-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain_cal_warp_degree.py
97 lines (70 loc) · 2.96 KB
/
main_cal_warp_degree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import random
import argparse
import os
import torch
import numpy as np
from tqdm import tqdm
from networks import Warper
from utils import str2bool
from dataset import make_dataset
from torch.utils.data import DataLoader
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
parser = argparse.ArgumentParser()
parser.add_argument('--data_root', type=str, default='data/WebCaricature_align_1.3_256')
parser.add_argument('--name', type=str, default='results/warper')
parser.add_argument('--model', type=str, default='warper_00020000.pt')
parser.add_argument('--resize_crop', type=str2bool, default=False)
parser.add_argument('--enlarge', type=str2bool, default=False)
parser.add_argument('--same_id', type=str2bool, default=False)
parser.add_argument('--hflip', type=str2bool, default=False)
parser.add_argument('--mode', type=str, default='test')
parser.add_argument('--batch_size', type=int, default=4)
parser.add_argument('--num_workers', type=int, default=8)
parser.add_argument('--img_size', type=int, default=256)
parser.add_argument('--field_size', type=int, default=128)
parser.add_argument('--embedding_dim', type=int, default=32)
parser.add_argument('--warp_dim', type=int, default=64)
parser.add_argument('--scale', type=float, default=1.0)
args = parser.parse_args()
def make_field(length):
temp_height = np.linspace(-1.0, 1.0, num=length).reshape(length, 1, 1)
temp_width = np.linspace(-1.0, 1.0, num=length).reshape(1, length, 1)
pos_x = np.repeat(temp_height, length, axis=1)
pos_y = np.repeat(temp_width, length, axis=0)
return np.concatenate((pos_y, pos_x), axis=2)
def cal_delta(map1, map2):
y1, x1 = map1[:, :, 0], map1[:, :, 1]
y2, x2 = map2[:, :, 0], map2[:, :, 1]
return np.mean(np.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2))
if __name__ == '__main__':
SEED = 0
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
print(args.name)
print(args.scale)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_path = os.path.join(args.name, 'checkpoints', args.model)
print('load model: ', model_path)
dataset = make_dataset(args)
dataloader = DataLoader(dataset=dataset, batch_size=args.batch_size, shuffle=False, drop_last=False,
num_workers=args.num_workers)
warper = Warper(args)
state_dict = torch.load(model_path)
warper.load_state_dict(state_dict)
warper.to(device)
warper.eval()
deltas = []
const = make_field(256)
for batch, item in tqdm(enumerate(dataloader)):
img_p = item['img_p'].to(device)
names = item['name']
filenames = item['filename']
z = torch.randn(img_p.size()[0], args.warp_dim, 1, 1).cuda()
_, fields, _ = warper(img_p, z, scale=args.scale)
for i in range(img_p.size()[0]):
field = fields[i].detach().cpu().numpy()
deltas.append(cal_delta(const, field) * 256)
print(np.mean(deltas))
print(np.std(deltas))