-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtest_styler.py
78 lines (64 loc) · 2.65 KB
/
test_styler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import matplotlib.pyplot as plt
import argparse
import os
import shutil
import torch
import numpy as np
import random
from tqdm import tqdm
from networks.styler import Styler
from utils import unload_img, str2bool
from dataset import make_dataset
from torch.utils.data import DataLoader
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
parser = argparse.ArgumentParser()
parser.add_argument('--data_root', type=str, default='data/WebCaricature_align_1.3_256')
parser.add_argument('--name', type=str, default='results/styler')
parser.add_argument('--model', type=str, default='gen_00200000.pt')
parser.add_argument('--output_dir', type=str, default='test')
parser.add_argument('--resize_crop', type=str2bool, default=False)
parser.add_argument('--hflip', type=str2bool, default=False)
parser.add_argument('--enlarge', type=str2bool, default=False)
parser.add_argument('--mode', type=str, default='test')
parser.add_argument('--batch_size', type=int, default=4)
parser.add_argument('--num_workers', type=int, default=8)
parser.add_argument('--style_dim', type=int, default=8)
parser.add_argument('--down_es', type=int, default=2)
parser.add_argument('--restype', type=str, default='adalin')
args = parser.parse_args()
if __name__ == '__main__':
SEED = 0
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_path = os.path.join(args.name, 'checkpoints', args.model)
print('load model: ', model_path)
output_path = os.path.join(args.name, args.output_dir)
print('output path: ', output_path)
if os.path.exists(output_path):
shutil.rmtree(output_path)
if not os.path.exists(output_path):
os.makedirs(output_path)
dataset = make_dataset(args)
print(len(dataset))
dataloader = DataLoader(dataset=dataset, batch_size=args.batch_size, shuffle=False, drop_last=False,
num_workers=args.num_workers)
model = Styler(args)
model.load(model_path)
model.to(device)
model.eval()
for batch, item in tqdm(enumerate(dataloader)):
img_ps = item['img_p'].to(device)
names = item['name']
filenames = item['filename']
s = torch.randn(img_ps.size(0), 8, 1, 1).cuda()
outputs = model(img_ps, s)
for i in range(img_ps.size()[0]):
input = img_ps[i].detach().cpu()
output = outputs[i].detach().cpu()
name = names[i]
filename = filenames[i]
figure = torch.cat((input, output), dim=2)
unload_img(figure).save(os.path.join(output_path, '{}_{}.jpg'.format(name, filename)), 'jpeg')