-
Notifications
You must be signed in to change notification settings - Fork 0
/
RGBmatrixPanel.cpp
864 lines (757 loc) · 36.9 KB
/
RGBmatrixPanel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
/*
RGBmatrixPanel Arduino library for Adafruit 16x32 and 32x32 RGB LED
matrix panels. Pick one up at:
http://www.adafruit.com/products/420
http://www.adafruit.com/products/607
This version uses a few tricks to achieve better performance and/or
lower CPU utilization:
- To control LED brightness, traditional PWM is eschewed in favor of
Binary Code Modulation, which operates through a succession of periods
each twice the length of the preceeding one (rather than a direct
linear count a la PWM). It's explained well here:
http://www.batsocks.co.uk/readme/art_bcm_1.htm
I was initially skeptical, but it works exceedingly well in practice!
And this uses considerably fewer CPU cycles than software PWM.
- Although many control pins are software-configurable in the user's
code, a couple things are tied to specific PORT registers. It's just
a lot faster this way -- port lookups take time. Please see the notes
later regarding wiring on "alternative" Arduino boards.
- A tiny bit of inline assembly language is used in the most speed-
critical section. The C++ compiler wasn't making optimal use of the
instruction set in what seemed like an obvious chunk of code. Since
it's only a few short instructions, this loop is also "unrolled" --
each iteration is stated explicitly, not through a control loop.
Written by Limor Fried/Ladyada & Phil Burgess/PaintYourDragon for
Adafruit Industries.
BSD license, all text above must be included in any redistribution.
****************
Support for Feather M0 contributed by ee-quipment.com
To support the Feather M0, direct writes to AVR ports have been replaced with
direct writes to Zero ports that work on the Feather M0. The pinouts are fixed
and do not conflict with the SPI or I2C ports. The LED_BUILTIN port is used however.
Panel Pins: OE LAT B2 G2 R2 B1 G1 R1 CLK D C B A
Connector Pins: 15 14 7 6 5 3 2 1 13 12 11 10 9
Feather Pins: 7 6 20 24 22 25 23 19 14 21 9 8 5
Port Pins: PB09 PB08 .. PA20 PA19 PA18 PA17 PA16 PA15 .. PA11 .. PA07 .. PA05 PA04 .. PA02
Arduino IDE: 16 15 6 12 10 13 11 5 0 9 18 17 14
Schematics and a board layout are available at https://github.com/ee-quipment/RGB-matrix-Panel-Zero
A bare board can be ordered from OshPark at https://oshpark.com/shared_projects/1QNzmjwa
To set up interrupts a third-party library is used:
#include <avdweb_SAMDtimer.h> //http://www.avdweb.nl/arduino/libraries/samd21-timer.html
*/
#include "RGBmatrixPanel.h"
static const uint8_t gamma_lut[] = {
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x01,0x01,0x01,0x01,0x01,0x01,
0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,
0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,
0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,
0x01,0x01,0x01,0x01,0x01,0x01,0x02,0x02,
0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,
0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,
0x02,0x02,0x02,0x02,0x02,0x03,0x03,0x03,
0x03,0x03,0x03,0x03,0x03,0x03,0x03,0x03,
0x03,0x03,0x03,0x03,0x03,0x03,0x03,0x04,
0x04,0x04,0x04,0x04,0x04,0x04,0x04,0x04,
0x04,0x04,0x04,0x04,0x04,0x04,0x05,0x05,
0x05,0x05,0x05,0x05,0x05,0x05,0x05,0x05,
0x05,0x05,0x05,0x06,0x06,0x06,0x06,0x06,
0x06,0x06,0x06,0x06,0x06,0x06,0x06,0x07,
0x07,0x07,0x07,0x07,0x07,0x07,0x07,0x07,
0x07,0x07,0x08,0x08,0x08,0x08,0x08,0x08,
0x08,0x08,0x08,0x08,0x09,0x09,0x09,0x09,
0x09,0x09,0x09,0x09,0x09,0x0a,0x0a,0x0a,
0x0a,0x0a,0x0a,0x0a,0x0a,0x0a,0x0b,0x0b,
0x0b,0x0b,0x0b,0x0b,0x0b,0x0b,0x0c,0x0c,
0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0d,0x0d,
0x0d,0x0d,0x0d,0x0d,0x0d,0x0e,0x0e,0x0e,
0x0e,0x0e,0x0e,0x0e,0x0f,0x0f,0x0f,0x0f
};
#ifndef _swap_int16_t
#define _swap_int16_t(a, b) { int16_t t = a; a = b; b = t; }
#endif
// A full PORT register is required for the data lines, though only the
// top 6 output bits are used. For performance reasons, the port # cannot
// be changed via library calls, only by changing constants in the library.
// For similar reasons, the clock pin is only semi-configurable...it can
// be specified as any pin within a specific PORT register stated below.
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
// Arduino Mega is now tested and confirmed, with the following caveats:
// Because digital pins 2-7 don't map to a contiguous port register,
// the Mega requires connecting the matrix data lines to different pins.
