-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathRecSysExp.py
681 lines (542 loc) · 27.6 KB
/
RecSysExp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
@author: Ervin Dervishaj
@email: vindervishaj@gmail.com
"""
import os
import sys
import json
import time
import psutil
import pickle
import shutil
import random
import platform
import datetime
import warnings
import subprocess
import numpy as np
import tensorflow as tf
import scipy.sparse as sps
import multiprocessing as mp
warnings.filterwarnings('ignore', category=UserWarning)
warnings.filterwarnings('ignore', category=FutureWarning)
tf.logging.set_verbosity(tf.logging.ERROR)
# Supress Tensorflow logs
os.environ['KMP_WARNINGS'] = '0'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import skopt
from skopt.callbacks import CheckpointSaver
from skopt import gp_minimize, dummy_minimize
from skopt.space.space import Real, Integer, Categorical
from datasets.LastFM import LastFM
from datasets.CiaoDVD import CiaoDVD
from datasets.Movielens import Movielens
from datasets.Delicious import Delicious
from datasets.AmazonMusic import AmazonMusic
from Base.Evaluation.Evaluator import EvaluatorHoldout
from Base.NonPersonalizedRecommender import TopPop, Random
import GANRec as gans
from GANRec.GANMF import GANMF
from GANRec.CFGAN import CFGAN
from GANRec.DisGANMF import DisGANMF
from GANRec.DeepGANMF import DeepGANMF
from MatrixFactorization.IALSRecommender import IALSRecommender
from MatrixFactorization.PureSVDRecommender import PureSVDRecommender
from MatrixFactorization.NMFRecommender import NMFRecommender
from MatrixFactorization.Cython.MatrixFactorization_Cython import MatrixFactorization_BPR_Cython
from SLIM_BPR.Cython.SLIM_BPR_Cython import SLIM_BPR_Cython
seed = 1337
# Generic parameters for each dataset
dataset_kwargs = {}
dataset_kwargs['use_local'] = True
dataset_kwargs['force_rebuild'] = True
dataset_kwargs['implicit'] = True
dataset_kwargs['save_local'] = False
dataset_kwargs['verbose'] = False
dataset_kwargs['split'] = True
dataset_kwargs['split_ratio'] = [0.8, 0.2, 0]
dataset_kwargs['min_ratings'] = 2
URM_suffixes = ['_URM_train.npz', '_URM_test.npz', '_URM_validation.npz', '_URM_train_small.npz', '_URM_early_stop.npz']
all_datasets = [LastFM, CiaoDVD, Delicious, '100K', '1M', '10M']
name_datasets = [d if isinstance(d, str) else d.DATASET_NAME for d in all_datasets]
all_recommenders = ['TopPop', 'Random', 'PureSVD', 'ALS', 'BPR', 'SLIMBPR', 'CFGAN', 'GANMF', 'DisGANMF', 'DeepGANMF', 'fullGANMF']
early_stopping_algos = [IALSRecommender, MatrixFactorization_BPR_Cython, SLIM_BPR_Cython]
train_mode = ''
exp_path = os.path.join('experiments', 'datasets')
if not os.path.exists(exp_path):
os.makedirs(exp_path, exist_ok=False)
def set_seed(seed):
# Seed for reproducibility of results and consistent initialization of weights/splitting of dataset
seed = 1337
random.seed(seed)
np.random.seed(seed)
tf.set_random_seed(seed)
def make_dataset(dataset, specs):
set_seed(seed) # Need to set this so each dataset is created the same in any machine/order selected
if isinstance(dataset, str) and dataset in Movielens.urls.keys():
reader = Movielens(version=dataset, **specs)
else:
reader = dataset(**specs)
sets = []
URM_train = reader.get_URM_train()
URM_test = reader.get_URM_test()
URM_for_train, _, URM_validation = reader.split_urm(
URM_train.tocoo(), split_ratio=[0.75, 0, 0.25], save_local=False, verbose=False, min_ratings=1)
URM_train_small, _, URM_early_stop = reader.split_urm(
URM_for_train.tocoo(), split_ratio=[0.85, 0, 0.15], save_local=False, verbose=False, min_ratings=1)
