-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwestrun.py
171 lines (129 loc) · 4.88 KB
/
westrun.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
"""
WESTPA Run Analyzer
===================
"""
from contextlib import contextmanager
import subprocess
from pathlib import Path
from .westcli import WESTcli
import pandas as pd
import numpy as np
import h5py
import matplotlib.pyplot as plt
class WESTRun(WESTcli):
def __init__(self, WEST_SIM_ROOT, *args, **kwargs):
super(WESTRun, self).__init__(WEST_SIM_ROOT)
self.root = Path(WEST_SIM_ROOT)
self.run_name = self.root.stem
@contextmanager
def h5file(self):
try:
handle = h5py.File(self.root / 'west.h5', 'r')
file_locked = False
except OSError:
print('File currently locked... making a copy')
subprocess.run(['cp', self.root / 'west.h5', 'west_COPY.h5'])
handle = h5py.File(self.root / 'west_COPY.h5', 'r')
file_locked = True
try:
yield handle
finally:
handle.close()
if file_locked:
# deleting copy because the state of the file is always changing
subprocess.run(['rm', self.root / 'west_COPY.h5'])
def assign_h5(self):
return h5py.File(self.WEST_SIM_ROOT / 'ANALYSIS/BIN_FLUX/assign.h5')
def direct_h5(self):
return h5py.File(self.WEST_SIM_ROOT / 'ANALYSIS/BIN_FLUX/direct.h5')
@property
def summary(self):
with self.h5file() as f:
dset = f['summary'][()]
df = pd.DataFrame(dset)
df.index.names = ['iteration']
df.index += 1
return df
@property
def conditional_fluxes(self):
with self.direct_h5() as f:
return f['conditional_fluxes'][()]
@property
def conditional_flux_evolution(self):
with self.direct_h5() as f:
return f['conditional_flux_evolution'][()]
@property
def total_fluxes(self):
with self.direct_h5() as f:
return f['total_fluxes'][()]
@property
def target_flux_evolution(self):
with self.direct_h5() as f:
return f['target_flux_evolution'][()]
@property
def rate_evolution(self):
with self.direct_h5() as f:
return f['rate_evolution'][()]
def _make_flux_matrices(self, dataset):
try:
return dataset['expected']
except IndexError:
return dataset
def get_iteration_data(self, n_iter=1):
iter_ = f'iter_{str(n_iter).zfill(8)}'
with self.h5file() as f:
iter_group = f[f'iterations/{iter_}']
seg_index = iter_group['seg_index'][()]
n_segments = len(seg_index)
try:
gmx_performance = iter_group['auxdata/performance'][()]
except KeyError:
gmx_performance = [np.NaN for _ in range(n_segments)]
try:
Na_index = np.round(iter_group['auxdata/Na_distance'][:, 0])
Na_distance = iter_group['auxdata/Na_distance'][:, 1]
except KeyError:
Na_index = Na_distance = [np.NaN for _ in range(n_segments)]
# Create a nice dataframe
df = pd.DataFrame(seg_index)
df.insert(0, 'segment', df.index)
iter_col = [n_iter for _ in range(n_segments)]
df['iteration'] = iter_col
df['gmx_performance'] = gmx_performance
df['SOD_index'] = Na_index
df['SOD_distance'] = Na_distance
return df.set_index('iteration')
def plot_conditional_fluxes(self):
with self.direct_h5():
conditional_fluxes = self.conditional_fluxes
flux_matrices = self._make_flux_matrices(conditional_fluxes)
Pi_bins = {}
n_iters = len(flux_matrices)
array = np.empty((n_iters, 14), dtype=np.float64)
for iteration, matrix in enumerate(flux_matrices):
sum_J_ji = np.sum(matrix, axis=1)
sum_J_ij = np.sum(matrix, axis=0)
Pi = sum_J_ji - sum_J_ij
array[iteration] = Pi
for i in range(14):
Pi_bins[f'bin_{i + 1}'] = array[:, i]
fig, ax = plt.subplots(1, 1, figsize=(14,8))
for key, value in Pi_bins.items():
ax.plot(value, label=key)
def plot_conditional_flux_evolution(self):
with self.direct_h5():
conditional_flux_evolution = self.conditional_flux_evolution
flux_matrices = self._make_flux_matrices(conditional_flux_evolution)
Pi_bins = {}
n_iters = len(flux_matrices)
array = np.empty((n_iters, 14), dtype=np.float64)
for iteration, matrix in enumerate(flux_matrices):
sum_J_ji = np.sum(matrix, axis=1)
sum_J_ij = np.sum(matrix, axis=0)
Pi = sum_J_ji - sum_J_ij
array[iteration] = Pi
for i in range(14):
Pi_bins[f'bin_{i+1}'] = array[:,i]
fig, ax = plt.subplots(1, 1, figsize=(14, 8))
for key, value in Pi_bins.items():
ax.plot(value, label=key)