// Digital pins 24-29 are used for the data interface, and 22 & 23 are
// unavailable for other outputs because the software needs to write to
// the full PORTA register for speed. Clock may be any pin on PORTB --
// on the Mega, this CAN'T be pins 8 or 9 (these are on PORTH), thus the
// wiring will need to be slightly different than the tutorial's
// explanation on the Uno, etc. Pins 10-13 are all fair game for the
// clock, as are pins 50-53.
#define DATAPORT PORTA
#define DATADIR DDRA
#define SCLKPORT PORTB
#elif defined(__AVR_ATmega32U4__)
// Arduino Leonardo: this is vestigial code an unlikely to ever be
// finished -- DO NOT USE!!! Unlike the Uno, digital pins 2-7 do NOT
// map to a contiguous port register, dashing our hopes for compatible
// wiring. Making this work would require significant changes both to
// the bit-shifting code in the library, and how this board is wired to
// the LED matrix. Bummer.
#define DATAPORT PORTD
#define DATADIR DDRD
#define SCLKPORT PORTB
#elif defined(ARDUINO_SAMD_FEATHER_M0)
// Arduino IDE pin mapping -- hard coded, cannot be changed by user
#define ZERO_CLK 0
#define ZERO_LAT 15
#define ZERO_OE 16
#define ZERO_A 14
#define ZERO_B 17
#define ZERO_C 18
#define ZERO_D 9
#define ZERO_R1 5
#define ZERO_G1 11
#define ZERO_B1 13
#define ZERO_R2 10
#define ZERO_G2 12
#define ZERO_B2 6
//Row refresh timer library and interrupt forward declaration
#include <avdweb_SAMDtimer.h> //http://www.avdweb.nl/arduino/libraries/samd21-timer.html
void ISR_LEDPanelRefresh(struct tc_module *const module_inst);
#define LED_PANEL_REFRESH_RATE 100 // Hz, up to a maximum of TBD
#else
// Ports for "standard" boards (Arduino Uno, Duemilanove, etc.)
#define DATAPORT PORTD
#define DATADIR DDRD
#define SCLKPORT PORTB
#endif
#define nPlanes 4
// The fact that the display driver interrupt stuff is tied to the
// singular Timer1 doesn't really take well to object orientation with
// multiple RGBmatrixPanel instances. The solution at present is to
// allow instances, but only one is active at any given time, via its
// begin() method. The implementation is still incomplete in parts;
// the prior active panel really should be gracefully disabled, and a
// stop() method should perhaps be added...assuming multiple instances
// are even an actual need.
static RGBmatrixPanel *activePanel = NULL;
// Code common to both the 16x32 and 32x32 constructors:
void RGBmatrixPanel::init(uint8_t rows, uint8_t a, uint8_t b, uint8_t c,
uint8_t sclk, uint8_t latch, uint8_t oe, boolean dbuf, uint8_t width) {
nRows = rows; // Number of multiplexed rows; actual height is 2X this
// Allocate and initialize matrix buffer:
int buffsize = width * nRows * 3, // x3 = 3 bytes holds 4 planes "packed"
allocsize = (dbuf == true) ? (buffsize * 2) : buffsize;
if(NULL == (matrixbuff[0] = (uint8_t *)malloc(allocsize))) return;
memset(matrixbuff[0], 0, allocsize);
// If not double-buffered, both buffers then point to the same address:
matrixbuff[1] = (dbuf == true) ? &matrixbuff[0][buffsize] : matrixbuff[0];
// Save pin numbers for use by begin() method later.
_a = a;
_b = b;
_c = c;
_sclk = sclk;
_latch = latch;
_oe = oe;
#if !defined(ARDUINO_SAMD_FEATHER_M0)
// Look up port registers and pin masks ahead of time,
// avoids many slow digitalWrite() calls later.