sets.extend([URM_train, URM_test, URM_validation, URM_train_small, URM_early_stop])
for suf, urm in zip(URM_suffixes, sets):
sps.save_npz(os.path.join(exp_path, reader.DATASET_NAME + suf), urm, compressed=True)
return sets
def load_URMs(dataset, specs):
sets = []
dataset_name = dataset if isinstance(dataset, str) else dataset.DATASET_NAME
urm_to_load = [os.path.join(exp_path, dataset_name + x) for x in URM_suffixes]
all_exist = np.array([os.path.isfile(path) for path in urm_to_load]).all()
if all_exist:
for urm in urm_to_load:
sets.append(sps.load_npz(urm))
else:
sets = make_dataset(dataset, specs)
return tuple(sets)
class RecSysExp:
def __init__(self, recommender_class, dataset, fit_param_names=[], metric='MAP',
method='bayesian', at=5, verbose=True, seed=1234):
# Seed for reproducibility of results and consistent initialization of weights/splitting of dataset
set_seed(seed)
self.recommender_class = recommender_class
self.dataset = dataset
self.dataset_name = self.dataset if isinstance(self.dataset, str) else self.dataset.DATASET_NAME
self.fit_param_names = fit_param_names
self.metric = metric
self.method = method
self.at = at
self.verbose = verbose
self.seed = seed
self.isGAN = False
# if isinstance(self.dataset, str) and self.dataset in Movielens.urls.keys():
# self.reader = Movielens(version=self.dataset, **dataset_kwargs)
# else:
# self.reader = self.dataset(**dataset_kwargs)
# self.logsdir = os.path.join('experiments', self.recommender_class.RECOMMENDER_NAME + '_' + self.reader.DATASET_NAME)
self.logsdir = os.path.join('experiments',
self.recommender_class.RECOMMENDER_NAME + '_' + train_mode + '_' + self.dataset_name)
if not os.path.exists(self.logsdir):
os.makedirs(self.logsdir, exist_ok=False)
# with open(os.path.join(self.logsdir, 'dataset_config.txt'), 'w') as f:
# json.dump(self.reader.config, f, indent=4)
codesdir = os.path.join(self.logsdir, 'code')
os.makedirs(codesdir, exist_ok=True)
shutil.copy(os.path.abspath(sys.modules[self.__module__].__file__), codesdir)
shutil.copy(os.path.abspath(sys.modules[self.recommender_class.__module__].__file__), codesdir)
# self.URM_train, self.URM_test, self.URM_validation = self.reader.split_urm(split_ratio=[0.6, 0.2, 0.2], save_local=False, verbose=False)
# self.URM_train = self.reader.get_URM_train()
# self.URM_test = self.reader.get_URM_test()
# self.URM_for_train, _, self.URM_validation = self.reader.split_urm(
# self.URM_train.tocoo(), split_ratio=[0.75, 0, 0.25], save_local=False, verbose=False)
# self.URM_train_small, _, self.URM_early_stop = self.reader.split_urm(self.URM_for_train.tocoo(), split_ratio=[0.85, 0, 0.15], save_local=False, verbose=False)
# del self.URM_for_train
self.URM_train, self.URM_test, self.URM_validation, self.URM_train_small, self.URM_early_stop = load_URMs(
dataset, dataset_kwargs)
self.evaluator_validation = EvaluatorHoldout(self.URM_validation, [self.at], exclude_seen=True)
self.evaluator_earlystop = EvaluatorHoldout(self.URM_early_stop, [self.at], exclude_seen=True)
self.evaluatorTest = EvaluatorHoldout(self.URM_test, [self.at, 10, 20, 50], exclude_seen=True, minRatingsPerUser=2)
self.fit_params = {}
modules = getattr(self.recommender_class, '__module__', None)
if modules and modules.split('.')[0] == gans.__name__:
self.isGAN = True
# EARLY STOPPING from Maurizio's framework for baselines
self.early_stopping_parameters = {
'epochs_min': 0,
'validation_every_n': 5,
'stop_on_validation': True,
'validation_metric': self.metric,
'lower_validations_allowed': 5,
'evaluator_object': self.evaluator_earlystop
}
# EARYL STOPPING for GAN-based recommenders
self.my_early_stopping = {
