-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpascal_context.py
130 lines (106 loc) · 3.53 KB
/
pascal_context.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# ================================================================
# MIT License
# Copyright (c) 2021 edwardyehuang (https://github.com/edwardyehuang)
# ================================================================
import os
import tensorflow as tf
import numpy as np
from PIL import Image
INAGE_DIR = "images"
LABEL_DIR = "labels"
SEGMENTATION_TRAIN_FILENAME = "train.txt"
SEGMENTATION_EVAL_FILENAME = "val.txt"
IMAGE_FILE_EXTENSION = ".jpg"
LABEL_FILE_EXTENSION = ".png"
from .dataset import Dataset
class PascalContext(Dataset):
def __init__(self, dataset_dir, ignore_label_to_background=False):
super().__init__(dataset_dir)
self.ignore_label = 0
self.num_class = 59
self.val_image_count = 5105
self.compress = True
if ignore_label_to_background:
self.num_class = 60
self.ignore_label = 255
self.__label_color_map = self.create_label_colormap()
def load_data_paths(self, dataset_dir):
image_dir = os.path.join(dataset_dir, INAGE_DIR)
label_dir = os.path.join(dataset_dir, LABEL_DIR)
train_list_path = os.path.join(dataset_dir, SEGMENTATION_TRAIN_FILENAME)
val_list_path = os.path.join(dataset_dir, SEGMENTATION_EVAL_FILENAME)
return (
self.__get_data_paths(train_list_path, image_dir, label_dir),
self.__get_data_paths(val_list_path, image_dir, label_dir),
)
def __get_data_paths(self, names_list_path, images_dir, labels_dir):
with open(names_list_path, "r") as f:
images_names = f.read().split()
images_paths = [os.path.join(images_dir, image_name + IMAGE_FILE_EXTENSION) for image_name in images_names]
labels_paths = [os.path.join(labels_dir, image_name + LABEL_FILE_EXTENSION) for image_name in images_names]
return images_paths, labels_paths
def create_label_colormap(self):
colormap = [
(0, 0, 0),
(128, 0, 0),
(0, 128, 0),
(128, 128, 0),
(0, 0, 128),
(128, 0, 128),
(0, 128, 128),
(128, 128, 128),
(64, 0, 0),
(192, 0, 0),
(64, 128, 0),
(192, 128, 0),
(64, 0, 128),
(192, 0, 128),
(64, 128, 128),
(192, 128, 128),
(0, 64, 0),
(128, 64, 0),
(0, 192, 0),
(128, 192, 0),
(0, 64, 128),
(128, 64, 128),
(0, 192, 128),
(128, 192, 128),
(64, 64, 0),
(192, 64, 0),
(64, 192, 0),
(192, 192, 0),
(64, 64, 128),
(192, 64, 128),
(64, 192, 128),
(192, 192, 128),
(0, 0, 64),
(128, 0, 64),
(0, 128, 64),
(128, 128, 64),
(0, 0, 192),
(128, 0, 192),
(0, 128, 192),
(128, 128, 192),
(64, 0, 64),
(192, 0, 64),
(64, 128, 64),
(192, 128, 64),
(64, 0, 192),
(192, 0, 192),
(64, 128, 192),
(192, 128, 192),
(0, 64, 64),
(128, 64, 64),
(0, 192, 64),
(128, 192, 64),
(0, 64, 192),
(128, 64, 192),
(0, 192, 192),
(128, 192, 192),
(64, 64, 64),
(192, 64, 64),
(64, 192, 64),
(192, 192, 64),
]
colormap = np.array(colormap)
return colormap