sclkpin = digitalPinToBitMask(sclk);
latport = portOutputRegister(digitalPinToPort(latch));
latpin = digitalPinToBitMask(latch);
oeport = portOutputRegister(digitalPinToPort(oe));
oepin = digitalPinToBitMask(oe);
addraport = portOutputRegister(digitalPinToPort(a));
addrapin = digitalPinToBitMask(a);
addrbport = portOutputRegister(digitalPinToPort(b));
addrbpin = digitalPinToBitMask(b);
addrcport = portOutputRegister(digitalPinToPort(c));
addrcpin = digitalPinToBitMask(c);
#endif
plane = nPlanes - 1;
row = nRows - 1;
swapflag = false;
backindex = 0; // Array index of back buffer
}
// Constructor for 16x32 panel:
RGBmatrixPanel::RGBmatrixPanel(
uint8_t a, uint8_t b, uint8_t c,
uint8_t sclk, uint8_t latch, uint8_t oe, boolean dbuf) :
Adafruit_GFX(32, 16) {
init(8, a, b, c, sclk, latch, oe, dbuf, 32);
}
// Constructor for 32x32 or 32x64 panel:
RGBmatrixPanel::RGBmatrixPanel(
uint8_t a, uint8_t b, uint8_t c, uint8_t d,
uint8_t sclk, uint8_t latch, uint8_t oe, boolean dbuf, uint8_t width) :
Adafruit_GFX(width, 32) {
init(16, a, b, c, sclk, latch, oe, dbuf, width);
// Init a few extra 32x32-specific elements:
_d = d;
#if !defined(ARDUINO_SAMD_FEATHER_M0)
addrdport = portOutputRegister(digitalPinToPort(d));
addrdpin = digitalPinToBitMask(d);
#endif
}
void RGBmatrixPanel::begin(void) {
backindex = 0; // Back buffer
buffptr = matrixbuff[1 - backindex]; // -> front buffer
activePanel = this; // For interrupt hander
#if defined(ARDUINO_SAMD_FEATHER_M0)
pinMode(ZERO_CLK, OUTPUT);
pinMode(ZERO_LAT, OUTPUT);
pinMode(ZERO_OE, OUTPUT);
pinMode(ZERO_A, OUTPUT);
pinMode(ZERO_B, OUTPUT);
pinMode(ZERO_C, OUTPUT);
if(nRows > 8) { pinMode(ZERO_D, OUTPUT); }
pinMode(ZERO_R1, OUTPUT);
pinMode(ZERO_G1, OUTPUT);
pinMode(ZERO_B1, OUTPUT);
pinMode(ZERO_R2, OUTPUT);
pinMode(ZERO_G2, OUTPUT);
pinMode(ZERO_B2, OUTPUT);
unsigned interrupt_interval_us = 1000000 / (16 * nRows * LED_PANEL_REFRESH_RATE); // 16 is color depth
static SAMDtimer timer(4, ISR_LEDPanelRefresh, interrupt_interval_us);
#else
// Enable all comm & address pins as outputs, set default states:
pinMode(_sclk , OUTPUT); SCLKPORT &= ~sclkpin; // Low
pinMode(_latch, OUTPUT); *latport &= ~latpin; // Low
pinMode(_oe , OUTPUT); *oeport |= oepin; // High (disable output)
pinMode(_a , OUTPUT); *addraport &= ~addrapin; // Low
pinMode(_b , OUTPUT); *addrbport &= ~addrbpin; // Low
pinMode(_c , OUTPUT); *addrcport &= ~addrcpin; // Low
if(nRows > 8) {
pinMode(_d , OUTPUT); *addrdport &= ~addrdpin; // Low
}
// The high six bits of the data port are set as outputs;
// Might make this configurable in the future, but not yet.
DATADIR = B11111100;
DATAPORT = 0;
// Set up Timer1 for interrupt:
TCCR1A = _BV(WGM11); // Mode 14 (fast PWM), OC1A off
TCCR1B = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // Mode 14, no prescale
ICR1 = 100;
TIMSK1 |= _BV(TOIE1); // Enable Timer1 interrupt
sei(); // Enable global interrupts
#endif
}
// Original RGBmatrixPanel library used 3/3/3 color. Later version used
// 4/4/4. Then Adafruit_GFX (core library used across all Adafruit
// display devices now) standardized on 5/6/5. The matrix still operates
// internally on 4/4/4 color, but all the graphics functions are written
// to expect 5/6/5...the matrix lib will truncate the color components as
// needed when drawing. These next functions are mostly here for the
// benefit of older code using one of the original color formats.
// Promote 3/3/3 RGB to Adafruit_GFX 5/6/5
uint16_t RGBmatrixPanel::Color333(uint8_t r, uint8_t g, uint8_t b) {
// RRRrrGGGgggBBBbb
return ((r & 0x7) << 13) | ((r & 0x6) << 10) |
((g & 0x7) << 8) | ((g & 0x7) << 5) |
((b & 0x7) << 2) | ((b & 0x6) >> 1);
}
// Promote 4/4/4 RGB to Adafruit_GFX 5/6/5
uint16_t RGBmatrixPanel::Color444(uint8_t r, uint8_t g, uint8_t b) {
// RRRRrGGGGggBBBBb
return ((r & 0xF) << 12) | ((r & 0x8) << 8) |
((g & 0xF) << 7) | ((g & 0xC) << 3) |
((b & 0xF) << 1) | ((b & 0x8) >> 3);
}
// Demote 8/8/8 to Adafruit_GFX 5/6/5
// If no gamma flag passed, assume linear color
uint16_t RGBmatrixPanel::Color888(uint8_t r, uint8_t g, uint8_t b) {
return ((uint16_t)(r & 0xF8) << 8) | ((uint16_t)(g & 0xFC) << 3) | (b >> 3);
}
// 8/8/8 -> gamma -> 5/6/5
uint16_t RGBmatrixPanel::Color888(
uint8_t r, uint8_t g, uint8_t b, boolean gflag) {
if(gflag) { // Gamma-corrected color?