'allow_worse': 5,
'freq': 5,
'validation_evaluator': self.evaluator_earlystop,
'validation_set': None,
'sample_every': None,
}
def build_fit_params(self, params):
for i, val in enumerate(params):
param_name = self.dimension_names[i]
if param_name in self.fit_param_names:
self.fit_params[param_name] = val
elif param_name == 'epochs' and self.recommender_class in early_stopping_algos:
self.fit_params[param_name] = val
def save_best_params(self, additional_params=None):
d = dict(self.fit_params)
if additional_params is not None:
d.update(additional_params)
with open(os.path.join(self.logsdir, 'best_params.pkl'), 'wb') as f:
pickle.dump(d, f, pickle.HIGHEST_PROTOCOL)
def load_best_params(self):
with open(os.path.join(self.logsdir, 'best_params.pkl'), 'rb') as f:
return pickle.load(f)
def obj_func(self, params):
"""
Black-box objective function.
Parameters
----------
params: list
Ranges of hyperparameters to consider. List of skopt.space.space.Dimension.
Returns
-------
obj_func_value: float
Value of the objective function as denoted by the experiment metric.
"""
# print('Optimizing for', self.reader.DATASET_NAME)
print('Optimizing', self.recommender_class.RECOMMENDER_NAME, 'for', self.dataset_name)
# Split the parameters into build_params and fit_params
self.build_fit_params(params)
# Create the model and fit it.
try:
if self.isGAN:
model = self.recommender_class(self.URM_train_small, mode=train_mode, seed=seed, is_experiment=True)
model.logsdir = self.logsdir
fit_early_params = dict(self.fit_params)
fit_early_params.update(self.my_early_stopping)
last_epoch = model.fit(**fit_early_params)
# Save the right number of epochs that produces the current model
if last_epoch != self.fit_params['epochs']:
self.fit_params['epochs'] = last_epoch - \
self.my_early_stopping['allow_worse'] * self.my_early_stopping['freq']
else:
model = self.recommender_class(self.URM_train_small)
if self.recommender_class in early_stopping_algos:
fit_early_params = dict(self.fit_params)
fit_early_params.update(self.early_stopping_parameters)
model.fit(**fit_early_params)
else:
model.fit(**self.fit_params)
results_dic, results_run_string = self.evaluator_validation.evaluateRecommender(model)
fitness = -results_dic[self.at][self.metric]
except tf.errors.ResourceExhaustedError:
return 0
try:
if fitness < self.best_res:
self.best_res = fitness
self.save_best_params(additional_params=dict(epochs=model.epochs_best) if self.recommender_class in early_stopping_algos else None)
except AttributeError:
self.best_res = fitness
self.save_best_params(additional_params=model.get_early_stopping_final_epochs_dict() if self.recommender_class in early_stopping_algos else None)
with open(os.path.join(self.logsdir, 'results.txt'), 'a') as f:
d = self.fit_params
if self.recommender_class in early_stopping_algos:
d.update(model.get_early_stopping_final_epochs_dict())
d_str = json.dumps(d)
f.write(d_str)
f.write('\n')
f.write(results_run_string)
f.write('\n\n')
return fitness
def tune(self, params, evals=10, init_config=None, seed=None):
"""
Runs the hyperparameter search using Gaussian Process as surrogate model or Random Search,
saves the results of the trials and print the best found parameters.
Parameters
----------
params: list
List of skopt.space.space.Dimensions to be searched.
evals: int
Number of evaluations to perform.
init_config: list, default None
An initial parameter configuration for seeding the Gaussian Process
seed: int, default None
Seed for random_state of `gp_minimize` or `dummy_minimize`.
Set to a fixed integer for reproducibility.
