone-Geary utility. .. math:: \newcommand{\CRRA}{\rho} @@ -295,7 +291,7 @@ class BequestWarmGlowConsumerType(IndShockConsumerType): (\psi_{t+1},\theta_{t+1}) &\sim F_{t+1}, \\ \mathbb{E}[\psi]=\mathbb{E}[\theta] &= 1, \\ u(c) &= \frac{c^{1-\CRRA}}{1-\CRRA} \\ - u_{Beq} (a) = \textbf{BeqFac} \frac{(a+\textbf{BeqShift})^{1-\CRRA_{Beq}}}{1-\CRRA_{Beq}} + u_{Beq} (a) &= \textbf{BeqFac} \frac{(a+\textbf{BeqShift})^{1-\CRRA_{Beq}}}{1-\CRRA_{Beq}} \\ \end{align*} @@ -1277,7 +1273,7 @@ def calc_EndOfPrd_v(S, a, z): class BequestWarmGlowPortfolioType(PortfolioConsumerType): r""" - A consumer type with based on IndShockConsumerType, with an additional bequest motive. + A consumer type with based on PortfolioConsumerType, with an additional bequest motive. They gain utility for any wealth they leave when they die, according to a Stone-Geary utility. .. math:: @@ -1300,7 +1296,7 @@ class BequestWarmGlowPortfolioType(PortfolioConsumerType): (\psi_{t+1},\theta_{t+1},\phi_{t+1},p_t) &\sim F_{t+1}, \\ \mathbb{E}[\psi]=\mathbb{E}[\theta] &= 1. \\ u(c) &= \frac{c^{1-\CRRA}}{1-\CRRA} \\ - u_{Beq} (a) = \textbf{BeqFac} \frac{(a+\textbf{BeqShift})^{1-\CRRA_{Beq}}}{1-\CRRA_{Beq}} + u_{Beq} (a) &= \textbf{BeqFac} \frac{(a+\textbf{BeqShift})^{1-\CRRA_{Beq}}}{1-\CRRA_{Beq}} \\ \end{align*} diff --git a/HARK/ConsumptionSaving/ConsIndShockModel.py b/HARK/ConsumptionSaving/ConsIndShockModel.py index f3146c4c1..098c51ed5 100644 --- a/HARK/ConsumptionSaving/ConsIndShockModel.py +++ b/HARK/ConsumptionSaving/ConsIndShockModel.py @@ -2798,7 +2798,7 @@ class KinkedRconsumerType(IndShockConsumerType): \end{cases}\\ \Rfree_{boro} &> \Rfree_{save}, \\ (\psi_{t+1},\theta_{t+1}) &\sim F_{t+1}, \\ - \mathbb{E}[\psi]=\mathbb{E}[\theta] &= 1. + \mathbb{E}[\psi]=\mathbb{E}[\theta] &= 1.\\ u(c) &= \frac{c^{1-\CRRA}}{1-\CRRA} \\ \end{align*}