r = pgm_read_byte(&gamma_lut[r]); // Gamma correction table maps
g = pgm_read_byte(&gamma_lut[g]); // 8-bit input to 4-bit output
b = pgm_read_byte(&gamma_lut[b]);
return ((uint16_t)r << 12) | ((uint16_t)(r & 0x8) << 8) | // 4/4/4->5/6/5
((uint16_t)g << 7) | ((uint16_t)(g & 0xC) << 3) |
( b << 1) | ( b >> 3);
} // else linear (uncorrected) color
return ((uint16_t)(r & 0xF8) << 8) | ((uint16_t)(g & 0xFC) << 3) | (b >> 3);
}
uint16_t RGBmatrixPanel::ColorHSV(
long hue, uint8_t sat, uint8_t val, boolean gflag) {
uint8_t r, g, b, lo;
uint16_t s1, v1;
// Hue
hue %= 1536; // -1535 to +1535
if(hue < 0) hue += 1536; // 0 to +1535
lo = hue & 255; // Low byte = primary/secondary color mix
switch(hue >> 8) { // High byte = sextant of colorwheel
case 0 : r = 255 ; g = lo ; b = 0 ; break; // R to Y
case 1 : r = 255 - lo; g = 255 ; b = 0 ; break; // Y to G
case 2 : r = 0 ; g = 255 ; b = lo ; break; // G to C
case 3 : r = 0 ; g = 255 - lo; b = 255 ; break; // C to B
case 4 : r = lo ; g = 0 ; b = 255 ; break; // B to M
default: r = 255 ; g = 0 ; b = 255 - lo; break; // M to R
}
// Saturation: add 1 so range is 1 to 256, allowig a quick shift operation
// on the result rather than a costly divide, while the type upgrade to int
// avoids repeated type conversions in both directions.
s1 = sat + 1;
r = 255 - (((255 - r) * s1) >> 8);
g = 255 - (((255 - g) * s1) >> 8);
b = 255 - (((255 - b) * s1) >> 8);
// Value (brightness) & 16-bit color reduction: similar to above, add 1
// to allow shifts, and upgrade to int makes other conversions implicit.
v1 = val + 1;
if(gflag) { // Gamma-corrected color?
r = pgm_read_byte(&gamma_lut[(r * v1) >> 8]); // Gamma correction table maps
g = pgm_read_byte(&gamma_lut[(g * v1) >> 8]); // 8-bit input to 4-bit output
b = pgm_read_byte(&gamma_lut[(b * v1) >> 8]);
} else { // linear (uncorrected) color
r = (r * v1) >> 12; // 4-bit results
g = (g * v1) >> 12;
b = (b * v1) >> 12;
}
return (r << 12) | ((r & 0x8) << 8) | // 4/4/4 -> 5/6/5
(g << 7) | ((g & 0xC) << 3) |
(b << 1) | ( b >> 3);
}
void RGBmatrixPanel::drawPixel(int16_t x, int16_t y, uint16_t c) {
uint8_t r, g, b, bit, limit, *ptr;
if((x < 0) || (x >= _width) || (y < 0) || (y >= _height)) return;
switch(rotation) {
case 1:
_swap_int16_t(x, y);
x = WIDTH - 1 - x;
break;
case 2:
x = WIDTH - 1 - x;
y = HEIGHT - 1 - y;
break;
case 3:
_swap_int16_t(x, y);
y = HEIGHT - 1 - y;
break;
}
// Adafruit_GFX uses 16-bit color in 5/6/5 format, while matrix needs
// 4/4/4. Pluck out relevant bits while separating into R,G,B:
r = c >> 12; // RRRRrggggggbbbbb
g = (c >> 7) & 0xF; // rrrrrGGGGggbbbbb
b = (c >> 1) & 0xF; // rrrrrggggggBBBBb
// Loop counter stuff
bit = 2;
limit = 1 << nPlanes;
if(y < nRows) {
// Data for the upper half of the display is stored in the lower
// bits of each byte.
ptr = &matrixbuff[backindex][y * WIDTH * (nPlanes - 1) + x]; // Base addr
// Plane 0 is a tricky case -- its data is spread about,
// stored in least two bits not used by the other planes.
ptr[WIDTH*2] &= ~B00000011; // Plane 0 R,G mask out in one op
if(r & 1) ptr[WIDTH*2] |= B00000001; // Plane 0 R: 64 bytes ahead, bit 0
if(g & 1) ptr[WIDTH*2] |= B00000010; // Plane 0 G: 64 bytes ahead, bit 1
if(b & 1) ptr[WIDTH] |= B00000001; // Plane 0 B: 32 bytes ahead, bit 0
else ptr[WIDTH] &= ~B00000001; // Plane 0 B unset; mask out
// The remaining three image planes are more normal-ish.