"""
msg = 'Started ' + self.recommender_class.RECOMMENDER_NAME + ' ' + self.dataset_name
subprocess.run(['telegram-send', msg])
U, I = self.URM_test.shape
if self.recommender_class == GANMF:
params.append(Integer(4, int(I * 0.75) if I <= 1024 else 1024, name='emb_dim', dtype=int))
self.fit_param_names.append('emb_dim')
if self.recommender_class == CFGAN or self.recommender_class == DeepGANMF:
params.append(Integer(4, int(I * 0.75) if I <= 1024 else 1024, name='d_nodes', dtype=int))
params.append(Integer(4, int(I * 0.75) if I <= 1024 else 1024, name='g_nodes', dtype=int))
self.fit_param_names.append('d_nodes')
self.fit_param_names.append('g_nodes')
if self.recommender_class == DisGANMF:
params.append(Integer(4, int(I * 0.75) if I <= 1024 else 1024, name='d_nodes', dtype=int))
self.fit_param_names.append('d_nodes')
self.dimension_names = [p.name for p in params]
'''
Need to make sure that the max. value of `num_factors` parameters must be lower than
the max(U, I)
'''
try:
idx = self.dimension_names.index('num_factors')
maxval = params[idx].bounds[1]
if maxval > min(U, I):
params[idx] = Integer(1, min(U, I), name='num_factors', dtype=int)
except ValueError:
pass
if len(params) > 0:
# Check if there is already a checkpoint for this experiment
checkpoint_path = os.path.join(self.logsdir, 'checkpoint.pkl')
checkpoint_exists = True if os.path.exists(checkpoint_path) else False
checkpoint_saver = CheckpointSaver(os.path.join(self.logsdir, 'checkpoint.pkl'), compress=3)
if seed is None:
seed = self.seed
t_start = int(time.time())
if checkpoint_exists:
previous_run = skopt.load(checkpoint_path)
if self.method == 'bayesian':
results = gp_minimize(self.obj_func, params, n_calls=evals - len(previous_run.func_vals),
x0=previous_run.x_iters, y0=previous_run.func_vals, n_random_starts=0,
random_state=seed, verbose=True, callback=[checkpoint_saver])
else:
results = dummy_minimize(self.obj_func, params, n_calls=evals - len(previous_run.func_vals),
x0=previous_run.x_iters, y0=previous_run.func_vals, random_state=seed,
verbose=True, callback=[checkpoint_saver])
else:
if self.method == 'bayesian':
results = gp_minimize(self.obj_func, params, n_calls=evals, random_state=seed, verbose=True,
callback=[checkpoint_saver])
else:
results = dummy_minimize(self.obj_func, params, n_calls=evals, random_state=seed, verbose=True,
callback=[checkpoint_saver])
t_end = int(time.time())
# Save best parameters of this experiment
# best_params = dict(zip(self.dimension_names, results.x))
# with open(os.path.join(self.logsdir, 'best_params.pkl'), 'wb') as f:
# pickle.dump(best_params, f, pickle.HIGHEST_PROTOCOL)
best_params = self.load_best_params()
with open(os.path.join(self.logsdir, 'results.txt'), 'a') as f:
f.write('Experiment ran for {}\n'.format(str(datetime.timedelta(seconds=t_end - t_start))))
f.write('Best {} score: {}. Best result found at: {}\n'.format(self.metric, results.fun, best_params))
if self.recommender_class in [IALSRecommender, MatrixFactorization_BPR_Cython]:
self.dimension_names.append('epochs')
self.build_fit_params(best_params.values())
# Retrain with all training data
set_seed(seed)
if self.isGAN:
model = self.recommender_class(self.URM_train, mode=train_mode, is_experiment=True)
model.logsdir = self.logsdir
model.fit(**self.fit_params)
# load_models(model, save_dir='best_model', all_in_folder=True)
else:
model = self.recommender_class(self.URM_train)
model.fit(**self.fit_params)
# model.loadModel(os.path.join(self.logsdir, 'best_model'))
_, results_run_string = self.evaluatorTest.evaluateRecommender(model)
print('\n\nResults on test set:')
print(results_run_string)
print('\n\n')
with open(os.path.join(self.logsdir, 'result_test.txt'), 'w') as f:
f.write(results_run_string)
msg = 'Finished ' + self.recommender_class.RECOMMENDER_NAME + ' ' + self.dataset_name
subprocess.run(['telegram-send', msg])
def run_exp(experiment, dimensions, evals, init_config=None):
experiment.tune(dimensions, evals, init_config)
def set_affinity_on_worker():
"""When a new worker process is created, the affinity is set to all CPUs"""
if platform.system() == 'Linux':
print("I'm the process %d, setting affinity to all CPUs." % os.getpid())
os.system("taskset -p 0xf %d" % os.getpid())
def main(arguments):
global train_mode
EVALS = 50
use_mp = True
run_all = False
selected_exp = []
selected_datasets = []
if '--build_datasets' in arguments:
print('Building all necessary datasets required for the experiments. Disregarding other arguments! ' +
'You will need to run this script again without --build_datasets in order to run experiments!')
