-
Notifications
You must be signed in to change notification settings - Fork 21
/
config.yaml
45 lines (41 loc) · 1.66 KB
/
config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
batch_size: 32
epochs: 1000
eval_every_n_epochs: 5
fine_tune_from: Jan16_02-27-36_edu-GPU-Linux
log_every_n_steps: 2
learning_rate: 1e-4
weight_decay: 1e-6
fp16_precision: True
truncation: True
model:
out_dim: 512
res_base_model: "resnet50"
bert_base_model: 'emilyalsentzer/Bio_ClinicalBERT'
freeze_layers: [0,1,2,3,4,5]
do_lower_case: False
dataset:
s: 1
input_shape: (224,224,3)
num_workers: 4
valid_size: 0.1
csv_file: 'path/for/CSV_containing_MIMIC-CXR_paths_for_images_and_text.csv'
text_from_files: True # If 'True' the text input will be read from .txt files, if 'False' it will be loaded direct from the CSV File
img_root_dir: '/your/root/images/directory'
text_root_dir: '/your/root/text/directory' # The root directory for the text files if "text_from_files" is True
img_path_col: 0 # index for the image path column in the CSV dataframe.
text_col: 5 # index for the text column in the CSV dataframe. If text_from_files is 'True' it should contain the relative path for the files from the 'text_root_dir', if text_from_files is 'False' this column should contain the respective input text in its own cells.
loss:
temperature: 0.1
use_cosine_similarity: True
alpha_weight: 0.75
### BERT Models
# emilyalsentzer/Bio_ClinicalBERT
# bert-base-uncased
# distilbert-base-nli-mean-tokens
# distilbert-base-multilingual-cased
# distiluse-base-multilingual-cased-v2
# sentence-transformers/distilbert-base-nli-stsb-mean-tokens
# sentence-transformers/xlm-r-100langs-bert-base-nli-stsb-mean-tokens #good
# cross-encoder/stsb-roberta-base
# sentence-transformers/paraphrase-xlm-r-multilingual-v1 #good
# Portuguese: neuralmind/bert-base-portuguese-cased