// Data is stored in the high 6 bits so it can be quickly
// copied to the DATAPORT register w/6 output lines.
for(; bit < limit; bit <<= 1) {
*ptr &= ~B00011100; // Mask out R,G,B in one op
if(r & bit) *ptr |= B00000100; // Plane N R: bit 2
if(g & bit) *ptr |= B00001000; // Plane N G: bit 3
if(b & bit) *ptr |= B00010000; // Plane N B: bit 4
ptr += WIDTH; // Advance to next bit plane
}
} else {
// Data for the lower half of the display is stored in the upper
// bits, except for the plane 0 stuff, using 2 least bits.
ptr = &matrixbuff[backindex][(y - nRows) * WIDTH * (nPlanes - 1) + x];
*ptr &= ~B00000011; // Plane 0 G,B mask out in one op
if(r & 1) ptr[WIDTH] |= B00000010; // Plane 0 R: 32 bytes ahead, bit 1
else ptr[WIDTH] &= ~B00000010; // Plane 0 R unset; mask out
if(g & 1) *ptr |= B00000001; // Plane 0 G: bit 0
if(b & 1) *ptr |= B00000010; // Plane 0 B: bit 0
for(; bit < limit; bit <<= 1) {
*ptr &= ~B11100000; // Mask out R,G,B in one op
if(r & bit) *ptr |= B00100000; // Plane N R: bit 5
if(g & bit) *ptr |= B01000000; // Plane N G: bit 6
if(b & bit) *ptr |= B10000000; // Plane N B: bit 7
ptr += WIDTH; // Advance to next bit plane
}
}
}
void RGBmatrixPanel::fillScreen(uint16_t c) {
if((c == 0x0000) || (c == 0xffff)) {
// For black or white, all bits in frame buffer will be identically
// set or unset (regardless of weird bit packing), so it's OK to just
// quickly memset the whole thing:
memset(matrixbuff[backindex], c, WIDTH * nRows * 3);
} else {
// Otherwise, need to handle it the long way:
Adafruit_GFX::fillScreen(c);
}
}
// Return address of back buffer -- can then load/store data directly
uint8_t *RGBmatrixPanel::backBuffer() {
return matrixbuff[backindex];
}
// For smooth animation -- drawing always takes place in the "back" buffer;
// this method pushes it to the "front" for display. Passing "true", the
// updated display contents are then copied to the new back buffer and can
// be incrementally modified. If "false", the back buffer then contains
// the old front buffer contents -- your code can either clear this or
// draw over every pixel. (No effect if double-buffering is not enabled.)
void RGBmatrixPanel::swapBuffers(boolean copy) {
if(matrixbuff[0] != matrixbuff[1]) {
// To avoid 'tearing' display, actual swap takes place in the interrupt
// handler, at the end of a complete screen refresh cycle.
swapflag = true; // Set flag here, then...
while(swapflag == true) delay(1); // wait for interrupt to clear it
if(copy == true)
memcpy(matrixbuff[backindex], matrixbuff[1-backindex], WIDTH * nRows * 3);
}
}
// Dump display contents to the Serial Monitor, adding some formatting to
// simplify copy-and-paste of data as a PROGMEM-embedded image for another
// sketch. If using multiple dumps this way, you'll need to edit the
// output to change the 'img' name for each. Data can then be loaded
// back into the display using a pgm_read_byte() loop.
void RGBmatrixPanel::dumpMatrix(void) {
int i, buffsize = WIDTH * nRows * 3;
Serial.print(F("\n\n"
"#include <avr/pgmspace.h>\n\n"
"static const uint8_t PROGMEM img[] = {\n "));
for(i=0; i<buffsize; i++) {
Serial.print(F("0x"));
if(matrixbuff[backindex][i] < 0x10) Serial.write('0');
Serial.print(matrixbuff[backindex][i],HEX);
if(i < (buffsize - 1)) {
if((i & 7) == 7) Serial.print(F(",\n "));
else Serial.write(',');
}
}
Serial.println(F("\n};"));
}
// -------------------- Interrupt handler stuff --------------------
#if !defined(ARDUINO_SAMD_FEATHER_M0)
ISR(TIMER1_OVF_vect, ISR_BLOCK) { // ISR_BLOCK important -- see notes later
activePanel->updateDisplay(); // Call refresh func for active display
TIFR1 |= TOV1; // Clear Timer1 interrupt flag
}
// Two constants are used in timing each successive BCM interval.
// These were found empirically, by checking the value of TCNT1 at
// certain positions in the interrupt code.
// CALLOVERHEAD is the number of CPU 'ticks' from the timer overflow
// condition (triggering the interrupt) to the first line in the
// updateDisplay() method. It's then assumed (maybe not entirely 100%
// accurately, but close enough) that a similar amount of time will be
// needed at the opposite end, restoring regular program flow.
// LOOPTIME is the number of 'ticks' spent inside the shortest data-
// issuing loop (not actually a 'loop' because it's unrolled, but eh).
// Both numbers are rounded up slightly to allow a little wiggle room
// should different compilers produce slightly different results.
#define CALLOVERHEAD 60 // Actual value measured = 56
#define LOOPTIME 200 // Actual value measured = 188
// The "on" time for bitplane 0 (with the shortest BCM interval) can
// then be estimated as LOOPTIME + CALLOVERHEAD * 2. Each successive
// bitplane then doubles the prior amount of time. We can then
// estimate refresh rates from this:
// 4 bitplanes = 320 + 640 + 1280 + 2560 = 4800 ticks per row.
// 4800 ticks * 16 rows (for 32x32 matrix) = 76800 ticks/frame.