# Make all datasets
for d in all_datasets:
load_URMs(d, dataset_kwargs)
return
if '--no_mp' in arguments:
print('No multiprocessing requested! Falling back to serial execution of experiments!')
use_mp = False
arguments.remove('--no_mp')
if '--run_all' in arguments:
print('All datasets selected for each algorithm!')
selected_datasets = all_datasets
run_all = True
if '--user' in arguments:
train_mode = 'user'
if '--item' in arguments:
train_mode = 'item'
for arg in arguments:
if not run_all and arg in name_datasets:
selected_datasets.append(all_datasets[name_datasets.index(arg)])
if arg in all_recommenders:
selected_exp.append(arg)
dict_rec_classes = {}
dict_dimensions = {}
dict_fit_params = {}
dict_init_configs = {}
# Experiment parameters
puresvd_dimensions = [
Integer(1, 250, name='num_factors', dtype=int)
]
puresvd_fit_params = [d.name for d in puresvd_dimensions]
ials_dimensions = [
Integer(1, 250, name='num_factors', dtype=int),
Categorical(["linear", "log"], name='confidence_scaling'),
Real(low=1e-3, high=50, prior='log-uniform', name='alpha', dtype=float),
Real(low=1e-5, high=1e-2, prior='log-uniform', name='reg', dtype=float),
Real(low=1e-3, high=10.0, prior='log-uniform', name='epsilon', dtype=float)
]
ials_fit_params = [d.name for d in ials_dimensions]
bpr_dimensions = [
Categorical([1500], name='epochs'),
Integer(1, 250, name='num_factors', dtype=int),
Categorical([128, 256, 512, 1024], name='batch_size'),
Categorical(["adagrad", "adam"], name='sgd_mode'),
Real(low=1e-12, high=1e-3, prior='log-uniform', name='positive_reg'),
Real(low=1e-12, high=1e-3, prior='log-uniform', name='negative_reg'),
Real(low=1e-6, high=1e-2, prior='log-uniform', name='learning_rate'),
]
bpr_fit_params = [d.name for d in bpr_dimensions]
nmf_dimensions = [
Integer(1, 500, name='num_factors', dtype=int),
Real(low=1e-5, high=1, prior='log-uniform', name='l1_ratio', dtype=float),
Categorical(['coordinate_descent', 'multiplicative_update'], name='solver'),
Categorical(['nndsvda'], name='init_type'),
Categorical(['frobenius', 'kullback-leibler'], name='beta_loss')
]
nmf_fit_params = [d.name for d in nmf_dimensions]
slimbpr_dimensions = [
Integer(low=5, high=1000, prior='uniform', name='topK', dtype=int),
Categorical([1500], name='epochs'),
Categorical([True, False], name='symmetric'),
Categorical(["sgd", "adagrad", "adam"], name='sgd_mode'),
Real(low=1e-9, high=1e-3, prior='log-uniform', name='lambda_i', dtype=float),
Real(low=1e-9, high=1e-3, prior='log-uniform', name='lambda_j', dtype=float),
Real(low=1e-4, high=1e-1, prior='log-uniform', name='learning_rate', dtype=float)
]
slimbpr_fit_names = [d.name for d in slimbpr_dimensions]
cfgan_dimensions = [
Categorical([300], name='epochs'),
Integer(1, 5, prior='uniform', name='d_steps', dtype=int),
Integer(1, 5, prior='uniform', name='g_steps', dtype=int),
Integer(1, 5, prior='uniform', name='d_layers', dtype=int),