// 16M CPU ticks/sec / 76800 ticks/frame = 208.33 Hz.
// Actual frame rate will be slightly less due to work being done
// during the brief "LEDs off" interval...it's reasonable to say
// "about 200 Hz." The 16x32 matrix only has to scan half as many
// rows...so we could either double the refresh rate (keeping the CPU
// load the same), or keep the same refresh rate but halve the CPU
// load. We opted for the latter.
// Can also estimate CPU use: bitplanes 1-3 all use 320 ticks to
// issue data (the increasing gaps in the timing invervals are then
// available to other code), and bitplane 0 takes 920 ticks out of
// the 2560 tick interval.
// 320 * 3 + 920 = 1880 ticks spent in interrupt code, per row.
// From prior calculations, about 4800 ticks happen per row.
// CPU use = 1880 / 4800 = ~39% (actual use will be very slightly
// higher, again due to code used in the LEDs off interval).
// 16x32 matrix uses about half that CPU load. CPU time could be
// further adjusted by padding the LOOPTIME value, but refresh rates
// will decrease proportionally, and 200 Hz is a decent target.
// The flow of the interrupt can be awkward to grasp, because data is
// being issued to the LED matrix for the *next* bitplane and/or row
// while the *current* plane/row is being shown. As a result, the
// counter variables change between past/present/future tense in mid-
// function...hopefully tenses are sufficiently commented.
void RGBmatrixPanel::updateDisplay(void) {
uint8_t i, tick, tock, *ptr;
uint16_t t, duration;
*oeport |= oepin; // Disable LED output during row/plane switchover
*latport |= latpin; // Latch data loaded during *prior* interrupt
// Calculate time to next interrupt BEFORE incrementing plane #.
// This is because duration is the display time for the data loaded
// on the PRIOR interrupt. CALLOVERHEAD is subtracted from the
// result because that time is implicit between the timer overflow
// (interrupt triggered) and the initial LEDs-off line at the start
// of this method.
t = (nRows > 8) ? LOOPTIME : (LOOPTIME * 2);
duration = ((t + CALLOVERHEAD * 2) << plane) - CALLOVERHEAD;
// Borrowing a technique here from Ray's Logic:
// www.rayslogic.com/propeller/Programming/AdafruitRGB/AdafruitRGB.htm
// This code cycles through all four planes for each scanline before
// advancing to the next line. While it might seem beneficial to
// advance lines every time and interleave the planes to reduce
// vertical scanning artifacts, in practice with this panel it causes
// a green 'ghosting' effect on black pixels, a much worse artifact.
if(++plane >= nPlanes) { // Advance plane counter. Maxed out?
plane = 0; // Yes, reset to plane 0, and
if(++row >= nRows) { // advance row counter. Maxed out?
row = 0; // Yes, reset row counter, then...
if(swapflag == true) { // Swap front/back buffers if requested
backindex = 1 - backindex;
swapflag = false;
}
buffptr = matrixbuff[1-backindex]; // Reset into front buffer
}
} else if(plane == 1) {
// Plane 0 was loaded on prior interrupt invocation and is about to
// latch now, so update the row address lines before we do that:
if(row & 0x1) *addraport |= addrapin;
else *addraport &= ~addrapin;
if(row & 0x2) *addrbport |= addrbpin;
else *addrbport &= ~addrbpin;
if(row & 0x4) *addrcport |= addrcpin;
else *addrcport &= ~addrcpin;
if(nRows > 8) {
if(row & 0x8) *addrdport |= addrdpin;
else *addrdport &= ~addrdpin;
}
}
// buffptr, being 'volatile' type, doesn't take well to optimization.
// A local register copy can speed some things up:
ptr = (uint8_t *)buffptr;
ICR1 = duration; // Set interval for next interrupt
TCNT1 = 0; // Restart interrupt timer
*oeport &= ~oepin; // Re-enable output
*latport &= ~latpin; // Latch down
// Record current state of SCLKPORT register, as well as a second
// copy with the clock bit set. This makes the innnermost data-
// pushing loops faster, as they can just set the PORT state and
// not have to load/modify/store bits every single time. It's a
// somewhat rude trick that ONLY works because the interrupt
// handler is set ISR_BLOCK, halting any other interrupts that
// might otherwise also be twiddling the port at the same time
// (else this would clobber them).
tock = SCLKPORT;
tick = tock | sclkpin;
if(plane > 0) { // 188 ticks from TCNT1=0 (above) to end of function
// Planes 1-3 copy bytes directly from RAM to PORT without unpacking.
// The least 2 bits (used for plane 0 data) are presumed masked out
// by the port direction bits.
// A tiny bit of inline assembly is used; compiler doesn't pick
// up on opportunity for post-increment addressing mode.
// 5 instruction ticks per 'pew' = 160 ticks total
#define pew asm volatile( \
"ld __tmp_reg__, %a[ptr]+" "\n\t" \
"out %[data] , __tmp_reg__" "\n\t" \
"out %[clk] , %[tick]" "\n\t" \
"out %[clk] , %[tock]" "\n" \
:: [ptr] "e" (ptr), \
[data] "I" (_SFR_IO_ADDR(DATAPORT)), \
[clk] "I" (_SFR_IO_ADDR(SCLKPORT)), \
[tick] "r" (tick), \
[tock] "r" (tock));
// Loop is unrolled for speed:
pew pew pew pew pew pew pew pew
pew pew pew pew pew pew pew pew
pew pew pew pew pew pew pew pew
pew pew pew pew pew pew pew pew
if (WIDTH == 64) {
pew pew pew pew pew pew pew pew
pew pew pew pew pew pew pew pew
pew pew pew pew pew pew pew pew
pew pew pew pew pew pew pew pew
}
buffptr = ptr; //+= 32;
} else { // 920 ticks from TCNT1=0 (above) to end of function
// Planes 1-3 (handled above) formatted their data "in place,"
// their layout matching that out the output PORT register (where
// 6 bits correspond to output data lines), maximizing throughput
// as no conversion or unpacking is needed. Plane 0 then takes up
// the slack, with all its data packed into the 2 least bits not
// used by the other planes. This works because the unpacking and
// output for plane 0 is handled while plane 3 is being displayed...
// because binary coded modulation is used (not PWM), that plane
// has the longest display interval, so the extra work fits.
for(i=0; i<WIDTH; i++) {
DATAPORT =
( ptr[i] << 6) |
((ptr[i+WIDTH] << 4) & 0x30) |
((ptr[i+WIDTH*2] << 2) & 0x0C);
SCLKPORT = tick; // Clock lo
SCLKPORT = tock; // Clock hi
}
}
}
#else // ARDUINO_SAMD_FEATHER_M0
/*******************************************************************************
All the magic to support the Feather M0 occurs here in the interrupt handler.
Timer 4 is configured to interrupt at a rate 16x the desired panel refresh
rate to enable Binary Code Modulation. Unlike the AVR interrupt handler,
the Feather M0 refresh algorithm does not change the interrupt interval.
Instead, the interrupt will return immediately until the current plane
has been displayed the required amount of time.
Plane 0 is displayed for only 1 interrupt interval.
Planes 1, 2, and 3 are displayed for 2, 4, and 8 interrupt intervals respectively.
The original AVR refresh algorithm is kept in spirit, but is modified somewhat
to make it more efficient for the ARM M0+ core. The original AVR comments
are embedded in the code below.
Max time spent in the interrupt handler is < 25 uS worst case (preparing plane 0).
The maximum refresh rate for a 32 row panel is
1 / (25uS x 16 rows x 16 bcm_intervals) = 156 Hz
The screen is actually refreshed only 4 times out of the 16 bcm_intervals that
the interrupt handler is called for each row so the worst case CPU overhead
at the maximum refresh rate is only 25%.
******************************************************************************/
// Pointers to PORT Output Set/Clear registers
volatile uint32_t *setPortA = &PORT->Group[PORTA].OUTSET.reg;
volatile uint32_t *clrPortA = &PORT->Group[PORTA].OUTCLR.reg;
volatile uint32_t *setPortB = &PORT->Group[PORTB].OUTSET.reg;
volatile uint32_t *clrPortB = &PORT->Group[PORTB].OUTCLR.reg;
static const uint32_t PIXEL_MASK = 0x3f << 15;
static const uint32_t CLK_MASK = 0x01 << 11;
static const uint32_t LAT_MASK = 0x01 << 8; // port B
static const uint32_t OE_MASK = 0x01 << 9; // port B
static const uint32_t ABCD_MASK = 0x2d << 2;
static const uint32_t A_MASK = 0x01;
static const uint32_t BC_MASK = 0x06;
static const uint32_t D_MASK = 0x08;
static const uint32_t PLANE0_MASK = 0x03030303;
/*******************************************************************************
Timer 4 interrupt handler.
******************************************************************************/
void ISR_LEDPanelRefresh(struct tc_module *const module_inst) {
activePanel->updateDisplay(); // Call refresh func for active display
}
void RGBmatrixPanel::updateDisplay(void) {
static uint32_t plane_dly_cnt=0;
uint8_t i, *ptr;
/*******************************************************************************
The plane variable is the plane that will be displayed next. The plane
being displayed now is the previous plane.
******************************************************************************/
if (++plane_dly_cnt < (1 << (plane+3) % 4)) { return; }
plane_dly_cnt = 0;
// Disable LED output during row/plane switchover
// Latch data loaded during *prior* interrupt
*setPortB = OE_MASK | LAT_MASK;
// Borrowing a technique here from Ray's Logic:
// www.rayslogic.com/propeller/Programming/AdafruitRGB/AdafruitRGB.htm
// This code cycles through all four planes for each scanline before
// advancing to the next line. While it might seem beneficial to
// advance lines every time and interleave the planes to reduce
// vertical scanning artifacts, in practice with this panel it causes
// a green 'ghosting' effect on black pixels, a much worse artifact.
/*******************************************************************************
Reordered original logic to minimize time while display is blanked.