Integer(1, 5, prior='uniform', name='g_layers', dtype=int),
Categorical(['linear', 'tanh', 'sigmoid'], name='d_hidden_act'),
Categorical(['linear', 'tanh', 'sigmoid'], name='g_hidden_act'),
Categorical(['ZR', 'PM', 'ZP'], name='scheme'),
Categorical([64, 128, 256, 512, 1024], name='d_batch_size'),
Categorical([64, 128, 256, 512, 1024], name='g_batch_size'),
Real(low=0, high=1, prior='uniform', name='zr_ratio', dtype=float),
Real(low=0, high=1, prior='uniform', name='zp_ratio', dtype=float),
Real(low=0, high=1, prior='uniform', name='zr_coefficient', dtype=float),
Real(low=1e-4, high=1e-2, prior='log-uniform', name='d_lr', dtype=float),
Real(low=1e-4, high=1e-2, prior='log-uniform', name='g_lr', dtype=float),
Real(low=1e-6, high=1e-4, prior='log-uniform', name='d_reg', dtype=float),
Real(low=1e-6, high=1e-4, prior='log-uniform', name='g_reg', dtype=float),
]
cfgan_fit_params = [d.name for d in cfgan_dimensions]
ganmf_dimensions = [
Categorical([300], name='epochs'),
Integer(low=1, high=250, name='num_factors', dtype=int),
Categorical([64, 128, 256, 512, 1024], name='batch_size'),
Integer(low=1, high=10, name='m', dtype=int),
Real(low=1e-4, high=1e-2, prior='log-uniform', name='d_lr', dtype=float),
Real(low=1e-4, high=1e-2, prior='log-uniform', name='g_lr', dtype=float),
Real(low=1e-6, high=1e-4, prior='log-uniform', name='d_reg', dtype=float),
Real(low=1e-2, high=0.5, prior='uniform', name='recon_coefficient', dtype=float),
# Integer(5, 400, name='emb_dim', dtype=int),
# Integer(1, 10, name='d_steps', dtype=int),
# Integer(1, 10, name='g_steps', dtype=int),
# Real(low=1e-6, high=1e-4, prior='log-uniform', name='g_reg', dtype=float),
]
ganmf_fit_params = [d.name for d in ganmf_dimensions]
disgan_dimensions = [
Categorical([300], name='epochs'),
Categorical(['linear', 'tanh', 'relu', 'sigmoid'], name='d_hidden_act'),
Integer(low=1, high=5, prior='uniform', name='d_layers', dtype=int),
Integer(low=1, high=250, name='num_factors', dtype=int),
Categorical([64, 128, 256, 512, 1024], name='batch_size'),
Real(low=1e-4, high=1e-2, prior='log-uniform', name='d_lr', dtype=float),
Real(low=1e-4, high=1e-2, prior='log-uniform', name='g_lr', dtype=float),
Real(low=1e-6, high=1e-4, prior='log-uniform', name='d_reg', dtype=float),
Real(low=1e-2, high=0.5, prior='uniform', name='recon_coefficient', dtype=float)
]
disgan_fit_params = [d.name for d in disgan_dimensions]
deepganmf_dimensions = [
Categorical([300], name='epochs'),
Categorical(['linear', 'tanh', 'relu', 'sigmoid'], name='d_hidden_act'),
Categorical(['linear', 'tanh', 'relu', 'sigmoid'], name='g_hidden_act'),
Categorical(['linear', 'tanh', 'relu', 'sigmoid'], name='g_output_act'),
Categorical([1, 3, 5], name='d_layers'),
Categorical([1, 2, 3, 4, 5], name='g_layers'),
Categorical([64, 128, 256, 512, 1024], name='batch_size'),
Integer(low=1, high=10, name='m', dtype=int),