******************************************************************************/
++plane;
if(plane == 1) {
// Plane 0 was loaded on prior interrupt invocation and is about to
// latch now, so update the row address lines before we do that:
/*******************************************************************************
Set the ABCD pins to the row address.
Sadly, the port address pins are not contiguous.
The D pin is always driven. If the panel only has 16 rows then the
D address was not configured as an output so it doesn't matter.
******************************************************************************/
*clrPortA = ABCD_MASK;
*setPortA = ((row & D_MASK) << 4) | ((row & BC_MASK) << 3) | ((row & A_MASK) << 2);
}
*clrPortB = LAT_MASK | OE_MASK; // Re-enable output and set the latch
if(plane >= nPlanes) { // Advance plane counter. Maxed out?
plane = 0; // Yes, reset to plane 0, and
if(++row >= nRows) { // advance row counter. Maxed out?
row = 0; // Yes, reset row counter, then...
if(swapflag == true) { // Swap front/back buffers if requested
backindex = 1 - backindex;
swapflag = false;
}
buffptr = matrixbuff[1-backindex]; // Reset into front buffer
}
}
/*******************************************************************************
AVR pixel output algorithm replaced. No assembly is used, the ARM
compiler is sufficiently (that is to say VERY) efficient.
The LSb of the pixel is bit 2, and the LSb of the port is bit 15, so
the pixels are shifted 13 bits to align them with the port.
******************************************************************************/
// buffptr, being 'volatile' type, doesn't take well to optimization.
// A local register copy can speed some things up:
ptr = (uint8_t *) buffptr;
if (plane > 0) {
// Planes 1-3 copy bytes directly from RAM to PORT without unpacking.
// The least 2 bits (used for plane 0 data) are masked out.
// loop is unrolled x4
for (int col=0; col<WIDTH; col+=4) {
*clrPortA = CLK_MASK + PIXEL_MASK; // clk low, pixel data zeroed
*setPortA = (*ptr++ << 13) & PIXEL_MASK; // write pixel data
*setPortA = CLK_MASK; // clk high
*clrPortA = CLK_MASK + PIXEL_MASK;
*setPortA = (*ptr++ << 13) & PIXEL_MASK;
*setPortA = CLK_MASK;
*clrPortA = CLK_MASK + PIXEL_MASK;
*setPortA = (*ptr++ << 13) & PIXEL_MASK;
*setPortA = CLK_MASK;
*clrPortA = CLK_MASK + PIXEL_MASK;
*setPortA = (*ptr++ << 13) & PIXEL_MASK;
*setPortA = CLK_MASK;
}
buffptr += WIDTH;
}
else {
// Planes 1-3 (handled above) formatted their data "in place,"
// their layout matching that out the output PORT register (where
// 6 bits correspond to output data lines), maximizing throughput
// as no conversion or unpacking is needed. Plane 0 then takes up
// the slack, with all its data packed into the 2 least bits not
// used by the other planes. This works because the unpacking and
// output for plane 0 is handled while plane 3 is being displayed...
// because binary coded modulation is used (not PWM), that plane
// has the longest display interval, so the extra work fits.
//
/*******************************************************************************
Unroll the loop x4 by reading 4 bytes from each plane at a time.
Unrolled loop is equivalent to:
for(i=0; i<WIDTH; i++) {
*clrPortA = CLK_MASK + PIXEL_MASK;
*setPortA = (((ptr[i] & 0x03) << 4) | ((ptr[i+WIDTH] & 0x03) << 2) | (ptr[i+WIDTH*2] & 0x03)) << 15;
*setPortA = CLK_MASK;
}
******************************************************************************/
// Unroll the loop x4 by reading 4 bytes from each plane at a time.
uint32_t plane0_g1r1, plane0_r2b1, plane0_b2g2;
uint32_t pixel;
for(i=0; i<WIDTH; i+=4) {
plane0_b2g2 = ((* ((uint32_t *) (ptr+i))) & PLANE0_MASK) << 4;
plane0_r2b1 = ((* ((uint32_t *) (ptr+i+WIDTH))) & PLANE0_MASK) << 2;
plane0_g1r1 = (* ((uint32_t *) (ptr+i+WIDTH+WIDTH))) & PLANE0_MASK;
pixel = plane0_g1r1 | plane0_r2b1 | plane0_b2g2;
*clrPortA = CLK_MASK + PIXEL_MASK; // clk low, pixel data zeroed
*setPortA = (pixel << 15) & PIXEL_MASK;
*setPortA = CLK_MASK; // clk high
*clrPortA = CLK_MASK + PIXEL_MASK;
*setPortA = (pixel << 7) & PIXEL_MASK;
*setPortA = CLK_MASK;
*clrPortA = CLK_MASK + PIXEL_MASK;
*setPortA = (pixel >> 1) & PIXEL_MASK;
*setPortA = CLK_MASK;
*clrPortA = CLK_MASK + PIXEL_MASK;
*setPortA = (pixel >> 9) & PIXEL_MASK;
*setPortA = CLK_MASK;
}
}
}
#endif