Real(low=1e-4, high=1e-2, prior='log-uniform', name='d_lr', dtype=float),
Real(low=1e-4, high=1e-2, prior='log-uniform', name='g_lr', dtype=float),
Real(low=1e-6, high=1e-4, prior='log-uniform', name='d_reg', dtype=float),
Real(low=1e-2, high=0.5, prior='uniform', name='recon_coefficient', dtype=float),
]
deepganmf_fit_params = [d.name for d in deepganmf_dimensions]
dict_rec_classes['TopPop'] = TopPop
dict_rec_classes['Random'] = Random
dict_rec_classes['PureSVD'] = PureSVDRecommender
dict_rec_classes['BPR'] = MatrixFactorization_BPR_Cython
dict_rec_classes['ALS'] = IALSRecommender
dict_rec_classes['NMF'] = NMFRecommender
dict_rec_classes['GANMF'] = GANMF
dict_rec_classes['CFGAN'] = CFGAN
dict_rec_classes['DisGANMF'] = DisGANMF
dict_rec_classes['SLIMBPR'] = SLIM_BPR_Cython
dict_rec_classes['DeepGANMF'] = DeepGANMF
dict_dimensions['TopPop'] = []
dict_dimensions['Random'] = []
dict_dimensions['PureSVD'] = puresvd_dimensions
dict_dimensions['BPR'] = bpr_dimensions
dict_dimensions['ALS'] = ials_dimensions
dict_dimensions['NMF'] = nmf_dimensions
dict_dimensions['GANMF'] = ganmf_dimensions
dict_dimensions['CFGAN'] = cfgan_dimensions
dict_dimensions['DisGANMF'] = disgan_dimensions
dict_dimensions['SLIMBPR'] = slimbpr_dimensions
dict_dimensions['DeepGANMF'] = deepganmf_dimensions
dict_fit_params['TopPop'] = []
dict_fit_params['Random'] = []
dict_fit_params['PureSVD'] = puresvd_fit_params
dict_fit_params['BPR'] = bpr_fit_params
dict_fit_params['ALS'] = ials_fit_params
dict_fit_params['NMF'] = nmf_fit_params
dict_fit_params['GANMF'] = ganmf_fit_params
dict_fit_params['CFGAN'] = cfgan_fit_params
dict_fit_params['DisGANMF'] = disgan_fit_params
dict_fit_params['SLIMBPR'] = slimbpr_fit_names
dict_fit_params['DeepGANMF'] = deepganmf_fit_params
pool_list_experiments = []
pool_list_dimensions = []
for exp in selected_exp:
for d in selected_datasets:
new_exp = RecSysExp(dict_rec_classes[exp], dataset=d, fit_param_names=dict_fit_params[exp],
method='bayesian', seed=seed)
if use_mp:
pool_list_experiments.append(new_exp)
pool_list_dimensions.append(dict_dimensions[exp])
else:
new_exp.tune(dict_dimensions[exp], evals=EVALS,
init_config=dict_init_configs[exp] if exp in dict_init_configs else None)
if use_mp:
# Need to turn off MKL's own threading mechanism in order to use MP
# https://github.com/joblib/joblib/issues/138
os.environ['MKL_NUM_THREADS'] = '1'
os.environ['OMP_NUM_THREADS'] = '1'
os.environ['MKL_DYNAMIC'] = 'FALSE'
pool = mp.Pool(initializer=set_affinity_on_worker)
pool.starmap_async(run_exp, zip(pool_list_experiments, pool_list_dimensions, [EVALS]*len(pool_list_experiments)))
pool.close()
pool.join()
if __name__ == '__main__':
# Run this script as `python RecSysExp.py [--build_datasets] experiment_name [--run_all] dataset_name [--no_mp]`
assert len(sys.argv) >= 2, 'Number of arguments must be greater than 2, given {:d}'.format(len(sys.argv))
arguments = sys.argv[1:]
main(arguments)